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There are two ways to describe the interaction between classical and quantum information
categorically: one based on completely positive maps between Frobenius algebras, the other using
symmetric monoidal 2-categories. This paper makes a first step towards combining the two. The
integrated approach allows a unified description of quantum teleportation and classical encryption in
a single 2-category, as well as a universal security proof applicable simultaneously to both scenarios.

1 Introduction

In the categorical approach to quantum information [1], there are two main approaches to modelling the
interaction between classical and quantum data, which can be summarized as follows:

• Commutative Frobenius algebras model classical data, noncommutative Frobenius algebras model
quantum data, completely positive maps model computational processes. The resulting compact
category CP∗[FHilb], reviewed in Section 1.1, incorporates both pure and mixed states in a single
setting, while admitting a graphical calculus [8–11, 13, 14, 16, 21].

• Objects model classical data, 1-morphisms model quantum data, 2-morphisms model computa-
tional processes. The resulting symmetric monoidal 2-category, reviewed in Section 1.2, provides
universal syntactic models that can encode entire procedures as single equations [4, 19, 22].

This article makes a first step towards combining both approaches while retaining the advantages of each.
Section 2 introduces a procedure that turns a suitable symmetric monoidal category C into a symmetric
monoidal 2-category 2[C]. It is based on the well-known structure of bimodules and homomorphisms,
but with a new definition of bimodule composition in terms of splitting of an idempotent.

Section 3 investigates basic properties of 2[CP∗[FHilb]]. We show that on a large domain, which
is sufficient for the intended application to quantum information, the 2-category is well-defined. We
also prove the surprising result that every finite groupoid gives rise to an object in 2[CP∗[FHilb]] in a
canonical way, suggesting that the 2-category has a rich structure waiting to be explored.

Finally, Section 4 demonstrates the advantages of our combined approach. We obtain:

• An elegant abstract definition of measurement, that in 2[CP∗[FHilb]] comes down to the usual
mixed-state notion of positive operator–valued measurement.
• A single equation whose solutions in 2[CP∗[FHilb]] simultaneously include implementations of

quantum teleportation and of classical encrypted communication.
• A single proof of security that applies simultaneously to both procedures.
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There are several interesting directions for future work:
• How can objects of 2[CP∗[FHilb]] be classified?
• Is there a direct construction C 7→Mix[C] of 2-categories such that 2[CP∗[C]]∼= Mix[2[C]]?
• What are nonstandard models such as 2[CP∗[Rel]] like?
• Are there nonstandard solutions of the teleportation equation in 2[CP∗[FHilb]], which are neither

pure-state quantum teleportation or encrypted communication, but some hybrid process?

1.1 The CP*–construction

Categorical quantum mechanics deals with dagger monoidal categories [1], which admit a graphical
calculus; see [18]. Within this well-documented setting, let us very briefly recall the CP* construction
from the perspective of [14, Lemma 1.2]; for more details we refer to [10, 14, 16]. This construction
turns a dagger compact category C into a new category CP∗[C]. An object in CP∗[C] is a special
dagger Frobenius algebra in C: an object A with morphisms : A⊗A→ A and : I→ A satisfying the
specialness condition = , as well as the dagger Frobenius algebra laws:

= = = = = (1)

Commutative such objects are also called classical structures. A morphism (A, , )→ (B, , ) in
CP∗[C] is a morphism f : A→ B in C satisfying the complete positivity condition

f = g

g†

(2)

for some morphism g : A⊗B∗ → X in C. This gives a well-defined dagger compact category CP∗[C]
with the following basic interpretation:

Category theory Geometry Interpretation
Commutative objects Lines with commutative dots Classical information
Noncommutative objects Lines with noncommutative dots Quantum information
Morphisms Vertices Physical operations

The CP*–construction is of fundamental importance because it turns a category of pure states and
processes into a category of mixed states: applying the CP*–construction to the category FHilb of finite-
dimensional Hilbert spaces and linear maps results in the category CP∗[FHilb] of finite-dimensional
C*-algebras and completely positive maps.

1.2 Higher quantum theory

Higher quantum theory [22, 23] separates classical and quantum information by replacing monoidal
categories by monoidal weak 2-categories. These also have a graphical notation [15]:

Category theory Geometry Interpretation
Objects Surfaces Classical information
1-Morphisms Lines Quantum systems
2-Morphisms Vertices Physical operations
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Graphically, composition of 1-morphisms is indicated by horizontal juxtaposition, and composition of
2-morphisms by vertical juxtaposition. The tensor product is given by ‘overlaying’ regions one above
the other, perpendicular to the plane of the page.

Just like in the 1-categorical case, the diagrams are interpreted as describing sequences of events
taking place over time, with time running from bottom to top. A dagger provides a formal time-reversal
of 2-morphisms, represented graphically by reflecting a diagram about a horizontal axis.
Definition 1. A dagger 2-category is a 2-category equipped with an involutive operation † on
2-morphisms, such that µ† : G⇒ F for all µ : F ⇒ G, in a way that is functorial and compatible with
the rest of the monoidal 2-category structure.

The core theory uses the graphical components summarized below, motivated in detail in [22].

Quantum system Classical system (3)

Right-hand boundary Left-hand boundary (4)

Copy classical
information

Compare classical
information

(5)

Create uniform
classical information

Delete classical
information

(6)

Definition 2. An object in a symmetric monoidal 2-category has a topological boundary when it is
equipped with data (4)-(6) satisfying the following axioms, which amount to saying that the boundary of
a classical system is topological and that holes can be eliminated:

= = = = (7)

= = (8)

Whenever we make use of the above graphical notation, it is understood that we are depicting an object
with topological boundary in a symmetric monoidal dagger 2-category.

2 The 2[−] construction

This section introduces a construction that turns a monoidal category C into a 2-category 2[C], in such a
way that 2[CP∗[C]] has the appropriate structure to express the teleportation equation solely in terms of
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objects and morphisms. The idea is to adapt the well-known algebraic construction of rings, bimodules,
and bimodule homomorphisms [12]. In Section 2.1 we will see how our construction is defined, and in
Section 2.2 we will see that objects in 2[C] have a topological boundary in the sense of Definition 2.

2.1 Bimodules and composition

Definition 3. Let (C, , ) and (D, , ) be dagger Frobenius algebras in a dagger monoidal category.
A dagger C-D-bimodule is a morphism M satisfying:

M

M

M

M DC DC

=

M
M

MC C D D

M

M

=

M
M

M

M†

M

M DC

= M

M

MC D

(9)

We also call the object M the bimodule, and the map M its action, and write M = M( ) and
M = M( ). A homomorphism of dagger C-D-bimodules is a morphism f : M → M′ that respects

that actions by satisfying f M = M′(idC⊗ f ⊗ idD).
If M is a C-D-bimodule, and N is a D-E-bimodule, the standard algebraic construction of tensor

product gives a C-E-bimodule M⊗D N; see [12, Section 4.5]. It is constructed by forcing the right
D-action on M and the left D-action on N to cooperate. More precisely, it is the coequalizer of the two
morphisms M⊗D⊗N→M⊗N induced by the two D-actions.

One way to guarantee the existence of such a coequalizer is to require that some morphisms have
a sensible notion of image, as in the following definition and lemma. Recall that an endomorphism
p : A → A is a dagger idempotent when p2 = p = p†. A dagger idempotent p splits when p = ii†

and i†i = id for some morphism i, called the image of p. Split idempotents are a special case of
dagger coequalizers [17]: a dagger idempotent p : A→ A splits if and only if p and idA have a dagger
coequalizer i†.
Definition 4. A dagger monoidal category has dagger Frobenius images when for all classical structures
(C, , ), (D, , ), (E, , ), for all C-D-bimodules M and all D-E-bimodules N, the following dagger
idempotent splits:

M N

M N

M N

(10)

Notice that this morphism is indeed dagger idempotent by (9).
We denote the image of (10) by i : M N→M⊗N. It is a dagger C-E-bimodule:

M N

M N

M N EC

:=

i

i†

M N

C E

M N

M N

(11)



308 Mixed quantum states in higher categories

Lemma 5. If (10) splits with image i, then i† is a coequalizer of M⊗ idN and idM⊗N .

Proof. Observe that i†( M⊗ idN) = i†(idM⊗N ) because (M N)( M⊗ idN) = (idM⊗N )( M⊗ idN):

M N

M

M N

NM D

=

M N
M N

M ND

=

M N

N

M N

M ND

Suppose that f ( M⊗ idN) = f (idM⊗N ). Then f factors through i† as f = f ii†:

f

NM

=

f

M

M N

=

f

M

M

M N

=

f

M N

M N

This mediating map is unique: if f = mi†, then m = mi†i = f i.

We can use this technique to re-prove many standard results about bimodules in a graphical way,
such as the following simple result, that will be useful later.

Lemma 6. For any dagger Frobenius algebra (A, , ), the identity A-A-bimodule is .

With this preparation we can now define our main construction.

Proposition 7. If C is a dagger monoidal category that has dagger Frobenius images, then the following
data define a symmetric monoidal (weak) 2-category 2[C]:

• objects are classical structures in C;
• 1-morphisms are dagger bimodules; the identity 1-morphism on (C, , ) is ;
• 2-morphisms are dagger bimodule homomorphisms;
• horizontal composition of 1-morphisms is given by (11);
• horizontal composition of 2-morphisms follows from the universal property of Lemma 5;
• monoidal structure is inherited from C.

More precisely, the horizontal composition of 2-morphisms f : M→M′ and g : N→ N′ is the unique
arrow making the following diagram commute:

M⊗D⊗N

M′⊗D⊗N′

M⊗N

M′⊗N′

M N

M′ N′

( f ⊗ idD⊗g) f ⊗g f g

i†

i′†

M⊗ idN

idM⊗N

M′⊗ idN′

idM′⊗N′
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Proof. For verification that these data indeed satisfy all the conditions required of a weak 2-category,
see [24]. Verifying monoidality is a huge exercise that nevertheless seems straightforward enough.

We end this subsection by listing some properties of the 2[−]–construction; for proofs we refer to [24].
• If C has a dagger, so does 2[C].
• If C is compact, so is 2[C]: 1-morphisms have duals that are both left and right adjoint.
• If C has dagger biproducts, so do all hom-categories of 2[C].
• The scalars of 2[C] correspond to C: there is an isomorphism 2[C](I, I)∼= C of categories.

2.2 Topological boundaries

We now show that objects of 2[C] have topological boundaries in the sense of Definition 2.
Definition 8. The boundaries of a special dagger Frobenius algebra (A, , ) in C are canonical
bimodules (A, , )

L→ (I,λI, idI) and (I,λI, idI)
R→ (A, , ) induced by the multiplication map :

L := R := (12)

The dashed lines indicate the monoidal unit object; we will typically omit these from now on. These
boundaries are depicted as lines that bound solid regions, as shown in the diagrams (4).
Lemma 9. For a special dagger Frobenius algebra (A, , ), the composite bimodule

(I,λI, idI)
R→ (A, , )

L→ (I,λI, idI)

is isomorphic to the object A.

Proof. By Lemma 5, we must find the dagger splitting of the left-hand diagram below:

= (13)

By the dagger Frobenius axioms it equals the right-hand diagram. But the dagger specialness axiom
makes this a dagger splitting via the object A, so the object A gives the composite of the bimodules.

Lemma 10. The boundaries of a special dagger Frobenius monoid (A, , ) in C can be equipped with
data (5) and (6) satisfying equations (7) and (8) as follows:

L R

idA L R

idA L R

idI L R

idI

(14)

: A→ A⊗A : A⊗A→ A : I→ A : A→ I

Note that we are relying on Lemmas 6 and 9 for these definitions to make sense.

Proof. Equations (7) follow immediately from the (co)unit equation for a dagger Frobenius algebra.
Equations (8) follow immediately from specialness and commutativity.
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3 The case of Hilbert spaces

This section discusses 2[CP∗[FHilb]]. We show that a substantial portion is well-defined, which we
characterize in concrete terms: it consists of natural numbers, matrices of finite-dimensional C*-algebras,
and matrices of completely positive maps. Thus this is completely analogous to the case of 2[FHilb],
which is equivalent to the 2-category of 2-Hilbert spaces that consists of natural numbers, matrices of
Hilbert spaces, and matrices of linear maps [3, 24]. The difficulty of establishing that 2[CP∗[FHilb]] is
well-defined in general arises because CP∗[FHilb] does not have good completeness properties.

Lemma 11. Not all coequalizers in the category CP∗[FHilb] are split epimorphisms.

Proof. Due to the dagger we may equivalently show that not all equalizers split. Suppose the completely
positive maps f = ( 1 1 0 0) and g = ( 0 0 1 1) : C4→C had an equalizer e : A→C4 in CP∗[FHilb]. Then
f e = ge, so e factors through the equalizer of f and g in FHilb:

C3 C4 C

A
e

f

g
m

(−1 1 1
1 0 0
0 1 0
0 0 1

)

We show below that the function e is injective1. Then the linear map m is injective, and so dim(A)≤ 3.
It follows that A must be a commutative C*-algebra (as 2-by-2 matrices already have dimension 4).

Suppose e(a) = 0 with a = x+ iy for self-adjoint x,y ∈ A. Then e(x) = e(y) = 0 because positive
maps preserve adjoints [20, page 2]. Say x = x+− x− for positive x+,x− ∈ A; then e(x+) = e(x−). But
the completely positive maps h± : C→ A defined by h±(1) = x± satisfy eh+ = eh−. So h+ = h− since e
is monic, whence x = 0. Similarly y = 0. So ker(e) = {0}, and e is injective.

On the other hand, there are at least four completely positive maps C→C4, given by x1 = (1,0,1,0),
x2 = (1,1,0,0), x3 = (0,1,0,1), x4 = (0,0,1,1), which satisfy f xi = gxi. No xi is a linear combination
of the others with nonnegative coefficients. If d is a retraction of e, therefore none of dxi ∈ A is a linear
combination of the others with nonnegative coefficients, as edxi = xi. Moreover dxi ≥ 0 by completely
positivity of d. But this contradicts dim(A)≤ 3 as A is commutative.

It follows immediately that CP∗[FHilb] does not have dagger coequalizers. The point is that there
are nevertheless enough coequalizers for our purposes, as we show below.

3.1 Analysis

A subcollection of the objects in CP∗[FHilb] are classical structures C = (A, , ) in FHilb. Since the
morphisms and are completely positive with respect to this algebra structure, this also gives rise to
an algebra C′ = (C, , ) in CP∗[FHilb]. We call this a classical structure over itself. Note that, up to
isomorphism C∼=Cn, such structures are just natural numbers. In this section, except for the last theorem,
we restrict consideration to objects of 2[CP∗[FHilb]] which are classical structures over themselves.

Lemma 12. There is a one-to-one correspondence between dagger bimodules on classical structures
over themselves in CP∗[FHilb], and matrices of finite-dimensional C*-algebras.

1We thank Narutaka Ozawa for this observation.
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Proof. Let M : Cm ⊗M ⊗Cn → M be a dagger Cm-Cn-bimodule in CP∗[FHilb], between classical
structures over themselves. Then M is a finite-dimensional C*-algebra, and M is a completely positive
map. By 16, the units of Cm and Cn are given by the sum over the standard basis vectors |i〉 and | j〉
of Cm and Cn, respectively. Set pi j = (|i〉〈i|)⊗ idM ⊗ (| j〉〈 j|); this is a completely positive dagger
idempotent. Hence its image Mi j = pi j(M) is a finite-dimensional C*-algebra by a classic theorem of
Choi and Effros [6]; see [14, Proposition 2.4]. Thus the bimodule M gives rise to a matrix (Mi j) of
finite-dimensional C*-algebras.

Conversely, let (Mi j) be an m-by-n matrix of finite-dimensional C*-algebras. Set M =
⊕

i, j Mi j, and
define M : Cm⊗M⊗Cn → M by mapping |i〉⊗ a⊗ | j〉 to 1i j · a, where 1i j is the unit of Mi j. In other
words, M(|i〉⊗ a⊗ | j〉) is the projection of a ∈ A onto the summand Mi j. This is a ∗-homomorphism,
and hence a completely positive map [10, Lemma 3.8]. To verify that it is a bimodule, we need to
check equation (9). The first two equalities are easily verified, the third equality uses that M† : M →
Cm⊗M⊗Cn maps b ∈M to ∑i, j |i〉⊗ (1i jb)⊗| j〉. Hence these two constructions, which are inverse to
each other, are well-defined.

It follows that an important part of 2[CP∗[FHilb]] is well-defined, which will be sufficient for our
applications in Section 4 to quantum information and encryption.

Proposition 13. Let (C, , ), (D, , ), (E, , ) be classical structures over themselves in
CP∗[FHilb], and let M and N be a C-D-bimodule and a D-E-bimodule. The idempotent (10) splits.

Proof. Write |i〉, | j〉, |k〉 for the standard bases of Cl , Cm, Cn. Let M be a dagger Cl-Cm-bimodule, and
let N be a dagger Cm-Cn-bimodule in CP∗[FHilb]. Then (10) maps m⊗ n to ∑i, j,k M(|i〉⊗m⊗ | j〉)⊗
N(| j〉⊗n⊗|k〉). This morphism is a sum of orthogonal projections, and hence a projection itself. As in
the proof of Lemma 12, this means that it has a well-defined dagger image in CP∗[FHilb]. The proof is
finished by noticing that any classical structure in FHilb is isomorphic to the commutative C*-algebra
Cn for some n.

Lemma 14. There is a one-to-one correspondence between homomorphisms of dagger bimodules
between classical structures over themselves in CP∗[FHilb], and matrices of completely positive maps
between finite-dimensional C*-algebras.

Proof. Let f : M→ N be a homomorphism of dagger Cm-Cn-bimodules in CP∗[FHilb]. Write |i〉 and
| j〉 for the standard bases of Cm and Cn. According to the proof of Lemma 12, let pi j : M→ Mi j and
qi j : N→ Ni j be the completely positive maps implementing the biproduct decompositions M =

⊕
i, j Mi j

and N =
⊕

i, j Ni j. Then fi j = qi j f p†
i j : Mi j → Ni j is an m-by-n matrix of completely positive maps.

Conversely, let ( fi j) be an m-by-n matrix of completely positive maps fi j : Mi j → Ni j. According to
Lemma 12 we have to find a map f : M→ N for M =

⊕
i, j Mi j and N =

⊕
i, j Ni j. Just take f =

⊕
i j fi j;

this is well-defined because CP∗[C] inherits biproducts from C [14, Theorem 3.2]. We have to verify that
this is a well-defined homomorphism of dagger bimodules:

f M(|i0〉⊗a⊗| j0〉) = f (1i0 j0a) =
⊕

i, j fi j(1i0 j0a) = fi0 j0(1i0 j0a)

= 1i0 j0
⊕

i, j fi j(1i ja)

= 1i0 j0 f (a) = N(|i0〉⊗ f (a)⊗| j0〉)

These two constructions are clearly inverse to each other.

We can now characterize a well-defined part of 2[CP∗[FHilb]].
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Theorem 15. The following full sub-2-category is well-defined within 2[CP∗[FHilb]]:

• objects are natural numbers m;

• 1-morphisms m→ n are m-by-n matrices (Mi j) of finite-dimensional C*-algebras;

• 2-morphisms (Mi j)→ (Ni j) are m-by-n matrices ( fi j) of completely positive maps;

• horizontal composition of 1-morphisms is given by (
⊕

j Mi j⊗N jk);

• horizontal composition of 2-morphisms is given by (
⊕

j fi j⊗g jk);

• vertical composition of 2-morphisms is given by (gi j fi j).

Proof. It suffices to show that the correspondences of Lemmas 12 and 14 turn the compositions of
Proposition 7 into the ones of the statement. Let M and M′ be Cl-Cm-bimodules, and let N and
N′ be Cm-Cn-bimodules. These correspond to matrices of C*-algebras, where Mi j is the image of
|i〉〈i|⊗ idM⊗| j〉〈 j|. Let f : M→M′ and g : N→N′ be bimodule homomorphisms. These correspond to
matrices of completely positive maps fi j : Mi j→M′i j and gi j : Ni j→ N′i j. Now, by definition M N is the
image of the map ∑i, j,k M(|i〉⊗ [−]⊗| j〉)⊗N(| j〉⊗ [−]⊗|k〉). But this is just

⊕
i, j,k Mi j⊗N jk. Similarly,

horizontal composition of f and g corresponds to (
⊕

j fi j⊗g jk).

In future work we would of course like to show that 2[CP∗[FHilb]] is completely well-defined. The
first task will be to characterize its objects up to isomorphism. We offer the following theorem, which
generalizes [7, Corollary 3.10], as evidence that this is a nontrivial question. Recall that a state x ∈C of
a classical structure (C, , ) in FHilb is copyable when (x) = x⊗ x.

Theorem 16. Consider a classical structure C in FHilb as an object of CP∗[FHilb]. There is a one-to-
one correspondence between dagger special Frobenius algebras on C in CP∗[FHilb], and finite groupoids
whose morphisms are the copyable states of C.

Proof. Let (Cn, , ) be a dagger special Frobenius algebra on Cn in CP∗[FHilb]. That is, it is a
dagger special Frobenius algebra in FHilb—i.e. a finite-dimensional C*-algebra [21]—satisfying the
extra condition that and are completely positive maps. Since they are maps between commutative
C*-algebras, saying that and are completely positive is the same as saying that they are linear maps
that preserve positive elements [20, Theorem 1.2.4]. Write and as a matrix using the standard basis
|i〉 of Cn. Then all matrix entries 〈i| | jk〉 and 〈i| |1〉 are nonnegative real numbers, and conversely, if
all the matrix entries are nonnegative, then the linear maps and certainly preserve positive elements.
Thus (Cn, , ) is a dagger special Frobenius algebra in CP∗[FHilb] if and only if it is a C*-algebra
whose multiplication and unit have nonnegative matrix entries on the standard basis |i〉 of Cn.

But then, by [2, Proposition 34], the matrix entries of must in fact be either 0 or 1 (see also [10,
Section 5.2].) So we may equally think of the matrix of as a morphism in the category Rel of sets and
relations, where it still is a special dagger Frobenius algebra. Hence it encodes the multiplication of a
groupoid whose arrows are the row indices |i〉 [13]. As units for a monoid are unique, also the matrix of
must take values in {0,1}, and encode the identities of the groupoid. Finally, any classical structure C in
FHilb is isomorphic to Cn for some n, with the standard basis of Cn corresponding to the copyable states
of C. Similarly, a ∗-isomorphism between classical structures in Rel corresponds to an isomorphism of
groupoids [13, Theorem 19].

We leave open the interesting question of whether isomorphism between these objects in 2[CP∗[FHilb]]
(so-called Morita equivalence) corresponds to equivalence of groupoids.
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4 Applications

We now consider applications to quantum information of the well-defined part of 2[CP∗[FHilb]]
constructed in Theorem 15. We give an abstract 2-categorical definition of measurement, and show
it recovers the ordinary notion positive operator–valued measure. We then analyze the 2-categorical
equation for quantum teleportation, and show that it has solutions in our 2-category given by both
encrypted communication and quantum teleportation. We then give a proof of a security property, which
applies simultaneously to both types of solution.

4.1 Measurement

Earlier work on the 2-categorical syntax for pure-state quantum theory [22] demonstrated that a
projective quantum measurement corresponds to a unitary 2-morphism which converts a local system
into an extended system. Since our measurements in general are mixed, unitarity is not appropriate;
instead we impose a counit-preservation condition.

Definition 17. In 2[CP∗[FHilb]], a measurement is a counit-preserving 2-morphism of type:

µ
(15)

It is not ideal that we must modify the definition of a measurement in this way. The situation is
analogous to the work in [19], where measurements were required to be kernel-free. That requirement
can be replaced with the more elegant unitarity condition [4]. With further work we hope to show the
same in the current setting, a task which is likely to require making use of a larger part of 2[CP∗[FHilb]]
than we have so-far shown to be well-defined. However, Definition 17 elegantly captures precisely the
desired notion, as we now show.

Theorem 18. Restricting to the part of 2[CP∗[FHilb]] defined in Theorem 15, measurements on matrix
algebras are exactly positive operator-valued measures.

Proof. The 2-morphism µ is a trace-preserving completely positive map from a matrix algebra to a
classical structure. Its adjoint µ† is therefore a completely positive map out of a classical structure. Such
a map is completely defined by its action on the n copyable states of the classical structure, which must
be sent to positive elements of H⊗H∗. Thus µ† is defined by a family of n positive operators Pi : H→H.

The counit-preservation condition is given by the left-hand condition below: µ

Cn

=

 †⇔

 µ†

Cn
=

 (16)

On the right-hand side we take the adjoint of this condition. We use the ‘earth’ symbol to represent
the counit of a matrix algebra, which is just the trace map, following previous work [11]. The second
equation says precisely that ∑i Pi = idH , which is exactly the condition for the family of positive operators
Pi to define a positive operator–valued measurement.
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4.2 Unification of quantum teleportation and classical encrypted communication

Definition 19. In a symmetric monoidal 2-category containing an object with a topological boundary,
teleportation is a solution to the following equation with µ a measurement and ν unitary:

µ

ν

= (17)

Note that this definition relies on our earlier Definition 17 of a measurement.

Theorem 20. When the nontrivial region is labelled by a discrete groupoid, solutions to the teleportation
equation in 2[CP∗[FHilb]] can be obtained as follows:

1. when the incoming system is a classical structure, by implementations of classical encrypted
communication using a one-time pad;

2. when the incoming system is a matrix algebra, by implementations of quantum teleportation.

Proof. We can only give a sketch here. It is already established separately that both classical encrypted
communication via a one-time pad [19] and quantum teleportation [22] can be characterized exactly as
solutions to this equation, in 2Rel and 2Hilb respectively. Both families of solutions can be embedded
into 2[CP∗[FHilb]] in an appropriate fashion.

It is an interesting open question whether these are the only solutions, or whether solutions exist which
somehow mix the encryption and teleportation aspects.

4.3 Security of teleportation

In both quantum teleportation and classical encrypted communication with a one-time pad, it is true that
if you throw away the second half of the cryptographic resource—the entangled state or the secret key,
respectively—all information about the message is lost. An abstract proof of this has already been given
in the 2-categorical setup for the case of encrypted communication [19]. We now give a general proof
that applies simultaneously to quantum teleportation and encrypted communication.

Theorem 21. For any solution to the teleportation equation (17), destroying the second half of the shared
resource is equivalent to destroying the original message:

µ
= (18)

Proof. Adjoin a trace map to the final system on both sides of the teleportation equation (17). The
map ν is a family of invertible completely positive maps by Lemma 14, and thus is necessarily trace-
preserving [5, Theorem 3.3]; the left-hand side therefore simplifies, giving equation (18).
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