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A partitioned process theory, as defined by Coecke, Fritz, and Spekkens, is a symmetric monoidal
category together with an all-object-including symmetricmonoidal subcategory. We think of the
morphisms of this category as processes, and the morphisms of the subcategory as those processes
that are freely executable. Via a construction we refer to asparallel-combinable processes with
discarding, we obtain from this data a partially ordered monoid on the set of processes, withf ⪰ g if
one can use the free processes to constructg from f . The structure of this partial order can then be
probed using additive monotones: order-preserving monoidhomomorphisms with values in the real
numbers under addition. We first characterise these additive monotones in terms of the corresponding
partitioned process theory.

Given enough monotones, we might hope to be able to reconstruct the order on the monoid. If
so, we say that we have a complete family of monotones. In general, however, when we require our
monotones to be additive monotones, such families do not exist or are hard to compute. We show the
existence of complete families of additive monotones for various partitioned process theories based
on the category of finite sets, in order to shed light on the waysuch families can be constructed.

1 Introduction

In [3], Coecke, Fritz, and Spekkens make a well-illustratedcase for viewing symmetric monoidal cate-
gories as theories of resources: the objects of the categoryare interpreted as resources, the morphisms
methods for converting one resource into another. In many examples, such as quantum entanglement,
the resources themselves are processes, and the methods of converting one process into another involve
composition with a set of ‘freely executable’ processes. This structure is formalised as a partitioned
process theory: a pair comprising a symmetric monoidal category together with an all-object-including
symmetric monoidal subcategory.

The question then arises: when can we build one resource fromanother? One technique for answer-
ing this question is to assign real numbers to each resource,according to their power to create other
resources. We call such functions monotones. A collection of monotones that completely characterises
this structure is known as a complete family of monotones. While complete families of monotones al-
ways exist, ones with nice properties are in general hard to come by, with even celebrated ones, such as
entropy or Kolmogorov complexity, being difficult to compute.

In this article we explore the construction of families of so-called additive monotones—monotones
that are also monoid homomorphisms into the real numbers under addition. Our main result fixes a
particular method of building a resource theory from a partitioned process theory, and characterises the
additive monotones on the resulting resource theory. We then explore two applications of this theorem,
using it to construct complete families of additive monotones.
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2 Resource theories of parallel-combinable processes withdiscarding

We formalise our ideas about resources and free processes using symmetric monoidal categories, follow-
ing the work of Coecke, Fritz, and Spekkens [2, 3]. We say thata subcategoryD of a categoryC is a
widesubcategory if it includes all the objects ofC.
Definition 1. A partitioned process theory(C,Cfree) consists of a symmetric monoidal categoryC to-
gether with a wide symmetric monoidal subcategoryCfree.

With this definition we see that examples of partitioned process theories abound, not only describing
structures such as entanglement and athermality arising inapplied sciences [1, 6], but also simply natural
ideas within mathematics itself. For example, any categoryC with products can be considered a symmet-
ric monoidal category with monoidal product given by the categorical product, and in such a category
each object is equipped with a commutative comonoid structure. We may generate a wide symmetric
monoidal subcategory from these comonoid morphisms to serve as our categoryCfree. A similar, topical
[7, 4, 8], example arises from the analogous construction onso-called multigraph categories—categories
in which every object is equipped with a special commutativeFrobenius monoid.

We caution that a partitioned process theory was simply termed a resource theory in [2]; our termi-
nology comes from [3], and following [3] we instead useresource theoryto simply refer to a symmetric
monoidal category in which we think of the objects as resources. In line with this viewpoint, we shall
refer to the morphisms ofC asprocessesand the morphisms ofCfree as free processes. We then can
construct a resource theory from a partitioned process theory by considering the processes as resources.

Indeed, given a partitioned process theory(C,Cfree), we can construct a symmetric monoidal cat-
egory in which the objects are the processesC, and the morphisms are methods of constructing one
process from another using free processes. We term this new category theresource theory of parallel-
combinable processes with discardingPCD(C,Cfree) of the partitioned process theory(C,Cfree).

We shall assume all categories here are small, and write∣C∣ and Mor(C) for the sets of objects and
morphisms of a categoryC respectively.
Proposition 2. Let(C,Cfree) be a partitioned process theory. Then we may define a symmetric monoidal
categoryPCD(C,Cfree) with objects f∈Mor(C), and morphisms f→ g triples(Z,ξ1,ξ2), where Z∈ ∣C∣,
ξ1,ξ2 ∈Mor(Cfree), such that there exists j∈Mor(C) with

ξ2○( f ⊗1Z)○ξ1 = g⊗ j. (1)

In string diagrams equation (1) becomes:

ξ2

ξ1

f g j=

Proof. A proof of this proposition may be found in [2, Theorem 11].1

1While it makes little difference for our purposes here, to doaway with this assumption that the categories must be small,
we may define a notion of equivalence on the triples(Z,ξ1,ξ2) so that we consider two triples to be equivalent if they have,
roughly speaking, the same ‘operational behaivour’. For similar constructions this approach is favoured in [3, Section 3].
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Remark3. Note that there are many ways to construct interesting resource theories from a partitioned
process theory, depending on the methods we allow for turning one process into another using free
processes. Other examples include the resource theory of parallel-combinable processes PC(C,Cfree) [3,
Subsection 3.3] and the resource theory of universally-combinable processes UC(C,Cfree) [3, Subsection
3.4]. While we shall not define these constructions here, forthe reader familiar with them, we note that
we have the inclusion of symmetric monoidal categories

PC(C,Cfree) Ð֒→PCD(C,Cfree).

Moreover, when the partitioned process theory obeys certain conditions, it can be shown that these defini-
tions coincide, although in general they do not. We also notethat it is possible to interpret these different
constructions as different methods of constructing an operad of ‘wiring diagrams’ [9] from the set of free
processes.

In this paper we are interested in understanding the orderedmonoid corresponding to this resource
theory. Recall that anordered monoid(X,⪰, ⋅) is a setX together with a partial order⪰ and a monoid
multiplication ⋅ such that for allx,y,z,w ∈X,

if x⪰ y andz⪰w, then x⋅z⪰ y⋅w. (2)

We may partially decategorify a resource theory to obtain anordered monoid in the following way.

Theorem 4. LetR be a symmetric monoidal category, and call objects f,g in R equivalent if there exists
morphisms f→ g and g→ f . This defines an equivalence relation. Write[ f ] for the equivalence class
of the object f ; we shall frequently abuse notation to simplywrite f for the equivalence class of[ f ] and
∣R∣ for the set of equivalence classes of objects inR.

Then there exists an ordered monoid(∣R∣,⪰,⊗) on the set of these equivalence classes, with[ f ] ⪰ [g]
if there exists a morphism f→ g in R, and using the monoidal product inR to define[ f ]⊗ [g] = [ f ⊗g].
Moreover, this monoid is commutative.

Proof. The relation on the objects ofR specified by the existence of a morphismf → g is reflexive due
to identity morphisms, and the transitive due to composition. Thus we obtain a partial order on the set of
equivalence classes of∣R∣.

The unit for the monoid∣R∣ is given by the monoidal unit inR; the unitors show that it is indeed
a unit for the monoid multiplication. Similarly, the associativity of the monoid multiplication follows
from the existence of the associators for the monoidal product, and the commutativity from the braiding.
Moreover, the compatibility condition (2) follows from thefunctoriality of the monoidal product.

Under this equivalence relation, we consider two resourcesthe same if we may convert one into the
other, and vice versa. We then think of this ordered monoid asa theory of resource convertibility, with the
monoid structure describing how we can combine two resources to make another, and the partial order
describing when we can turn one resource (more precisely, equivalence class of resources) into another.

Note that in the theory of resource convertibility for a resource theory of parallel-combinable pro-
cesses with discarding, the free morphisms themselves forman equivalence class, and that this equiv-
alence class acts as the identity element for the monoid multiplication. Note also that this equivalence
class contains the identity morphisms 1X for all X, so there is no confusion to be had by writing this
equivalence class as 1.

By ‘discarding’ in ‘resource theory of parallel-combinable processes with discarding’ we mean that
no cost is incurred by replacing some resourceg⊗ j with just some subpartg of it. In terms of theories



B. Fong & H. Nava-Kopp 173

of resource convertibility, this means that the corresponding monoid is non-negative. Recall that we call
an ordered monoid(X,≥, ⋅) non-negativeif the identity element 1 of the monoid is the bottom element
for the partial order; that is, if we have

for all x ∈X, x≥ 1.

This is also equivalent to the property that for allx,y ∈ X we havex ⋅y ≥ y. The ordered monoid corre-
sponding to a resource theory of parallel-combinable processes with discarding is always non-negative.

Lemma 5. Let (C,Cfree) be a partitioned process theory. Then the ordered monoid(∣PCD(C,Cfree)∣,⪰
,⊗) is non-negative.

Proof. Givenξ ∶A→B∈Mor(Cfree) and f ∶X→Y ∈Mor(C), we see thatσ−1
Y,B○( f ⊗1B)○(1X⊗ξ )○σA,X =

ξ ⊗ f , whereσA,X ∶A⊗X→X⊗A is the braiding. Thus[ f ] ⪰ [ξ ] = [1].

Remark6. Although [2] demonstrates that the resource theory of parallel-combinable processes with
discarding is a highly applicable structure, there are someinstances in which the discarding means it
does not yield an interesting ordered monoid.

For example, consider the partitioned process theory(Rel×,Set×), whereRel× is the symmetric
monoidal category with objects finite sets, morphisms relations, and monoidal product cartesian product,
andSet× is the wide symmetric monoidal subcategory with morphisms restricted to the functions. We
might give the partitioned process theory(Rel×,Set×) the following interpretation. Each relationf ⊆
X ×Y may be viewed as a noisy possibilistic communication channel, with x ∈ X possibly mapping to
any of they ∈Y such that(x,y) ∈ f . The free morphisms, in this case functions, represent encoding and
decoding functions, while the cartesian product models thefact that any channel can be used arbitrarily
many times. The resource theory PCD(Rel×,Set×)might thus be an attempt at a model for simulatability
of one possibilistic channel by another.

The ordered monoid corresponding to this resource theory, however, is trivial. Write the empty set∅
and let 1 be a singleton set. Given relationsf ∶ X→Y andg ∶ A→ B, we may chooseZ = ∅, ξ1 ∶ ∅→ X,
ξ2 ∶Y → B, and j ∶ ∅→ 1. Then bothξ2 ○ ( f ×1Z) ○ ξ1 andg× j are the unique relation∅→ B. This
implies that for all f ,g ∈Mor(Rel×), we have a morphismf → g ∈ PCD(Rel×,Set×), thus yielding a
trivial monoid.

3 Complete families of monotones

In information theory, one is often interested in the tryingto define an entropy of a source. These
entropies give a real number quantifying, loosely speaking, the randomness of the source. Such functions
provide insight into whether one source might be simulated by another [10]. In terms of partitioned
process theories(C,Cfree), this suggests we might look at order-preserving functionsfrom the ordered
monoid derived from PCD(C,Cfree) to the real numbers. We call such functions monotones.

Definition 7. Let(X,⪰) be a partially ordered set. Amonotoneis an order-preserving function M∶ (X,⪰

)→ (R,≥). It is further calledcompleteif it is also order-reflecting: that is, if for all x,y ∈ X we have

x⪰ y if and only if M(x) ≥M(y).

A complete monotone exists for an partially ordered set if and only if it embeds into the reals. This
is rarely the case. It is always possible, however, to find acomplete familyof monotones [3, Proposition
5.2].
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Definition 8. Given a partially ordered set(X,⪰), we call a collection{Mi}i∈I of monotones on(X,⪰) a
complete family of monotonesif for all x,y ∈X we have

x⪰ y if and only if Mi(x) ≥Mi(y) for all i ∈ I .

Some families, however, are better than others. To provide additional insight into the structure of
the ordered monoid, we frequently require some extra properties, such as preservation of some sort of
monoid structure.

Definition 9. We say that a monotone on an ordered set(X,⪰, ⋅) is

• additiveif it is also a monoid homomorphism into(R,≥,+).

• non-negativeif its image inR forms a non-negative ordered monoid.

Additive monotones are also known asfunctionals[5, Section 3]. One advantage of working with
additive monotones is that we can use them to recover the structure of the commutative monoid. In-
deed, a complete family of monotones{Mi}i∈I on (X,⪰, ⋅) induces an injective order-preserving monoid
homomorphism into(RI ,≥,+), where the partial order≥ and monoid multiplication+ are given by the
pointwise construction, and so locates(X,⪰, ⋅) as a sub-ordered monoid ofRI .

We shall work towards providing some examples of complete families of additive monotones for
resource theories of parallel-combinable processes with discarding. Our next step is to characterise the
non-negative additive monotones for such resource theories.

Theorem 10. Let (C,Cfree) be a partitioned process theory and let(X,≥, ⋅) be a non-negative ordered
monoid. A functionµ ∶Mor(C)→X induces an order-preserving monoid homomorphism

M ∶ (∣PCD(C,Cfree)∣,⪰,⊗)Ð→ (X,≥, ⋅)
[ f ]z→ µ( f )

if and only if for all Z∈ ∣C∣, f ,g ∈Mor(C), andξ ∈Mor(Cfree) we have

(i) µ( f ⊗g) = µ( f ) ⋅µ(g);
(ii) µ(1Z) = 1; and

(iii) µ( f ) ≥ µ(ξ ○ f ) andµ( f ) ≥ µ( f ○ξ ) whenever such composites are well-defined.

Moreover, this gives a one-to-one correspondence: every order-preserving monoid homomorphism on
(∣PCD(C,Cfree)∣,⪰,⊗) arises from a unique such functionµ .

Conditions(i) and(ii) are unsurprising; they simply ask that the function respectthe monoid struc-
ture. Condition(iii) , however, is a bit more illuminating: it tells us that as longas composition with free
morphisms reduces the value of the functionµ , the function induces a monotone.

Proof. Suppose first thatµ induces an ordered monoid homomorphismM. Note in particular this means
thatM is well-defined on the equivalence classes of objects in PCD(C,Cfree), and also thatM preserves
the order and monoid multiplication. Given thatM preserves the monoid multiplication, we have

µ( f ⊗g) =M([ f ⊗g]) =M([ f ]) ⋅M([g]) = µ( f ) ⋅µ(g),

and asM preserves identities, we haveµ(1Z) =M([1Z]) = 0. Recall now thatf ⪰ g if and only if there
exists free processesξ1,ξ2, an objectZ, and a morphismj in C such thatξ1○( f ⊗1Z)○ξ2 = g⊗ j. Then,
whenever they are defined, we thus havef ⪰ f ○ξ and f ⪰ ξ ○ f , and so sinceM is monotone we have

µ( f ) =M([ f ]) ≥M([ f ○ξ ]) = µ( f ○ξ )
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and similarlyµ( f ) ≥ µ(ξ ○ f ). Thusµ obeys(i)–(iii) .
Conversely, suppose thatµ has the properties(i)–(iii) . Now suppose that we have processesf andg

such thatξ1○( f ⊗1Z)○ξ2 = g⊗ j. We thus have

µ( f ) (i,ii)
= µ( f ⊗1Z)

(iii)
≥ µ(ξ1○( f ⊗1Z)○ξ2) = µ(g⊗ j)

(i)
≥ µ(g).

This implies that if there exists a morphismf → g in PCD(C,Cfree) thenµ( f ) ≥ µ(g), and hence that
M([ f ]) = µ( f ) is well-defined and monotone. Properties(i) and (ii) then immediately implyM is a
monoid homomorphism.

Finally, given a homomorphism of ordered monoidsM ∶ (∣PCD(C,Cfree)∣,⪰,⊗)→ (X,≥, ⋅), we may
defineµ( f ) =M([ f ]) to obtain the unique functionµ ∶Mor(C)→X that induces it.

This theorem allows us to construct non-negative additive monotones by working from the partitioned
process theory(C,Cfree). We take advantage of this fact in the next section to producesome families of
complete monotones.

4 Example: encoding functions as resources

In this section we construct two examples of complete families of non-negative additive monotones for
resource theories of parallel-composable processes with discarding. Both partitioned process theories at
hand have as processes the functions between finite sets. They may hence be understood as modelling
encoding schemes, where a resource is a method for assigninga code symbol to each element of some
finite input set. Our ordered monoids thus answer the question of when we may use the free morphisms
and the construction (1) to turn one encoding scheme into another.

We emphasise here the concreteness of these results: given two functions between finite sets, one can
quickly use the complete families of additive monotones we construct to evaluate whether one resource
is convertible into the other.

4.1 The partitioned process theory of functions and bijections

Let Set the symmetric monoidal category with objects finite sets, morphisms functions, and monoidal
product disjoint union, and letBij be the wide symmetric monoidal subcategory with morphisms re-
stricted to the bijective functions. Write #X for the cardinality of a setX.

Proposition 11. For i ∈N, define functions:

ϕi ∶Mor(Set)Ð→N;

( f ∶X→Y)z→ #{y ∈Y ∣ # f −1(y) = i}.

The family of monotones{Fi}i∈N∖{1} induced by the family of functions{ϕi}i∈N∖{1} is a complete family
of additive monotones for the resource theoryPCD(Set,Bij ).

Observe that eachϕi takes a functionf ∶ X→Y and returns the number of elements ofY that havei
elements ofX map to it. Also note that for every list ofℓ ∶ N→N of natural numbers with only finitely
many entries nonzero, there exists a functionjℓ ∶C→ D ∈ Mor(Set) such thatϕi( jℓ) = ℓ(i)—indeed,
simply chooseCi of cardinalityi ⋅ℓ(i), Di of cardinalityℓ(i), let jℓ,i mapi elements ofCi to each element
of D, and then definejℓ =⊔∞i=0 jℓ,i.
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Proof of Proposition 11.That we have defined a family of additive monotones is an immediate conse-
quence of Theorem 10. Remembering thati ≠1 and that the free morphisms in this case are the bijections,
it is clear that eachϕi has the properties(i)–(iii) required.

We turn our attention to completeness. Fix functionsf ∶ X→Y andg ∶ A→ B. For completeness we
need to show that if for alli ∈N∖{1} we haveFi( f ) ≥ Fi(g), then there exists a finite setZ, bijections
ξ1,ξ2, and a functionj such that

ξ2○( f ⊔1Z)○ξ1 = g⊔ j.

Let us construct such data as follows. Consider the list of numbersϕi( f )−ϕi(g) for all i ∈N (including
i = 1). Then we have two cases:

1. if ϕ1( f )−ϕ1(g) ≥ 0, choosej such thatϕi( j) = ϕi( f )−ϕi(g) for all i ∈N, and chooseZ to be the
empty set∅.

2. if ϕ1( f )−ϕ1(g) < 0, choosej such thatϕ1( j) = 0 andϕi( j) = ϕi( f )−ϕi(g) for all i ∈N∖{1}, and
Z to be a set of cardinalityϕ1(g)−ϕ1( f ).

We now have obtainedj ∈Mor(Set) andZ ∈ ∣Set∣ such that

ϕi( f ⊔1Z) = ϕi(g⊔ j)

for all i ∈N. WriteC andD respectively for the domain and codomain ofj. As f ⊔1Z andg⊔ j both have
the same list of cardinalities of preimages of elements of their codomains, we may now choose bijections
ξ1 ∶A⊔C→X⊔Z andξ2 ∶Y⊔Z→B⊔D such thatξ2○( f ⊔1Z)○ξ1 = g⊔ j, as required.

Write FinSupp
N
(X) for the set of finitely supported functions onX; that is, the set of functions

f ∶ X → N for which f (x) ≠ 0 for at most finitely manyx ∈ X. Such functions are partially ordered by
setting f ≥ g if for all x ∈ X we havef (x) ≥ g(x), and may be given a commutative monoid structure by
setting( f +g)(x) = f (x)+g(x).

The above discussion thus characterises the theory of resource convertibility for PCD(Set,Bij ):

Corollary 12. We have an isomorphism of ordered monoids

F ∶ (∣PCD(Set,Bij )∣,⪰,⊔)Ð→ (FinSupp
N
(N∖{1}),≥,+);

f z→ (i ↦ Fi( f )).

4.2 The partitioned process theory of functions and injections

Write Inj for the wide symmetric monoidal subcategory ofSetwith morphisms injective functions. We
consider the partitioned process theory(Set, Inj ).

Proposition 13. For i ∈N, define functions:

γi ∶Mor(Set)Ð→N;

( f ∶X→Y)z→ #{y ∈Y ∣# f −1(y) ≥ i}.

The family of monotones{Gi}i∈N∖{0,1} induced by the family of functions{γi}i∈N∖{0,1} is a complete
family of additive monotones for the resource theoryPCD(Set, Inj ).

The functionγi maps a functionf ∶X→Y to the number of elements ofY that have at leasti elements
of X map to it; it is a sum of the functionsϕk for k≥ i.
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Proof. Theorem 10 again easily gives us that theGi are additive monotones fori ∈N, i ≥ 2. In particular,
note for condition(iii) that pre-composing a functionf ∶ X →Y with an injection never increases the
cardinality of the preimage of a point inY, and thatf followed by an injection has preimages of points
in the codomain that are either empty or equal to the preimagesome point inY, with no two points of the
codomain sharing the same point inY.

It thus remains to prove the completeness of this family. Fixfunctions f ∶ X →Y and g ∶ A→ B,
and suppose that for alli ≥ 2 we haveGi( f ) ≥ Gi(g). Again we wish to construct witnessesZ ∈ ∣Set∣,
ξ1,ξ2 ∈Mor(Inj ), and j ∈Mor(Set) such thatξ2○( f ⊔1Z)○ξ1 = g⊔ j. There are many ways to construct
such witnesses. We offer the following algorithm.

ChooseZ to be a set of cardinality max{0,#B−#Y}, D to be a set of cardinality max{0,#Y−#B},
and j to be the unique functionj ∶ ∅→ D. This ensures that for alli ∈ N, including 0 and 1, we have
γi( f ⊔1Z) ≥ γi(g⊔ j). By definition, this means that for alli ∈N we have

#{y ∈Y⊔Z ∣#( f ⊔1Z)−1(y) ≥ i} ≥ #{b ∈B⊔D ∣#(g⊔ j)−1(b) ≥ i}.

This allows us to define an injection (in fact a bijection)ξ2 ∶Y⊔Z→B⊔D mapping each elementy∈Y⊔Z
to an elementb ∈ B such that #( f ⊔1Z)−1(y) ≥ #(g⊔ j)−1(b). We then may choose an injectionξ1 ∶ A→

X⊔Z such that for alla ∈ A we haveξ1(a) ∈ (ξ2○( f ⊔1Z))
−1
(g(a)). This proves the proposition.

Analogous to the previous case, we reach the following characterisation of the theory of resource
convertibility for PCD(Set, Inj ).

Corollary 14. We have an isomorphism of ordered monoids

G ∶ (∣PCD(Set, Inj )∣,⪰,⊔)Ð→ (FinSupp
N
(N∖{0,1}),≥,+);

f z→ (i ↦Gi( f )).

5 Some remarks on further directions

While we have indicated how to construct additive monotoneson resource theories of parallel-combinable
processes with discarding, there is work to be done to understand their complete families better. In partic-
ular, an existence theorem or otherwise for complete families of additive monotones would be of interest,
as well as a notion of minimally complete family of monotones. Some first steps towards such results
can be found in [5, §6-7].

Observe also that the two examples of Section 4 have an interesting property: they in fact form a
triple of inclusions of symmetric monoidal categories

Bij Ð֒→ Inj Ð֒→Set.

We might call this a doubly-partitioned process theory. This nested structure seems to have been reflected
in the construction of complete families of additive monotones: we built one complete family from the
other. We wonder whether this could be done more generally.

A third salient question is the relationship between different methods of constructing resource theo-
ries from partitioned process theories. A place to start is perhaps to examine whether Theorem 10 has
analogues for related constructions.
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