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The study of non-locality is fundamental to the understanding of quantum mechanics. The past
50 years have seen a number of non-locality proofs, but its fundamental building blocks, and the
exact role it plays in quantum protocols, has remained elusive. In this paper, we focus on a par-
ticular flavour of non-locality, generalising Mermin’s argument on the GHZ state. Using strongly
complementary observables, we provide necessary and sufficient conditions for Mermin non-locality
in abstract process theories. We show that the existence of more phases than classical points (aka
eigenstates) is not sufficient, and that the key to Mermin non-locality lies in the presence of certain
algebraically non-trivial phases. This allows us to show that fRel, a favourite toy model for cate-
gorical quantum mechanics, is Mermin local. We show Mermin non-locality to be the key resource
ensuring the device-independent security of the HBB CQ (N,N) family of Quantum Secret Shar-
ing protocols. Finally, we challenge the unspoken assumption that the measurements involved in
Mermin-type scenarios should be complementary (like the pair X ,Y ), opening the doors to a much
wider class of potential experimental setups than currently employed. In short, we give conditions
for Mermin non-locality tests on any number of systems, where each party has an arbitrary number
of measurement choices, where each measurement has an arbitrary number of outcomes and further,
that works in any abstract process theory.

PACS Numbers: 03.65.Fd,03.65.Ta,03.65.Ud, 03.67.Dd

1 Introduction

Non-locality is a fundamental property of quantum mechanics. It impacts both foundations and appli-
cation, ruling out the existence of local hidden variable theories consistent with quantum theory [7],
and underpinning protocols like quantum key distribution [14] and quantum secret sharing [21]. The
importance of this property pushed the development of methods to characterise it both in general (e.g.
the sheaf-theoretic methods of [2]) and in specific extensions of quantum theory (e.g. the generalized
probabilistic theories of [6]).

We focus on a particular possibilistic class of non-locality arguments generalized from Mermin’s
argument [22] and related to the recent work on All-versus-Nothing arguments by Abramsky et al. [1].
These experiments produce possibilistic evidence for quantum mechanical non-locality, i.e. certain mea-
surement outcomes that can only be realized by non-local theories. Mermin scenarios are typically
described by triples (N,M,D) for N parties with M measurement choices for each party, each having D
classical outcomes. Current literature generalises from the original (3,2,2) scenario [22] to derive non-
locality proofs for the (3,3,2) [25], (D+ 1,2,D) [29], (N > D,2,D even) [23], and (odd N,2,even D)
[18]. One contribution of our work is to extend the work of [11] to cover all (N,M,D) scenarios.

In [11], Coecke et al. used strong complementarity to formulate Mermin arguments within the frame-
work of Categorical Quantum Mechanics [3]. Not only does this approach help generalize non-locality
arguments within quantum theory, but it also paved the way towards an understanding of Mermin non-
locality in abstract process theories, aka dagger symmetric monoidal categories. As a corollary, they
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are able to identify the difference between qubit stabilizer quantum mechanics (which is non-local) and
Spekken’s toy theory (which is local) in the structure of the respective phase groups [11, 12].

In Sections 3 and 4, we remove implicit assumptions about phase groups and classical points from [11]
and use strongly complementary structures to generalise Mermin measurements to abstract process the-
ories, defining Mermin non-locality as the existence of a Mermin measurement scenario not admitting a
local hidden variable model.

In Section 4, we show that strong complementarity is not sufficient to characterise Mermin non-
locality. The phase group structure is shown to provide necessary algebraic conditions in abstract process
theories, as summarised by our first main result:

Theorem. 4.8. Let C be a †-SMC. If for any strongly complementary pair ( , ) of †-qSCFAs the group
of -phases is a trivial algebraic extension of the subgroup of -classical points (i.e. if there exist no
algebraically non-trivial -phases), then C is Mermin local.

Thus -phase groups that are trivial algebraic extensions of the respective subgroups of -classical points
always lead to local hidden variable models, irregardless of whether there are enough -classical points
to form a basis and/or strictly more -phases than -classical points. Indeed, we show that the category
fRel of finite sets and relations is Mermin local (despite it having arbitrarily many more -phases than

-classical points), and also confirm that Spekken’s toy theory is Mermin local (despite them having
enough -classical points to form a basis). Our method also gives an easy proof that qutrit stabilizer
mechanic is Mermin local.

Additionally, in Section 4, we show that the existence of algebraically non-trivial -phases is suffi-
cient, under mild additional assumptions, to formulate a non-locality argument. This leads to our second
main result:

Theorem. 4.7. Let C be a †-SMC, and ( , ) be a strongly complementary pair of †-qSCFAs. Suppose
further that the -classical points form a basis. If the group of -phases is a non-trivial algebraic extension
of the subgroup of -classical points, then C is Mermin non-local.

As a consequence, we confirm that qubit stabilizer quantum mechanics is Mermin non-local.
In Section 6, we argue that our concrete characterisation as the existence of algebraically non-trivial

phases can be used to see Mermin non-locality as a resource in the construction of quantum protocols.
We exemplify this by showing how the security of the HBB CQ (N,N) family of Quantum Secret Sharing
protocols from [20, 21] directly relates to the flavour of non-locality explored in this work.

In Section 5, we use our general framework to investigate Mermin non-locality in fdHilb, the usual
arena of quantum mechanics. The traditional formulation of Mermin arguments relies on sets of com-
plementary measurements, such as the X ( measurement with -phase 0) and Y ( measurement with

-phase π

2 ) measurements of the qubit in the original (3,2,2) Mermin argument. We show how, even in
the case of (N,2,D) scenarios, many more possible measurements exist than complementary ones. This
result opens a wealth of novel experimental configurations for tests of Mermin non-locality and, through
results of Section 6, new configurations for quantum secret sharing protocols as well.

2 Background

This section refers the reader to background literature on the mathematical concepts of abstract process
theories that we use in this work.

Classical structures, aka special commutative †-Frobenius algebras (†-SCFAs), play a central role in
Categorical Quantum Mechanics (CQM) [3] as the abstract incarnation of non-degenerate observables.
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The operational aspect of †-SCFAs is extensively covered in [9], where they are interpreted as models
for the classical data operations of copy, deletion, and comparison. Their key connection with non-
degenerate observables in quantum mechanics is provided by [13], where it is proven that †-SCFAs in
fdHilb canonically correspond to orthonormal bases (their unique basis of copyable, or classical, states),
and can thus be used to model a basis of eigenstates; more generally, commutative †-Frobenius algebras
(†-CFAs) correspond to orthogonal bases.

Strongly complementary pairs of classical structures appear in [10,11] to model non-locality in terms
of commutative non-degenerate observables of generalized Mermin arguments. The paper [19] shows
that they correspond to finite abelian groups in fdHilb and [15] specifies their connection to the Fourier
Transform. The notion of phase groups was explicitly introduced in [10, 12]. Their connection to non-
locality was first made in [12], where it was used to differentiate Spekkens toy theory from stabilizer
quantum mechanics. Finally, the upcoming [8] and [17] provide a comprehensive reference for many
structures and results used here. These, along with the survey [26], are also good references for the
diagrammatic notation used throughout this literature.

3 Mermin measurements

Unlike Bell tests, which produce outcomes with probabilities that are forbidden to local hidden vari-
able theories, the Mermin (or GHZ) argument produces outcomes which are impossible to observe in
a local hidden variable theory [22]. This section introduces the definitions necessary to generalise the
Mermin argument to abstract process theories. We make use of the standard definitions for strongly
complementary observables, phase states and phases. We often refer to quasi-special †-Frobenius alge-
bras as non-degenerate observables and use the shorthand †-qSFA. The acronym †-qSCFA refers to a
commutative †-qSFA. Definitions of these concepts are reproduced in Appendix A.

Definition 3.1. A family (|ψ j〉) j of states of an object H in a †-SMC forms a (orthogonal) basis if the
following two conditions hold:

1. 〈ψi|ψ j〉= 0 for i 6= j

2. for any f ,g : H →H ′ we have that ∀ j. f |ψ j〉= g|ψ j〉 implies f = g

In fdHilb, the objects are vector spaces and any orthogonal vector space basis clearly obeys these condi-
tions. The above Definition allows us to extend the appropriate notion of a basis to an arbitrary †-SMC.
Within the context of Categorical Quantum Mechanics, a †-qSCFA with classical points forming a
basis is said to have enough classical points. More details on phases and classical points of observables
can be found in the Appendix.

Theorem 3.2. Let and be strongly complementary †-qSFAs in any †-SMC. Phase states (resp.
phases) of form group under the action of ( , ). This group of phase states is denoted the phase
group P . The classical points (resp. the induced phases) of are a subgroup K ⊆P .

Proof. Proof that phases form a group can be found in [17]. Proof that classical points form a group can
be found in [11] (for †-SCFAs) and [15]. Statement follows from this.

When talking about the phase group of a †-qSCFA is commutative, we use additive notation: given two
-phase states |α〉 and |β 〉, we denote by |α +β 〉 their addition in the phase group. From now on, we

interchangeably use phase states and phases, leaving disambiguation to context.
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The GHZ states and Mermin measurements are the main ingredients needed in our argument. GHZ states
appear in the ZX calculus fragment of our framework in [10] and are generalized to the definition that
we use in [11].

Definition 3.3. Given a †-qSFA in a †-SMC, an N-partite GHZ state for is:

· · ·
n-systems

(3.1)

Inspired by [11], we build Mermin type scenarios out of them.

Definition 3.4. Let and be a pair of strongly complementary †-qSFAs in a †-SMC. An N-partite
Mermin measurement is obtained by applying N -phases α1, ...,αN to the N components of an N-
partite GHZ state, and then measuring each component in the structure:

−α1 α1 −αN αN

· · · (3.2)

We further require that ∑i αi, where the sum is taken in the group of phases, be a -classical point.

Lemma 3.5. The Mermin measurement shown in Equation 3.2 is equivalent to the following state:

−∑αi +∑αi

· · ·

(3.3)

Proof. Pushing the phases down through the nodes and using strong complementarity. See [11].

While this defines a single Mermin experiment, the full non-locality argument requires the joint outcomes
of several Mermin measurements.

Definition 3.6. Let and be strongly complementary †-qSCFAs on a space H in a †-SMC. An N-
partite Mermin measurement scenario (for and ) is any non-empty, finite collection of Mermin
measurements αs = (αs

1, ...,α
s
N)s=1,...,S of the N-partite GHZ state in the form of Equation 3.5.

In the category fdHilb of finite-dimensional Hilbert spaces, an N-partite Mermin measurement scenario
where a1, ...,aM are the distinct -phases appearing in the scenario and H is D-dimensional is exactly
the usual (N,M,D) Mermin scenario. This correspondence is clarified in Section 4, where we derive our
generalized Mermin non-locality argument.

4 Mermin locality and non-locality

The last definitions we need for our main results, Theorems 4.7 and 4.8, are those of local hidden variable
models (following the construction of [11]) and non-trivial algebraic extensions.
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Definition 4.1. Let and be strongly complementary †-qSCFAs on some system H . Consider an N-
partite Mermin measurement scenario (αs)s=1,...,S, and let a1, ...,aM be the distinct -phases appearing
in it. The local map for the scenario is the map H ⊗(M·N)→H ⊗(N·S) defined as follows:

a. we group the input wires in N groups of M wires: we say that the r-th wire of i-th group is the ar

input wire for system i

b. we group the output wires in S groups of N wires: we say that the j-th wire of r-th group is the
j-th output wire for measurement s

c. each input wire is connected to a node

d. for all r, i, j and s, the node of each ar input wire for system i is connected to the j-th output wire
for measurement s if and only if i = j and αs

j = ar

The following diagram details the procedure:

...

a1

· · ·

System 1

...

aM

...

a1

· · ·
... ...

ar

System i

· · ·
...

aM

...

a1

· · ·

System N

...

aM

...

Measurement 1

α1
1 α1

N

Measurement s

αs
j... ...

αs
1 αs

N ...

Measurement S

αS
1 αS

N

Connected iff i = j and ar = αs
j

Local Map

(4.1)

A local hidden variable model for an N-partite Mermin measurement scenario is a state Λ of H ⊗(N·S),
obtained by applying the local map for the scenario to some state Λ′ of H ⊗(M·N). We further require that
for each s = 1, ...,S, the Mermin measurement αs is the same as the state obtained from Λ by composing
an with each output wires of each measurement t with t 6= s:

=· · · −αs
N +αs

N+αs
1−αs

1

αs
1

... αs
N

Λ′

· · · · · ·

Local Map

...
...

αs
1 αs

N ...

(4.2)

The definition of local hidden variables finally allows us to formulate our generalised notion of Mermin
non-locality.
Definition 4.2. We say a †-SMC C is Mermin non-local if there exists a Mermin scenario for some
strongly complementary pair ( , ) of †-qSCFAs which has no local hidden variable model. If for all
strongly complementary pairs no such measurement exists, then we say that C is Mermin local.
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Mermin non-locality will shortly be shown to be equivalent to the following algebraic property of the
group of -phases. The following examples will be used later on to investigate some abstract process
theories of interest.

Definition 4.3. Let (G,+,0) be an abelian group and (H,+,0) be a subgroup. We say that G is a non-
trivial algebraic extension of H if there exists a finite system of equations (∑l

j=1 np
j · x j = hp)p, with

hp ∈ H and np
j ∈ Z, which has solutions in G but not in H. Otherwise, we say G is a trivial algebraic

extension of H.

If G = P is a non-trivial algebraic extension of H = K , then the -phases involved in any solution
x j := α j to a system unsolvable in K will be called algebraically non-trivial phases.

Example 4.4. Let G = {0,π/2,π,−π/2}< R/2πZ and H = {0,π}< G. Then G is a non-trivial alge-
braic extension of H, because the single equation 2x = π has no solution in H but has solution(s) ±π/2
in G. It is in fact this example that yields the original argument in fdHilb from [11].

Lemma 4.5. Let (G,+,0) be an abelian group and (H,+,0) be a subgroup. Suppose that there is a
function Φ : G→ H such that for any equation ∑

l
j=1 n j · x j = h with h ∈ H and n j ∈ Z, if x j := g j is a

solution in G, x j := Φ(g j) is also a solution (in H). Then G is a trivial algebraic extension of H.

Proof. Consider a system with solution x j := g j in G. Then x j := Φ(g j) solves each individual equation
in H, and thus also the system.

Example 4.6. Let (K,+,0) be any finite abelian group, and G = K ×K′ for some finite non-trivial
abelian group (K′,+,0). Let H < G be the subgroup K×{0}. If h = (k,0) ∈ H, then any equation
∑

N
j=1 n j · x j = h is equivalent to the following pair of equations, where πK and πK′ are the quotient

projections onto K ∼= G/K′ and K′ ∼= G/K respectively:

a. ∑
N
j=1 n j ·πKx j = k in K

b. ∑
N
j=1 n j ·πK′x j = 0 in K′

If x j := g j = (πKg j,πK′g j) is a solution in G, then x j := (πKg j,0) is a solution in H. Define Φ to be the
map g j : G 7→ (πKg j,0) ∈ H and use Lemma 4.5 to conclude that G is a trivial algebraic extension of H.

We are now able to introduce our first main result:

Theorem 4.7 (Mermin Non-Locality). Let C be a †-SMC, and ( , ) be a strongly complementary pair
of †-qSCFAs. Suppose further that the -classical points form a basis. If the group of -phases is a
non-trivial algebraic extension of the subgroup of -classical points, then C is Mermin non-local.

Proof. For clarity, we present a proof where the system of equations that defines the phase group as a
non-trivial algebraic extension is composed of a single equation. The construction for general systems
of l equations consists of l copies of the construction we explicitly give.

Let a1, ...,aM be -phases and a 6= 0 be (the phase induced by) a -classical point such that the
following equation (in additive Z-module notation, for nr ∈ Z) has solution (xr := ar)r=1,...,M in the
group of -phases, but has no solution in the subgroup of (phases induced by) -classical points:

M

∑
r=1

nr ·ar = a (4.3)

This means that we are assuming the group of -phases are a non-trivial algebraic extension of the
subgroup of -classical points. Without loss of generality, assume that nr 6= 0 and ar 6= 0 for all r =
1, ...,M.
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Let k be the exponent of the group of -classical points, and define the following Mermin measurement,
where each ar appears nr times and 0 appears n0 times, for some n0 such that V := ∑

M
r=0 nr ≡ 1 (mod k)

α = (a1, ...,a1, ...,aM, ...,aM,0, ...,0) (4.4)

Define a V -partite Mermin measurement scenario with S := n0 +V and:

α
s := (0,0, ...,0,0) for s = 1, ...,n0

α
n0+v
i := α i+v (mod V ) for v = 1, ...,V (4.5)

The scenario has n0 measurements with only 0 phases (the controls) and V measurements with cyclic
permutations of α (the variations). The following diagram depicts the scenario:

0 0 0 0

· · ·

· · ·

· · ·

0000 α1
N

· · ·

−αV
Nα1

1 −αV
1

· · ·

−α1
N−α1

1 · · · αV
1 αV

N

controls variations

(4.6)

To show that the scenario from Equation 4.6 does not admit a local hidden variable:

1a. we add up (in the group of -phases) all the components of each control, using Lemma 3.5, and
obtain 0 from each control

1b. we add up all the components of each variation, again using Lemma 3.5, and obtain a from each
variation

2a. we add up the result from all the controls, and obtain ΣC := n0 ·0 = 0

2b. we add up the result from all variations, and obtain ΣV :=V ·a = a , using the fact that a is in the
subgroup of (phases induced by) -classical points and V is congruent to 1 modulo the exponent
of the subgroup

3. we subtract ΣC from ΣV , using the antipode of the strongly complementary pair ( , ), and obtain
a−0 = a

4. we test the result against the -classical point 〈a|, and obtain the non-zero scalar 〈a|a〉

The procedure is summarised by the following diagram:

a

0...0 0...0 a1...am0...0 0a1...am0...0... ...

n0 controls V variations

... ... ... ...
0 0 a a

n0 ·0
V ·a

a
(4.7)
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The same procedure applied to any local hidden variable model always yields the 0 scalar. A local hidden
variable model is nothing but the local map for the scenario applied to some state, so it is enough to show
that the above procedure yields the constant 0 function when composed with the local map:

a

Local Map

... ... ... ...

. . .α1 αM
System N

. . .α1 αM
System 1 . . . .

0 0 a a
n0 ·0

V ·a
a

(4.8)

Since the -classical points form a basis, it is sufficient to show that the map from Diagram 4.8 always
yields 0 when applied to -classical points. In the following diagram, the nodes have been re-arranged
using the spider theorem, so that the wiring of the local map can be written down explicitly in a clean
way. The diagram also annotates the -classical values on the wires at each stage to aid in following the
argument:

1. the values b1
0, ...,b

V
0 for the 0 phases of systems 1 to V are each duplicated n0 +n0 times and then

added up to b0 := n0 ·∑ i = 1V bi
0 by the two nodes

2. the values bi
1, ...,b

i
m for the a1, ...,am phases of each system i = 1 (for i = 1, ...,V ) are each dupli-

cated nk times (for k = 1, ...,m) and added up to bi := ∑
m
r=1 nr ·bi

r by the respective nodes

3. the values b1, ...,bV are added up to b := ∑
V
i=1 bi

4. the value b0 is added up to b

5. finally, the value b0 is subtracted from b, and b is tested against the -classical point 〈a|, obtaining
the scalar 〈a|b〉 (which we want to be zero)

The steps are summarised by the following diagram:

a

b1
0 bV

0 b1
1 b1

M bV
1 bV

M

...

...n0... n0...n0... ...n1 ...nM ...n1 ...nM
...

b0

b0
b1 bV

b

−b0 b0 +b
b

(4.9)

The -classical points c that can be written as c = ∑
M
r=1 nr · cr for some -classical points c1, ...,cM

form a subgroup H of the group of -classical points. Indeed we have that 0 = ∑
m
r=1 nr · 0 and that
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(∑M
r=1 nr · cr) + (∑M

r=1 nr · dr) = ∑
M
r=1 nr · (cr + dr). Furthermore, by assumption we have that H does

not contain a, and as a consequence 〈a|c〉 = 0 for all c ∈ H. Going back to Diagram 4.9, we see that
b1, ...,bV ∈ H (but b0 need not be in H, hence the need to subtract it before testing against a). We thus
conclude that b ∈ H (since H is closed under addition): hence the scalar 〈a|b〉 vanishes, concluding our
proof that no local hidden variable can exist for our chosen measurement scenario.

Theorem 4.8 (Mermin Locality). Let C be a †-SMC. If for any strongly complementary pair ( , ) of
†-qSCFAs the group of -phases is a trivial algebraic extension of the subgroup of -classical points (i.e.
if there exist no algebraically non-trivial -phases), then C is Mermin local.

Proof. Consider an N-partite Mermin measurement scenario αs = (αs
1, ...,α

s
N)s=1,...,S, and let a1, ...,aM

be the distinct -phases appearing in it. Consider the system of equations (∑M
r=1 ns

r · xr = cs)s=1,...,S,
where ns

r is the numer of times phase ar appears in measurement αs, and cs are the unique values making
xr := ar into a solution for the system. As the group of -phases is a trivial algebraic extension of the
subgroup of -classical points, there is a solution xr := br with (br)r=1,...,M -classical points. By using
this, together with Lemma 3.5, we see that each measurement in the scenario is equal to the Mermin
measurement obtained by replacing ar with br for all r = 1, ...,M (say β s

i := br if αs
i = ar):

−αs
1 αs

1 −αs
N αs

N

· · · · · ·
−β s

1 β s
1 β s

N−β s
N= (4.10)

All phases are now induced by -classical points, and can thus be pushed up through the s:

=β s
1−β s

1

...

β s
N−β s

N

β s
1β s

N
...

(4.11)

Now that each measurement of the scenario amounts to performing some set of -classical operations on
the same state, it is no surprise that the following gives a local hidden variable model:

β1 βM β1 βM

Local Map

· · ·

· · ·... ...

· · · · · ·

system 1 system N

(4.12)
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The abstract framework can now be applied to some particular examples of interest.

Corollary 4.9. The restricted ZX calculus (that corresponds to qubit stabilizer quantum mechanics)
from [4, 10] (referred to as Stab in [11]) is Mermin non-local.

Proof. Take and to be the Z and X single-qubit observables in the ZX calculus. The group of -
phases is Z4 and the subgroup of -classical points is Z2. Conclude with Theorem 4.7 and Example
4.4.

Corollary 4.10. The toy theory Spekk from [11] is Mermin local.

Proof. Same setup as in the previous corollary, but the phase group is now Z2×Z2. Conclude using
Theorem 4.8 and Example 4.6 with d = 2.

Corollary 4.11. Qutrit stabilizer quantum mechanics from [24] is Mermin local.

Proof. The phase group here is Z3×Z3. Conclude using Theorem 4.8 and Example 4.6 with d = 3.1

Corollary 4.12. The category fRel of finite sets and relations is Mermin local.

Proof. See [15, 17] for more details on strong complementarity in fRel. Any †-qSCFA on a set H
in fRel is a groupoid: we write it in the form ⊕h∈HGh, where H is a set, Gh are disjoint groups and
∪h∈HGh = H . Any strongly complementary pair , is in the form (⊕h∈HG,⊕g∈GH), where both G
and H are groups (seen as sets when indexing the groupoids), and we can w.l.o.g. write H as G×H.
Each -classical points is in the form {(g,h) s.t. h ∈ H} for some g ∈ G, while the -phases are in the
form {(gh,h) s.t. h ∈ H}, for some family (gh)h∈H of elements of G. Thus the group of -phases is the
group GH of H-indexed vectors with values in G, and the subgroup of -classical points, isomorphic to
G, is that of vectors with constant components. Conclude using Theorem 4.8 and Example 4.6.

This last result is particularly interesting for the following reasons:

1. Almost no †-qSCFAs in fRel have enough classical points (exactly one per space, out of a number
that grows exponentially with space size).

2. The family of arguments from [11] fails in fRel (partially as a consequence of the previous point).

3. There are plenty of strongly complementary pairs in fRel, and arbitrarily many more -phases than
classical points, but the lack of algebraically non-trivial phases results in fRel being Mermin

local.

4. As a consequence of point 3, quantum protocols relying only on Mermin non-locality will show
no quantum advantage in fRel.

1This example was first constructed by Edwards in [12] without reference to the qutrit stabilizer formalism. This work also
anticipated Example 4.6, using a specific construction.
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5 Mermin in fdHilb: beyond the complementary XY pair

We now focus on fdHilb and quantum mechanics. While in general we can have many different choices
of measurement on each subsystem (see Definition 3.4), we shall restrict to the case of only two dis-
tinct measurements, i.e. (N,M = 2,D) scenarios. In the case of qubits and (N,2,2) scenarios, these
complementary measurements happen to be the only choices that will lead to a non-locality argument.
One might then conjecture that this will be the case for any dimension. In this section we show that this
assumption is not the case. For (N,2,D) scenarios it is not necessary to have the two measurements be
complementary. There are many possible pairs in general.

Definition 5.1. A two-measurement Mermin scenario for N systems (each with D dimensions) and
strongly complementary GHZ observable with -phase group G is denoted G(N,2,D). Each system has
two possible measurement settings:

1. the first measurement observable is the D-dimensional X observable,

2. and the second measurement observable B is defined by a Z-phase gate applied to X .

In general, the form of B can be specified by the D-dimensional Z-phase applied to X . This Z-phase is of
the form (1,e1b1 , ...,eibD−1)T with D−1 degrees of freedom. A two-measurement Mermin scenario thus
consists of V variations each with β measurements of the B observable.

Example 5.2. For qubits there is only a single possible phase group: Z2. A Mermin argument for three
qubits (denoted Z2(3,2,2)) has measurements of the usual X observable and of the B observable that is a
phase applied to X , i.e. diag(1,eib1)X . In the traditional Mermin scenario Z2(3,2,2) from [22], we have
V = 3 and β = 2.

The state presented in Diagram 4.9 will be zero when the control point on the left is distinct from the
variations point on the right. We can characterize this as a condition on B in our two measurement
scenario with the following theorem.

Lemma 5.3. Measurements X and B allow a (N,2,D) Mermin non-locality argument iff

D−1

∑
j=1

eic j =−1, where c j = b j

(
V⊕

i=1

β

)
, (5.1)

where the sum in c j is the group sum for the -phase group G.

Proof. Diagram 4.9 implies that the Mermin argument will succeed when the control point and variations
point are distinct classical points. In fdHilb this precisely means that they are orthogonal vectors. The
vector that represents the control point is given by the D-dimensional unit for the X observable, i.e.
1/
√

D(1,1, ...,1)T . The variations point is then given by the group sum of other classical points specified
by their phase. The phase for each classical point is given by the sum of phase accumulated by each B
measurement. As there are β such measurements in each variation, their sum is given by

1√
D


1

eiβb1

...
eiβbD−1


1

⊕


1

eiβb1

...
eiβbD−1


2

⊕ ...⊕


1

eiβb1

...
eiβbD−1


V

=
1√
D


1

eic1

...
eicD−1

 ,
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where the constants c j are defined as in Equation 5.1. Orthogonality between the control and variations
points then requires

(
1 1 ... 1

)


1
eic1

...
eicD−1

= 0 ⇒
D−1

∑
j=1

eic j =−1

This exactly recovers Equation 5.1 and completes the proof.

This gives a necessary and sufficient condition on these measurements to enable a Mermin non-locality
test. Note that in Mermin’s original scenario measurement observables were necessarily complementary,
but that in general this is not the case.
Theorem 5.4. In (3,2,2) three qubit Mermin scenarios, the two measurements must be complementary.

Proof. We have V = 3, β = 2, G = Z2 and D = 2. Thus

c j = βb j

(
3⊕

l=1

1

)
= 2b j(3 mod 2) = 2b j

so that our condition on B becomes
D−1

∑
j=1

eic j = ei2b1 =−1⇒ b1 =
π

2

with only a single solution. This means that in this scenario there is only one measurement that could be
used with X . This is the Y observable and it is complementary to X .

Theorem 5.5. For (N,2,D) scenarios the measurements need not be complementary.

Proof. We prove this by counterexample. Consider the three dimensional (D = 3) five party Mermin
scenario. The phase group of the non-local state is then given by G = Z3. The control measurement is
given by five systems all measured by the X observable, i.e. XXXXX . The variations are

BBBXX BBXBX BXBBX XBBBX XBXBB

BBXXB BXBXB XBBXB BXXBB XXBBB

so that V = 10 and β = 3. We calculate the coefficients

c j = βb j

(
10⊕

l=1

1

)
= 3b j(10 mod 3) = 3b j

Observable B must then satisfy ei3b1 + ei3b2 = −1. Any B observable satisfies this condition if b2 =
− i

3 log
[
−1− e3ib1

]
. Consider b1 =

2π

9 ⇒ b2 =−2π

9 and calculate (for ω = e2πi/3):

B ::

 1 0 0
0 ei2π/9 0
0 0 e−i2π/9

 1√
3

 1 1 1
1 ω ω2

1 ω2 ω4

=
1√
3

 1 1 1
e2iπ/9 e8iπ/9 e−4iπ/9

e−2iπ/9 e−8iπ/9 e4iπ/4


Observable B is clearly not complementary to X by simply checking the dot products of their basis
vectors.
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Further we can exhibit numerical results that calculate the number of Mermin effective measurement
pairs available for a particular scenario. For a given number of parties N we have calculated the number
of effective pairs maximized over all viable variation choices. Typically these maximum values are
found for variations where β is maximized. Figure 1a shows pair counts for Z2(N,2,2) scenarios. Here
is appears that the number of effective measurement pairings grows approximately linearly with the
number of parties. Figure 1b shows pair counts for the more complex Z3(N,2,3) scenarios. It is clear
that there are many (in some cases thousands) more available measurement configurations than just those
given by complementary observables. This vastly expands the number of experimental setups that will
generate, with certainty, a non-locality violation. Indeed, combining this result with those of Section 6
opens up a large class of quantum secret sharing protocols based on non-complementary measurements.

(a) (b)

Figure 1: (a) A plot of the number of Mermin effective measurement pairs P vs. the number of parties
in the Mermin scenario N for Z2(N,2,2) scenarios. (b) A plot of the number of effective pairs for
Z3(N,2,3) scenarios. These numbers were obtained by numerically counting solutions to (5.1).

6 Quantum Secret Sharing: non-locality as a resource

The HBB CQ (N,N) family of Quantum Secret Sharing protocols originates in [20, 21], and has been
abstractly formulated in Categorical Quantum Mechanics [28]. Here we generalise their construction to
abstract process theories, unearthing a deep connection with Mermin non-locality.

This protocol requires a pair ( , ) of strongly complementary observables, and an (N + 1)-partite
GHZ state shared by the dealer and the N players. The dealer (and nobody else) knows the (classical)
secret, in the form of a -classical point. The aim of the protocol is for the dealer to broadcast some infor-
mation to all players on a public classical channel, and for the secret to be deterministically decodeable
if only if all N players cooperate. The implementation, graphically summarised in 6.1, goes as follows:

1. the dealer and the players agree on a random set of -phases α0,α1, ...,αN such that ∑α j is some
-classical point (call it a). This operation is done on a public channel.

2. the dealer measures his part of the system of the system with phase α0, and uses the resulting
-classical data to encode the plaintext secret (classically adding the secret and the measurement

data in the group K ; this generalises the original XOR operation, corresponding to K = Z2
with addition mod 2) into a classical cyphertext. This operation is done locally and privately by
the dealer.

3. the dealer broadcasts the cyphertext on a public classical channel to the players.
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4. at some later stage, when they all agree to unveil the secret, the N players measure their part of the
system, each locally and privately.

5. all players broadcast the -classical results of their measurements on a public classical channel.

6. the broadcast results can be classically added in K , then the result can be added to a and finally
to the cyphertext (again in the group K ) to recover the original -classical plaintext secret.

a

secret

+α0−α0

+α1−α1 +αN−αN

window of attack

(6.1)

Most of the operations are either done locally and privately (all the measurements and the secret en-
coding), or broadcast by design on public classical channels, where one assumes that integrity of the
message is guaranteed by appropriate classical protocols. There are many additional layers of quantum
guarantees coming with this protocol, depending on the level of tampering allowed and on the phases
chosen:

1. Assume no tampering happens anywhere. Then the refusal of (at least) one player to broadcast his
or her measurement result makes the secret totally random to anyone else.

2. Assume that an attacker is allowed to tamper only with the GHZ state, and before the phases are
chosen. Then the maximum amount of information she can gain is limited by (a) the random dis-
tribution on phases and (b) the amount of bias between the possible phases for each system. If pmax

is the highest probability appearing in the distribution of the phase choices (traditionally uniform
with probability 1/N)2, and we let k := |K | be the dimensionality of the space (traditionally k = 2
for qubits), then optimal tampering reveals an average of pmax k-its of classical information (on a
secret of 1 k-it), in the case where the alternative measurements on each system are mutually unbi-
ased (e.g. the traditional X ,Y pair). A more complicated failure expression can be worked out for
arbitrary bases. This gain in information, however, is compensated by the introduction of a prob-
ability of failure for the entire protocol of (1− pmax) · (1− 1/k) (again in the mutually unbiased
case), which can be detected by the players/dealer via statistical analysis of the outcomes.

3. The kind of tampering allowed in the previous point does not give significant advantage to the at-
tacker (at least for large number of players), and can be mitigated by appropriate statistical analysis
of the measurement outputs; however, there is a stronger form of tampering that we can consider.
Assume that the attacker is allowed to tamper with the GHZ state after the phases have been cho-
sen, or even with the measurement devices of the dealer/player themselves, in a way that will

2Not 1/2N+1, because of the parity requirement.
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ensure he knows the measurement outcomes with certainty beforehand; this is the model of attack
assumed by device-independent security, pioneered in [5]. Under this stronger model of attack,
we can show that the protocol is secure if and only if the phases chosen by the players are alge-
braically non-trivial. Indeed, from the point of view of the dealer/players, the attack results in the
measurement outcomes having a classical probability distribution:

(a) if the phases are algebraically non-trivial, the probability distribution in the tampered case
will never match, because of contextuality, that generated by the un-tampered protocol, and
the attack can be detected by statistical analysis of the outcomes.

(b) if the phases are algebraically trivial, on the other hand, they admit a probabilistic local
hidden variable, and the attacker can generate her deterministic outcomes in a way to mimic
the probability distribution of the un-tampered protocol.

To summarise, there are three distinct quantum resources playing complementary roles in the security of
this protocol: the entanglement structure of the GHZ state, the amount of mutual complementarity of the
available phases, and their algebraic non-triviality. Firstly, the entanglement structure of the GHZ state
is the resource ensuring that the refusal of one player to cooperate results, if no tampering is allowed,
into the inability for everyone else to recover the secret. Secondly, the amount of mutual complemen-
tarity of the available phases, e.g. the complementarity of the X ,Y pair, limits the maximum amount
of information an attacker can gain by tampering with the state before phases are chose, and the min-
imum amount of disturbance introduced by the attack. Finally, Mermin non-locality, or equivalently
algebraic non-triviality of the chosen phases, is the key resource ensuring device-independent security of
the protocol.

7 Conclusions and future work

By using few, simple ingredients — †-SMCs, strongly complementary pairs, GHZ states, phases and
classical points — we have generalised Mermin measurements to arbitrary abstract process theories.
We have defined Mermin non-locality, and we have proven that a necessary and sufficient3 condition
for it is the existence of algebraically non-trivial phases, i.e. of phases which satisfy equations that
classical points cannot. As a corollary, we have confirmed the well-known result that the stabilizer
ZX calculus (and therefore fdHilb) is Mermin non-local, and we have proven that fRel, a toy category
of choice for Categorical Quantum Mechanics, is Mermin local (despite its unboundedly large ratio of
phases to classical points). This characterisation as the existence of certain phases opens the way to the
treatment of Mermin non-locality as a resource in the abstract design of quantum protocols, as we have
exemplified with the HBB CQ family of Quantum Secret Sharing protocols. Finally, the application of
our general framework to Mermin-type experiment in quantum mechanics allows us to show that, even
in the restricted case of two-measurement scenarios, complementary measurements are not necessary,
leading to many more potential configurations than previously believed. We conclude with a few open
questions for investigation:

1. What are the minimal conditions under which algebraically non-trivial phases lead to non-locality?

2. What is the exact connection between this framework as the framework of Abramsky et al. [1] for
generalised All-versus-Nothing arguments where measurement outcomes are elements of some
general field?

3Always necessary, sufficient under the assumption that classical points form a basis.
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3. Is there a more informative group-theoretic formulation of the algebraic non-triviality used here?

4. Our analysis focuses on non-locality paradoxes for a kind of GHZ state. It was recently shown
by [27] that multipartite non-locality arguments can be constructed from any of a set of qudit
graph states that they call GHZ graphs. What are the connections between these qudit graph states
and the phase group formalism we present here?

5. Which other quantum algorithms depend on Mermin non-locality as a resource to transcend clas-
sicality? Which process theories show these characteristics?
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A Preliminary definitions

In this section we recall some basic background definitions from the literature [10]. We will use the
diagrammatic language of symmetric monoidal categories, c.f. [26].

Definition A.1. In a †-symmetric monoidal category (†-SMC), the pair of a monoid (A, , ) and

comonoid (A, , ) form a dagger-Frobenius algebra (or †-FA) when the following equation holds:
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Definition A.2. A quasi-special †-Frobenius algebra ( , , , ) in a †-SMC is a Frobenius algebra
that satisfies:

= N (A.2)

for some invertible scalar N.

These †-qsFA are commutative when the monoid and comonid are commutative.

Theorem A.3 ( [13, Thm 5.1]). Commutative dagger Frobenius algebras in fdHilb are orthogonal bases.

The additional condition of specialness (quasi-specialness where N = 1) for †-qsCFA acts as a normal-
izing condition so that:

Theorem A.4 ( [13, Sec 6]). Commutative dagger Frobenius algebras in fdHilb in fdHilb are orthonor-
mal bases.

Definition A.5. The set of classical states K for a †-Frobenius algebra (A, , , , ) are all states
j : I→ A such that:

j

=
jj

(A.3)

We now define strong complementarity, the first fundamental ingredient of Mermin measurements.

Definition A.6. A pair of †-qSFAs ( , , , ) and ( , , , ) is strongly complementary if it
satisfies the following bialgebra equation (A.4) and coherence equations (A.5):

= (A.4)

= =

(A.5)

From now on we shall refer to the structures by their colour, i.e. by and . A more familiar presentation
of strongly complementary pairs can be given by observing that they correspond (when both structures
have enough classical points to form a basis) to pairs of non-degenerate observables obeying the finite-
dimensional Weyl form of the Canonical Commutation Relations [16]. Also, we have the following
characterisation of strong complementarity in terms of group actions on classical points.

Theorem A.7. Let and be a pair of †-qSFAs. If the pair is strongly complementary, then ( , ) acts
as a group on the classical points of . We denote this group as K Conversely, if the -classical points
form a basis and ( , ) acts as a group on them, then the pair is strongly complementary.

Proof. See [15].
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Phases are the other fundamental ingredient of Mermin measurements.

Definition A.8. A phase state for a †-qSCFA is a pure state |α〉 such that:

αα

= (A.6)

A phase is a map in the following form, where |α〉 is a phase state for ( ):

α :=
α

(A.7)

In particular, elements of K are phase states, as Theorem 3.2 explains.
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