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Quantum entanglement plays an important role in quantum computation and communication. It is
necessary for many protocols and computations, but causes unexpected disturbance of computational
states. Hence, static analysis of quantum entanglement in quantum programs is necessary. Several
papers studied the problem. They decided qubits were entangled if multiple qubits unitary gates are
applied to them, and some refined this reasoning using information about the state of each separated
qubit. However, they do not care about the fact that unitary gate undoes entanglement and that
measurement may separate multiple qubits. In this paper, we extend prior work using stabilizer
formalism. It refines reasoning about separability of quantum variables in quantum programs.

1 Introduction

Quantum entanglement plays an important role in quantum computation and communication. It allows
us to teleport quantum states [3]] and reduce necessary numbers of qubits for communication [4]. More-
over, it is the essential resource in a one-way quantum computation model [14]] and indispensable for
outperforming classical computers. Quantum entanglement also introduces some difficulty in compiling
quantum programs. For example, when a system uses an ancilla, the ancilla is possibly entangled with
the computation system and removal of it will disturb the computational state of the system. Compilers
of quantum programs should care about existence of quantum entanglement. Hence, static analysis of
quantum entanglement is necessary. Several papers studied the problem using types [[10], abstract inter-
pretation [12], and Hoare-like logic [[13]]. The first paper reasoned that two qubits are entangled whenever
a two qubits gate is applied to these qubits. The other papers improved the reasoning by restricting two
qubit gates to the controlled-not gate CX and by memorising information about the basis of separated
qubits. Since CX does not create entanglement if the control qubit is in Z-basis or the target qubit is in
X-basis, we can reason that two qubits are not entangled even after applying CX to the qubits. However,
these papers do not care about the fact that unitary gate undoes entanglement. Our motivating example
is as follows.

GHZ = INIT;H(qo) ;CX(q0,q1) ;CX(q1,q2)
SEPy = GHZ;CX(q0,41) ;CX(q0,92)

where INIT changes states of all qubits ¢g,q1,g> into |0). GHZ creates GHZ state |GHZ) = %(]OOO) +

[111)), where all qubits are entangled. SEP, destroys the entanglement without measurement. Indeed,
(CX®I)(I® CX)|GHZ) = |[4+00) and all qubits are separated. The prior work reasons correctly that
entanglement exists after GHZ but incorrectly that entanglement still exists after SEPy. Another example
is

SEP; = GHZ;meas(qo)
NSEP = GHZ;H(qp) ;meas(qo).
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After executions, SEP; produces all separated qubits but NSEP does one separated and two entangled
qubits regardless of the measurement results. In this paper, we borrow the framework of Perdrix’s
work [12] and extend it using stabilizer formalism [1, [7, 9], which gives a segment of quantum com-
putation that can be classically simulated. It refines reasoning about separability of quantum variables in
quantum programs.

2 Preliminaries

2.1 Stabilizer Formalism

Stabilizer formalism allows us to express a certain class of states in a compact way.

Let G, be the Pauli group on n qubits. The stabilizer S of a nontrivial subspace Vg of the 2"-
dimensional complex Hilbert space 7% is {P € G, | V|y) € V5. P|y) = |y)}. Any stabilizer S is
abelian and —1®" ¢ S. A subgroup S of G, is a stabilizer (on n qubits) if it is the stabilizer of some non-
trivial subspace of 7. If {M, ..., My_,} is a set of independent generators of S, we use (Mo, ..., My_;)
to denote S. If S = (My,...,My_1), the dimension of Vg is 2"k In particular, if kK = n, there exists a
unique state | ys) stabilized by S. We call a state |y) is a stabilizer state if |y) = |ys) for some stabilizer
S. Pf,;’_ = %(I‘g" + M;) is the projection onto eigenspaces corresponding to eigenvalues +1.

Stabilizers have matrix expressions. Let S = (Mo, ...,M;_1). Each generator M; has a form of either
010®011 Q@01 p—10r =010 011 D+ QO -1 where Olm is a Pauli matrix, i.e. O1m € {I,X, Y,Z}.
A stabilizer array [2] is a k x (n+ 1) matrix whose (i, j)th entry is o;; for j < n or the sign of M;
for j = n, and it denotes S. For example, (—ZZ,XX) = {I,XX,YY,—ZZ} stabilizes \%(IOU +[10)).

7z 7Z -
[ X X +
the generator M;. Obviously, both permutation of rows and multiplication of the ith row and the jth
row do not change the stabilizer provided i # j where “multiplication of the ith row and the jth row” is
replacement of the ith row with the product of the ith row and the jth row. Stabilizer arrays are compact
but have sufficient information to their stabilizers. We use stabilizer arrays to operate stabilizers.

Let S = (My,...,My_1) and T = (No,...,N;_1) be stabilizers on k and / qubits. Their tensor product
S®T is the stabilizer (Mo @1% ... My_ @1°/ 1%k @ Ny,...,I®* @ N;_;) on k + I qubits. In stabilizer
array expression, the tensor product is the direct sum of two matrices.

When S = (My, ...,M,_) is the stabilizer of Vs, USUT = (UMoU",..., UM, _U") “stabilizes” UV
for any unitary gate U. However, some UM;U" may exceed G, and hence may not be a stabilizer. A
Clifford gate is a unitary gate that sends any stabilizer to a stabilizer. Any Clifford gate can be composed
of the controlled-X gate CX, the Hadamard gate H, and the phase gate S. A well-known non-Clifford
gate is the §-gate T. Indeed, TXT' = %(X +Y)and T|+) = %(|0> 4¢3 1)) is not a stabilizer state.

is a stabilizer array of the stabilizer. We identify the ith row of a stabilizer array and

Let (My,...,M,_1) be a stabilizer on n qubits. If any M; commutes with Z;) = 1%/ ®Z R [®—i—1
i.e. the jth column of a stabilizer array consists of I or Z, then the measurement result of the jth qubit
is deterministic and does not change the state. If not, the measurement result is probabilistic. Through
multiplication of rows, we can take a unique generator M; that does not commute with Z ;). The stabilizer
of the post-measurement state is (Mo, ...,M;_q, +Zj),Mit1, .- .. ,M,,_) if the measurement result is +1,
respectively.
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2.2 Quantum Imperative Language

Following prior work [12], we use Quantum Imperative Language (QIL) as a target language. Fix the
set Q of quantum variables {q,...,qy_; }. We assume Q is finite and often identify a quantum variable
and its index. The syntax of QIL [11] is the following.

C,C':=skip |C;C' | X)) | YW [ Z() |HG) [SG) | TG) | CXG, j)
|if i then C else C' fi|while i do C od
where i # j. QIL is the set of QIL programs. The concrete denotational semantics of QIL is a superop-

erator [-]: QIL — D,v — D,n where D, is the set of n-dimensional partial density matrices, which is a
CPO [15]].

[skip](p) =p
[C;C'1(p) = [C'T(IC](p))
[V (i)(p) = UppU[,
[ex (i, N](p) = CX (i pCX; 5
[if i then C else C' £i](p) = [CI(|0)0];P10){0l;) +ICT()1|,P 1)1 ()
[while i do C od](p) =} [1)(1];,f"(P)I1){1]

neN

where U € {X,Y,Z,H,8,T}, f(p) = [C](|0){0];p|0)O])-
QIL has a control structure and hence we can change any state of a quantum variable into a constant.

INIT, =if i then skip else X(i) fi
INIT = INITg; INIT;; ---;INITy

Indeed, [GHZ](p) = |GHZ)(GHZ| and [SEPy](p) = |+00){+00].
In the work [12]], an abstract domain A to analyse entanglement was introduced. An element of
the domain is a pair (b, ) of a partition 7 of Q and a function b: Q — {I,X,Z, T}. & denotes that the

quantum state p is w-separable:
ki
p=YrQp"
k A_/'GTL'

where p*/ is a quantum state of A j- Moreover, if the ith qubit is separated from the others, b(i) shows
which basis it is. For example, if b(i) = Z, the quantum state p is:

p = po|0)0| ® po + p1 [1)(1| ®p1

for some py, p1,Po, P1. It implies that the ith qubit will be still separated even after executing CX (i, j).

3 Abstract domain on stabilizers

Although AQ gives us some information about separability of a quantum state, it contains no information
about entanglement except that qubits are entangled. In order to analyse more, we will refine the abstract
domain AQ using stabilizer formalism. We follow the idea of AQ, where Z and X denote that a state can be
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separated through |0),|1) and |[+) ,|—), respectively. We suppose that a stabilizer S = (M, ...,M,_1) on
n qubits represents not only the stabilized state |ys) but also the eigenstates of it, i.e. {|y) | VM; M;|y) =
|w) or M;|w) = —|w)}. We reuse |ys) to denote an eigenstate. The sign of each generator has no longer
any meaning. From now on, we assume any generator has the plus sign and we ignore the last column of
any stabilizer array.

Our idea of using stabilizers, of course, has a problem about non-Clifford gates. Since QIL has
the %—gate T, even if we start an execution of a QIL program from a stabilizer state, we may not get a
stabilizer state. We prepare a symbol B that denotes a non-stabilizer.

Now, we introduce our abstract domain CQ, which is composed of assignments of stabilizers to each
segment of partitions of Q. When T (i) appears, we forget about a stabilizer that expresses the current
state of the segment containing the ith qubit, and keep just the symbol . Hence, when we can divide
a stabilizer into the tensor product of multiple stabilizers, it is good to separate them. In particular, if a
stabilizer on multiple qubits contains X(;), Y ;), or Z;), then the ith qubit can be separated from the others.
Naive algorithms on a stabilizer array allow us to compute whether X(;) belongs to a given stabilizer in
O(N) time and to divide a stabilizer into two stabilizers in O(N?) time.

Definition 3.1. Let .#; be the set of stabilizers on k > 2 qubits that are generated by k independent
generators and contain none of X(;), Y(;), and Z;). /1 = {L,(X),(Y),(Z)}. We add the non-stabilizer B
to all .%;. Define . = <y . We call o C 29 x .7 a (stabilizer) assignment if prya. is a partition of Q
and for any (A,S) € a, S € |a|- Here, pr; is the ith projection. The set of stabilizer assignments is cQ.

Notation 3.2. Let « be an assignment. We sometimes regard o as a function from Q to 22 x .% such
that o (i) = (A,S) where i € A. We define o = pryo o, oy = pry o . Hence, 0(i) € 22 and o (i) € ..
We also regard a partition of Q as a function from Q to 22. «[(A,S)/i] is a new assignment (o\ ot(i)) U
{(A,S)}. We extend the notation into [{(A¢,So), ..., (Ar—1,Sk—1)}/i] in a natural manner. o[S/i] means

(a\e(i)) U {(ao(i),S)}. a[S/i, j] = (e\(ee(i) Ue(j))) U {( (i) Uan(i),S)}-

Definition 3.3. Let p be a quantum state and & be an assignment. We write o = p if

p=Yrn & ptis
k

(AS)ea

(4.5)

with some probability p; and some state p~ on A qubits where pX@5) has a form of %I if S=Tand

|ws)(ys| if S is another stabilizer.

Although an assignment tells how to separate a quantum state, it is just an overapproximation. Even
if a stabilizer is assigned to two qubits, it does not mean the qubits are entangled. Indeed, although
1(I®]) is a separable state, {({0,1}, (XX,ZZ))} F }(I®1).

Each assignment contains information about entanglement of a quantum state. Intuitively, an as-
signment o has more information than another assignment f3 if B = p whenever o F p. It gives CQ a
lattice structure: For S,8 € .7, we write S <, S if S=1, 5 =M, or S = 5. Obviously, <; is an or-
der. Let <; be an order of partitions: = <, 7’ if for any A’ € 7/, there exist Ag,...Ay_; € 7 such that
A" =Uieqo... k—1)Ai- Moreover, we write & <. B if @y <z o and for eachi € Q, © ;g1 @(J) <s 1 (i)
where

S; (all Aj are the same)

O@A;,8)=1 1 (allS;arel)
jel B (otherwise)

The relation <, makes C? a CPO.
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Proposition 3.4. CQ is a finite lattice and hence a CPO.

Proof. Tt is easy to see <. is an order. The maximum assignment is {(Q, M)} and the minimum is
{({i},]) | i € Q}. Let o, B be assignments. Take the join 7 of @ and Py with respect to <. Let A € 7.
Define S as the join of (O je4 0t1(j) and O 4 Bi1(j)- The set of these pairs (A, S) is the join of o and 3.
The meet of o and f can be constructed similarly. O

We define an abstract semantics [-]c: QIL — CQ — CQ inductively. For simplicity, we define
UBU' = M for any unitary U and B® S = B = S® B for any S € .7, and assume that conditions
are exclusive and an upper condition has priority.

[skip]c(a) =
[C;Cc(a) = [Cle([Clc(a))
[U)]c(a) = [U(i)al(i)U(Ti)/i]

[T ]e(a) = { g[./i] (04 (i) and Z(;y commute)

(otherwise)
alupdate({i, j}, 00()),CX iy o ()CX[, ;) /i] - (a(i) = ao(j)
(o (i) = (Z),
o o1 (j) = (X), or
[Cx G, PD]e(a) = (i) =au(j)=1)

al(Z)/i] (o (i) =1
af(X)/J] ) (o1 (/) =1)
a[CX(; (o (i) @ a (j))CXEi,j)/i7 J] (otherwise)

if

‘:11:2 CC (@) = [Clc(meas(i, &) V [C']c(meas(i, o))
fi c
[while i do C od]c(c \/meas, ([C]c omeas;)" (@))

neN

where U € {X,Y,Z,H,S}. update makes a “pseudo-"assignment to satisfy the condition that each stabi-
lizer contains none of X;), Y(;), and Z;). The first argument is possibly-unentangled qubits.

)
update(J, A, ) = {(A, W)}
update(0.4.5) = {(4.5))
{{i}.S")}Uupdate(J,A\{i},S") (S=8 ®S"suchthat$ €.} and S’ has

update({i} UJ,A,S) = non-identity entry only in the ith column)
update(J,A,S) (otherwise)

meas means measurement and meas;(a) = meas(i, o). After measurement, the measured qubit is always
separated.

a[(Z)/i] (low (D) =1)
meas(i,or) = { a[{({i},(Z)), (a()\{i}, W)} /i] (0u (i) = W)
ofupdate(o (i), 0t (i),measy (i, (i)))/i] (otherwise)

where meass, is the measurement process of the ith qubit in stabilizer formalism.



K. Honda 267

Example 3.5. [GHZ]c () = {({0,1,2}, (XXX, ZZ1,122))}. [SEPo]c(@) = {({0}, (X)), ({1}, (2)). ({2},
(@)} [SEPlc(@) = {({0}.(2)), ({1},(2)). ({2}, (2))}. and [NSEP]c(er) = {({0},(Z)), ({1,2}, (XX,

77))} where meas(i) = if i then skip else skip fi.

Example 3.6. Take a QIL program exmg = T(0) ;if 1 then skip else CX(2,3) fi. Let Qexm, =
{({0,1},(Z2Z,XX)), ({2,3},(ZZ,XX))}, |Boo) be a Bell state %UOO) +111)), and Pexm, = |Boo){Boo| ®
|Boo)(Boo|- Since |Bgo) is stabilized by (ZZ,XX), Olexmy & Pexmy-

7 Z [ I | [ ] [ ]
X X T(0) H N meas, Z CXx(2,3) Z
X X X X X X X ’

Z 7 Z Z Z 7 Z

so [exmp]c(Oexmy) is { ({0}, M), ({1},Z),({2,3}, M)}, which satisfies [exmo]c (Ctexm,) F [exmo] (Pexm,) =
310)(0] ©[0)(0] @ | Boo)(Boo| + 5 [1)(1| @ [1)(1] @ |+0)(+0|. Note the join of {({2}, (X)), ({3}, (Z))} and
{({2,3},(XX,22))} is {({2,3}, W)}

In the above example, we can see that CX undoes quantum entanglement between the second and
third qubits. It enables us to analyse entanglement in a QIL program more deeply than the prior work.
Of course, in order to use [-]c for analysis, the abstract semantics should be sound for the concrete
semantics. Although [-]c is not generally monotone, it is sound as the abstract semantics in the paper [12]
is. A counterexample of [-]¢ being monotone is & = {({0},1), ({1},(Z))}, B ={({0}, (X)), {1}.(Z))},
and C = CX(0,1);S(1);H(0);CX(0,1);T(1). a <. B but [Clc(a) >, [C]c(B) because [Cc(a) =
{({0,1}, M)} and [C[c(B) = {({0},(Y)), ({1}, (m))}.

Proposition 3.7. For any assignment o, B, and QIL program C, if a <. B and o (i) # 1 for any i € Q,
then [Cle(a) <. [Clc(B).

Proof. By induction on the structure of C. O
Theorem 3.8. For any state p, assignment a, and QIL program C, o = p implies [C]c(@) F [C](p).

Proof. By induction on the structure of C. For skip, C;C’, U(i), and T (i), it is easy. For CX(i, ),
there are several cases. But, in any case, it is straightforward that the statement holds by the definition of
o F p and computation in stabilizer formalism. Note that &V B F p + ¢ whenever o F p and B F ¢. The
statement holds for if /i then C else C’ fi because of the above fact, meas(a) E [0)(0|p|0)(0|, and
meas(ot) E |1)(1|p|1)(1|. Finally, we show for while i do C od. Because of meas(c) = [0)(0|p|0)(0|
and the induction hypothesis, V/, <y meas(([C]c omeas)" (et)) & Xn<pr [1)(1] 5 /" (P)|1)(1] ;- Since CQis
finite, [while i do C od]c(a)F Lacar[1)(1]) f"(P)|1)(1](; for sufficiently large M. Thus, the state-
ment holds. U

4 Abstract domain on extended stabilizers

In the previous section, we use stabilizers and the symbol B that represents a non-stabilizer. The symbol
B contains no information. It just states that the state of the associated qubits is unknown. The abstract
semantics [-]¢ introduces the symbol when it faces the non-Clifford gate T because the post-execution
state is a non-stabilizer state. Can not we really extract meaningful information from the post-execution
state? Let us take the following QIL program.

exm; = GHZ; T (1) ;meas(0)
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The abstract semantics
(0)
meas
H N

T
1 u

X X X
Z 7Z 1
Z 1 Z H NN

tells us that the first qubit is separated but the second and the third qubits may be entangled last. Now, let
us try not to fill the matrix with l when T appears but to memorise the applied gates. Recall that USU '
“stabilizes” UV if S is the stabilizer of V.

X X X X TXTF X .
z 7z 1| X%z 7z 1|0 7
Z 1 Z Z 1 Z Z

It means all qubits are separated. Indeed, [exm;](p) = 3(|000)(000| + [111)(111]). The example shows
that the effect of T may be bounded locally and will be removed later. We introduce a new symbol ©,
which means a unitary matrix that may not be a Pauli matrix or their tensor product. Note that O means
not only a single qubit unitary matrix but also an n qubit unitary matrix. Using the symbol ©, we will
extend our abstract domain CQ to a new domain EQ. Before doing it, we extend stabilizers so that they
allow us to put © on them.

Definition 4.1. Let k be a positive integer and A be a k X k matrix whose entries are in {I,X,Y,Z,0}.
We now identify two matrices A and B if one can be converted into the other via permutations and
multiplications of rows. Here, © behaves as an absorbing element. We call a row containing the symbol
© and a row containing no © a O-row and an L-row, respectively. We always require any L-rows
commute and these rows are independent. Moreover, we require that for any ©-row R; and row M;, by
substituting I, X, Y, or Z for each © in R; and M, the result rows can commute. For example, the matrix
consisting of two rows OX and IZ is excluded, but the matrix consisting of OX and XZ is right because
substitution of Z for © makes these rows commute. Finally, we exclude some matrices. Let k > 2. If a
matrix has a row II--- L, Xy, Y(j), Z(j), or ©;y, then it is excluded. We name the set of those matrices
&%. Then, B is added into all &. & is the union of these &;s.

Example 4.2.

O XY © ZY -
I Z QY
[1},[@},[@ X], Z QO Qles |1 XY ,X@},[IX]@@
XY Z zZ O Q
The third matrix is an abstraction of matrices such as
X 1 X Z X HTXT'H' ]
I X|'|Z X || Z X

Recall that . has the order <;. Regardless of the addition of O, the same definition seems to give
an order of & E € & is lower than or equal to E' € &if E =1, E' =W, or E = E’. However, it does
not answer our purpose. Recall the join operator corresponds with the summation of density matrices.

X 1 X Z . .
] may represent [ I X } or [ 7 X ] However, the summation of stabilized

For example, [ é X

M ] The example shows the join of [ é v ]

X
states by them does not always have the form of [ O X X

and [ } should not be itself, so the “order” is not reflexive.

X Q
0 X
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In order to obtain a join operator, we remove rows that contain . We give up keeping information
about unitary matrices when we take a join.

Definition 4.3. Take A € &;,. Remove all O-rows. If all rows are O-rows, we obtain ll. We call this
procedure normalisation and these matrices normal forms. The set of normal forms is .%; and the union
of them is .%. We redefine &, so that it includes any element of &} even if some rows are removed. & is
the union of them. Note .%; C & and thus % C &.

Notation 4.4. For each E € &, E,; is the normal form of E.

Example 4.5.
(1],[m],[X Y Z]es

& has an order <g: F <;F'if F=1, F' =W, or F = F'. Obviously, .# has the maximum, the
minimum, and the join and the meet of any two elements. We can take an approximation of a join
operator of & via the subset .%.

Now, we define our second abstract domain EQ.

Definition 4.6. We call ¥ C 22 x & an extended (stabilizer) assignment if pryy is a partition of Q and
for any (A,E) € v, E € &4 The set of extended assignments is EQ. For each extended assignment 7,

an extend assignment {(A,E,;) | (A,E) € v} is the normal form of y. FQ is the set of normal forms of
extended assignments.

Notation 4.7. For extended assignments, we use the same notation as for assignments.

Definition 4.8. Let p be a quantum state and y be an extended assignment. We write y = p if p is pr,, y—
separable, for any L-row L; of any ¥ (i) that is not I or W, PL+ pPr, =0, and for any i such that ¥ (i) =

p= %I(i) ® p’ with some state p’ of the Q\ {i} qubits. Recall Pik = J(I®" £ Ly).

The same construction as CQ makes FQ a CPO. Although E?Q does not have joins, we can define an
approximate join operator & on EQ through FQ: for each 7,8 € EQ, yuw § is the join of the normal forms
of vy and 6. Note that the approximate join & of two elements can be computed efficiently. Now, we
define our second abstract semantics [-Jg: QIL — EQ — EQ. Since O loses some information, we have
to avoid introducing © if possible. For simplicity, we define URU' = B forany U, BQE =B =Ex R
for any E € & UQUT = Q for any 1 qubit unitary U, and CX(QU)CX" = CX(UQ)CX' = QO for any
U. Moreover, we assume that conditions are exclusive and an upper condition has priority.

[skip]e(y) =¥
[C;CTe(y) = [C'Te([ClE(Y))
[V 0)e() = 1UanOU, /1]

[TW]e(y) = (11(i) and Z(;y commute)

Y
{ Yladdy(i,y1(i))/i] (otherwise)

tupdater ({i, j}, (i), CX 1 (CX, ;)/i] - (
Y

(i)
(i)

(&)
M(2)/i] (i) =1)
1ICX (i) (M () @ 1 ())CX], ) /i J] (otherwise)

()
<Z>771(j) = <X>a or
n@) =1

i
=

—_

[[CX(isj)ﬂE(’Y) =

sss§‘§
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if i
2?22 g/ (7) = [Cle(mease (i, 7)) @ [C'le(measg (i, 7))
fi .
[while i do C od]g(y) = |H measg i(([C]gomeasg,;)" (7))

neN

where U € {X,Y,Z,H,S}.

The result updateg(J,A,E) is computed as follows. (1) If E belongs to ., then update(J,A,E) is
the result. (2) If not, take all jo,..., jx—1 C J such that E has rows <, U where $;, € {X,Y,Z}. When
there is no such j;, {(A,E)} is the result. Otherwise, define K = A\{jo,..., jk—1}. Then, the result is
(K.Y U{({ji}05) | 1= 0, k— 1},

The result of measg (i, y) varies with . (1) If | (i)| = 1, then y[(Z) /i] is the result. (2) If 7, (i) belongs
to A\.71, then ylupdate(y (i), (i), meass (i,7(i)))/i], which is the same as meas. (3) If exactly one
row of ¥ (i) has X or Y in the ith column and the others have I or Z, measg (i,7y) is computed as follows.
First, the row and the ith column are removed from 7; (i). Let us call the matrix E’. Then y[{({i}, (Z))}U
updateg (Y% ()\{i}, w()\{i},E")/i] is the result. (4) Otherwise, we cannot obtain information about the
post-measurement state. The result is Y[{({i}, (Z)), (yo()\{i},W)}/i].

The function addy changes X and Y in the ith column into ©. By the definition of equality in &,
we can assume that exactly one of the following holds: (1) the ith column does not contain X or Y, (2)
exactly one L-row has X or Y in the ith column, and (3) only O-rows have X or Y in the ith column. In
the first case, addy does nothing and returns the second argument. In the second and third cases, addo
changes all X and Y in the ith column into © and returns the matrix. Hence, addo changes at most one
L-row into a O-row.

Example 4.9. Now, we compute [exm;[g(y).

X X Z X O X L[z
z 7z 1|2 7z 7z 1 |R=0 7
Z 1z 7z 1 Z Z

Thus, we conclude that all qubits are separated.
Finally, we show [-]g is sound.

Theorem 4.10. For any state p, extended assignment 7y, and program C, vy = p implies [Cg(y) E [C](p).

Proof. By induction on the structure of C. For skip, C;C’, U(i), and T(2), it is easy. For CX(i, j),
since the number of O-rows does not increase, the statement holds. Extended stabilisers also satisfy
YWé E p+ o whenever Y= p and 6 F 0. For if i then C else C' fi, we have to check measg.
However, since it also just decrease the number of O-rows, measg () F [0){0];,p[0)(0] ;). Hence, the
statement holds for if i then C else C’ fi. Finally, we show for while i do C od. Since CQ
is finite, [while i do C od]e(y) F L,<p [1)(1];) /" (P)[1){1]; for sufficiently large M. Therefore, the
statement holds by continuity of projection. O

5 Conclusion

We used stabilizer formalism to improve entanglement analysis in quantum programs. First, we intro-
duced an abstract domain CQ and an abstract semantics. It assigns stabilizers or non-stabilizers to each
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segment of a quantum state, where non-stabilizers are assigned when non-Clifford gates are applied to the
segment. The method enables us to analyse separability of qubits in quantum programs more precisely.
Specifically, we could deduce that all qubits are separated after executing SEP or SEP;. Moreover, we
defined an abstract domain EQ, as CQ introduces too many non-stabilizers. Even when non-Clifford
gates appear, the domain does not discard stabilizers but keeps Pauli matrices that are not disturbed by
the gates. Hence, it suppresses effects of non-Clifford gates that will be removed later. We showed
soundness of both semantics.

In a field of model checking, stabilizer formalism was used to verify quantum programs and analyse
entanglement of those programs [3} |6]. However, in these studies, quantum gates in a target language
were restricted to only Clifford gates. It is worth noting that our target language QIL has a non-Clifford
gate. This is a big advantage of our work and actually one of the challenges of our work was how to
manage the non-Clifford gate. We restricted the effect by overapproximation. Although we refined the
approximation from CQ to EQ, further refinement is still needed such as finding a better approximate
join operator in E2.
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