Analysis of Quantum Entanglement in Quantum Programs using Stabilizer Formalism

Kentaro Honda

Quantum entanglement plays an important role in quantum computation and communication. It is necessary for many protocols and computations, but causes unexpected disturbance of computational states. Hence, static analysis of quantum entanglement in quantum programs is necessary. Several papers studied the problem. They decided qubits were entangled if multiple qubits unitary gates are applied to them, and some refined this reasoning using information about the state of each separated qubit. However, they do not care about the fact that unitary gate undoes entanglement and that measurement may separate multiple qubits. In this paper, we extend prior work using stabilizer formalism. It refines reasoning about separability of quantum variables in quantum programs.

In Chris Heunen, Peter Selinger and Jamie Vicary: Proceedings of the 12th International Workshop on Quantum Physics and Logic (QPL 2015), Oxford, U.K., July 15-17, 2015, Electronic Proceedings in Theoretical Computer Science 195, pp. 262–272.
Published: 4th November 2015.

ArXived at: https://dx.doi.org/10.4204/EPTCS.195.19 bibtex PDF
References in reconstructed bibtex, XML and HTML format (approximated).
Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org