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Diagrammatic reasoning using string diagrams provides an intuitive language for reasoning about
morphisms in a symmetric monoidal category. To allow working with infinite families of string
diagrams, !-graphs were introduced as a method to mark repeated structure inside a diagram. This led
to !-graphs being implemented in the diagrammatic proof assistant Quantomatic. Having a partially
automated program for rewriting diagrams has proven very useful, but being based on !-graphs, only
commutative theories are allowed. An enriched abstract tensor notation, called !-tensors, has been
used to formalise the notion of !-boxes in non-commutative structures. This work-in-progress paper
presents a method to encode !-tensors as !-graphs with some additional structure. This will allow us to
leverage the existing code from Quantomatic and quickly provide various tools for non-commutative
diagrammatic reasoning.
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1 Background

1.1 Motivation

Reasoning using diagrams can often be simpler and more intuitive than using a term-based mathematical
syntax [7]. There has recently been a shift toward using graphical calculi in a number of different fields.
The String graph formalism is one which has far-reaching applications in areas including categorical
quantum mechanics [4, 3, 5], computational linguistics [8] and control theory [2, 1]. String graphs are a
formalism for typed directed graphs, with the idea of edges replaced by (directed) wires. Unlike edges,
wires do not need to have vertices at the ends. Those without starting vertices can be considered inputs
and those without end vertices can be considered outputs. Wires also allow for identity edges (neither
end connected to a node) or loops (a wire connected to itself). String graphs achieve this by having wire-
vertices along a wire, so that a loop for example could be two wire-vertices a and b with edges a→ b
and b→ a. String graphs can be combined by plugging outputs from one in to inputs of another.

A diagrammatic theory is a set of equations between string diagrams on some set of generating
morphisms. For example, a (commutative) associative multiplication operation with a unit can be
described by the string diagram equations:

=
,

=

An equation, G = H, between string graphs can be used in a form of rewriting where a subgraph
matching G can be replaced by H.

= =⇒

Many theories allow for nodes to have variable arity edges. For example, the multiplication and unit
above can be replaced by a single operation taking the product of an arbitrary number of inputs (order
unimportant), along with two diagram equations.

,
=

. . . . . . . . .. . .

=

This extension, while powerful, loses the mathematical rigour from the previous formalism (as can
be seen from the use of ellipses). To return to a rigorous semantics, !-boxes (pronounced bang-boxes)
were introduced in [6] to designate (by enclosing in a blue box) parts of a diagram which are allowed to
be repeated. Adding !-boxes to string graphs results in the notion of a !-graph. This was formalised in
[10, 15] and has many applications, particularly in categorical quantum mechanics. Note that a !-graph
represents a family of string graphs which can be recovered by two !-box operations, KillB and ExpB.
KillB is the operation removing the !-box B and all contents from a !-graph. ExpB is the operation which
creates a new copy of the contents of B attached to the same nodes. Equations between !-graphs have
the restriction that the !-graphs have the same !-boxes with the same nesting (!-boxes can contain other
!-boxes). Hence the ellipsis equation in our example theory describes the following set:
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As !-graphs get applied to more complicated systems, rewriting by hand becomes difficult. This

problem was solved by the introduction of Quantomatic [11], an automated theorem prover which allows
rewriting of !-graphs using substitution. Quantomatic encompasses many tools for automated reasoning
with string diagrams and has the ability to output graphical derivations directly to LaTeX.

Figure 1: Example derivation in Quantomatic

One major drawback of both !-graphs and Quantomatic is that they are only designed to allow theo-
ries in which all nodes are commutative on inputs and outputs. This not only restricts the types of theory
we can work with but more subtly, it rules out the option to definitionally extend a theory. i.e. defining
new nodes (possibly inductively) as diagrams of other nodes. This is important if we want to rigorously
replace finite arity nodes with their more intuitive arbitrary arity counterparts.

Since graphs inherently lack any notion of order on the edges surrounding a node, a more logical
choice for representing non-commutative systems is a tensor notation in which edges are listed (in order)
in a subscript. This tensor syntax was suggested in [9] and then extended in [12] to !-tensors which use an
enriched version of Penrose’s abstract tensor notation [16] allowing non-commutative nodes and !-boxes.
Here nodes are of the form φe where φ is the type and e is called the edgeterm (describes order of edges).
Nodes are enclosed in [_]B to represent that they are inside a !-box named B. Edgeterms contain edges
out â and edges in b̌ where a and b are the names of the edges. If â and ǎ appear in a !-tensor it represents
an edge between their nodes. In the edgeterms anything inside [_〉B is an edge entering B which should
be expanded clockwise during ExpB and 〈_]B represents edges with anticlockwise expansion.

ψ f̂ ǎb̌φâb̂čďě := b a

φ

cde

ψ

f

, [φâčb̂ψĉď ]
B
ξ[ǎ〉Bζ〈b̌d̂]Bě :=

φ ψ

ξ

ζ

e

B

(1)
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While it would be possible to write new automation tools based on term rewriting in the !-tensor
formalism, this would require rebuilding the features already present in [11] from scratch. Instead we
wish to leverage this pre-existing code but extend it to work with the logic of non-commutative theories
as formalised in [13], by adding edgeterms to !-graphs. This paper shows work in progress demonstrating
how we can fully encode !-tensors as !-graphs with added data. For the remainder of this section we recall
the definitions of string graphs and !-graphs as defined in [15].

1.2 String graphs as typed graphs

The standard definition of a graph in mathematics is not powerful enough for our purposes. As can be
seen from the string graphs in Section 1.1 our vertices need to be labelled (as generator types or wire-
vertices). There should also be some restrictions as to which vertex types edges can connect. We achieve
this using a typegraph, where every vertex gets mapped to a type.

Definition 1.1. A graph G along with a graph morphism τ : G→ G is said to be a G -typed graph.

Definition 1.2. If O and M are sets and dom,cod : M→ (O×{•,∞})∗ are functions into lists of pairs of
elements of O and either • or ∞, then (O,M,dom,cod) is a compressed monoidal signature.

We refer to the set O as the objects, the set M as the morphisms and dom and cod assign the domain
and codomain of each morphism allowing edges to be tagged as single (•) or variable (∞) arity.

Definition 1.3. Given a compressed monoidal signature T = (O,M,dom,cod), the derived compressed
typegraph GT has vertices O∪M , a self-loop for every X ∈ O and, for every f ∈M,

• one •-edge from X to f for each (X ,•) in dom( f ),

• one •-edge from f to X for each (X ,•) in cod( f ),

• one ∞-edge from X to f for each (X ,∞) in dom( f ), and

• one ∞-edge from f to X for each (X ,∞) in cod( f ).

For example, the compressed monoidal signature T with the two morphisms f : [X∞]→ [X•] and
g : [Y •,X•]→ [X•] results in a typegraph GT of the form:

•

•∞

• •

f g
X

Y

If a graph G is GT -typed then we write W (G) for the wire-vertices (those mapped into O) and N(G)
for the node-vertices (those mapped into M). •-tagged edges represent edges of fixed (single) arity
whereas ∞-tagged edges represent edges of variable arity.

Definition 1.4. A GT -typed graph (G,τ) is called a string graph if τ is arity-matching (a bijection be-
tween the •-edge neighbourhoods of N and τ(N), for each N ∈ N(G)) and each wire-vertex in G has at
most one incoming edge and at most one outgoing edge.

The notion of a string graph requires node vertices to be connected by chains of wire vertices which
we refer to as wires. Wire points with no incoming edge represent an input to the graph and wire points
with no outgoing edge represent outputs. We refer to the input vertices and output vertices together as
the boundary. The set of wire-vertices in a wire are referred to as the interior of the wire.

Remark 1.5. The edges around a node-vertex in a string graph are either •-tagged, which means they
are single arity; or they are ∞-tagged meaning there could be many copies made. This is important when
we transition to !-graphs where we need to be careful not to copy single arity edges.
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1.3 !-Graphs

!-boxes denote subsections of a graph which can be repeated many times. We represent a !-box B as a
node (of the new type !) with an edge to each vertex contained in B.

Definition 1.6. A subgraph O of a string graph G is said to be open if it is not adjacent to any wire-
vertices or incident to any fixed-arity edges.

Openness (as described in [15]) encapsulates the property of being able to repeat that part of a graph
an arbitrary number of times. It ensures adjacent edges are copied with nodes; fixed arity edges are
not copied without the adjacent node; and that wires cannot be partially inside a !-box (to avoid wire
splitting).

Definition 1.7. Given a compressed monoidal signature T , the derived compressed !-typegraph GT ! is
GT with the addition of a vertex ! along with edges from ! to every vertex (including itself).

Our previous example of the compressed monoidal signature T with morphisms f : [X∞]→ [X•] and
g : [Y •,X•]→ [X•] results in a !-typegraph GT ! of the form:

•

•∞

• •

f g
X

Y (2)

If G is GT !-typed, write !(G) for the box-vertices in G (those mapped to !) and U(G) for the full
subgraph of G with all vertices except !(G). Given B ∈!(G) let C(B) be the full subgraph of G with
nodes which have edges from B. So C(B) represents the contents of a !-box B. We use this notation in
the !-graph conditions to ensure !-boxes are well-behaved under !-box operations.

Definition 1.8. A GT !-typed graph G is called a !-graph if the following hold:

BG1. U(G) is a GT -typed string graph;

BG2. the full subgraph with vertices !(G) is posetal;

BG3. ∀B ∈!(G), U(C(B)) is an open subgraph of U(G); and

BG4. ∀B,B′ ∈!(G), if B′ ∈C(B) then C(B′)⊆C(B).

As an example, the theory described in Section 1.1 has !-typegraph and !-graph rules as follows:

•

∞

•

∞

∞

•

∞

•

∞∞

∞

•

,

=

B

=

AA B

2 !-Graphs with simple overlap and ordered neighbourhoods

Given a compact closed signature Σ we wish to encode the !-tensors of TΣ as !-graphs with some addi-
tional data. However, !-graphs allow for two or more non-nested !-boxes to share nodes, which is not
permitted with !-tensors. In this section we define a restricted set of !-graphs and the additional structure
recording non-commutativity.
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2.1 Simple overlap

We must now add the restriction to rule out !-graphs with overlap on nodes, we do this by introducing
the idea of simple overlap of !-boxes.

Definition 2.1. Given a pair of non-nested !-boxes B and B′, we say they overlap simply if C(B)∩C(B′)
consists of only the interior of zero or more wires, where at least one endpoint is a node-vertex and any
node-vertex endpoints are in either C(B) or C(B′).

Definition 2.2. A !-graph where any two non-nested !-boxes overlap simply is called a !-graph with
simple overlap.

Compare this definition to !-graphs with trivial overlap (BGTO) which were first defined in [14]
where it was shown that they can be encoded using a context-free grammar. The difference here is that
we allow non-nested overlap at a boundary rather than just between two node-vertices.

A

B B

A

B

A A

B

The first two !-graphs have only simple overlap (though the second is non-trivial) the final two have
non-simple overlap.

2.2 Adding orders to neighbourhoods

We now only need to describe the additional data to keep track of edge orders. For this we need the
notion of an edgeterm which was originally described in [12]. Edgeterms list, in clockwise order, the
edges (in ǎ or out â) around a node grouping those which expand clockwise under !-box B inside [_〉B
and those which expand anticlockwise inside 〈_]B. For examples see (1) and [12].

Definition 2.3. The set of edgeterms TE over the edge names E and !-box names B is defined induc-
tively as follows:

• ε ∈TE (empty edgeterm)

• ǎ, â ∈TE a ∈ E

• 〈e]A, [e〉A ∈TE e ∈TE , A ∈B

• e f ∈TE e, f ∈TE

Two edgeterms are equivalent if one can be transformed into the other by:

e( f g)≡ (e f )g εe≡ e≡ eε [ε〉A ≡ ε ≡ 〈ε]A (3)

Definition 2.4. Given a !-graph with simple overlap G, a neighbourhood order on G is a function nhd :
N(G)→TW (G) satisfying ∀N ∈ N(G):

• nhd(N) is an edgeterm with input edge names {w ∈ W (G) : w → N} and output edge names
{w ∈W (G) : N→ w},
• The !-boxes with edges to a ∈ nhd(N) but not to N are precisely those containing a in nhd(N)

(ordered by nesting order).
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We define three !-box operations: KillB removes B and its contents; DropB removes B leaving its
contents; and CopyB add a new copy of B and its contents. The operation ExpB can be applied using
CopyB and then dropping the new !-box.

Definition 2.5. For OpB any !-box operation, OpB(G,nhd) := (OpB(G),OpB ◦nhd). Where our three
!-box operations are applied to !-graphs by:

• CopyB(G) is defined by a pushout of inclusions:

G\C(B) G

G CopyB(G)

• DropB(G) := G\B
• KillB(G) := G\C(B)

and OpB is applied to an edgeterm in the following trivial cases:

OpB([e〉A) := [OpB(e)〉A OpB(e f ) := OpB(e)OpB( f )

OpB(〈e]A) := 〈OpB(e)]
A OpB(x) := x

where A 6= B and x ∈ {ǎ, â,ε} and for the final two cases:

CopyB([e〉B) := [e〉B[fr(e)〉fr(B) DropB([e〉B) := e KillB([e〉B) := ε

CopyB(〈e]B) := 〈fr(e)]fr(B)〈e]B DropB(〈e]B) := e KillB(〈e]B) := ε

3 Encoding !-tensors

3.1 Defining the mapping I

We wish to allow theories with generating morphisms which have input or output edges of single (•-
tagged) or variable (∞-tagged) arity. Given a set O of object types and X ∈ O we write X̌•, X̂•, X̌∞, X̂∞

to represent fixed arity input and output edges and variable arity input and output edges respectively. We
need a different definition of a signature when working with !-tensors.

Definition 3.1. A compact closed signature Σ consists of a set O := {X ,Y, . . .} of object types and a set
M of pairs (ψ,w), where w is a word in {X̌•, X̂•, X̌∞, X̂∞ : X ∈ O}.

Recall the definition of a !-tensor expression and equivalence of !-tensors from [12].

Definition 3.2. The set of all !-tensor expressions TΣ for a signature Σ is defined recursively as:

• 1,1âb̌ ∈TΣ a,b ∈ E

• φe ∈TΣ e ∈TE ,φ ∈ Σ

• [G]A ∈TΣ G ∈TΣ, A ∈B

• GH ∈TΣ G,H ∈TΣ

Where E is a set of possible edge names and B is a set of possible !-box names. Subject to the conditions
(F1) ǎ and â must occur at most once for each edge name a and (F2) [. . .]A must occur at most once for
each !-box name A, as well as some consistency conditions (C1)-(C3) for !-boxes [12].
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Definition 3.3. Two !-tensor expressions G and H are considered equivalent, G ≡ H, if one can be
obtained from the other by replacing bound names and/or applying one or more of the following enforced
identities:

(GH)K ≡ G(HK) GH ≡ HG G1≡ G

InsB31b̂ǎ
(G)≡ G[b̌ 7→ ǎ] InsB31âb̌

(H)≡ H[b̂ 7→ â]

where for the last two identities b̌ and b̂ are free in G and H respectively. Note Ins is inserting the identity
wires inside the appropriate !-box B such that the edge b is well defined.
Definition 3.4. Given a compact closed signature Σ = (O,M ), we define the corresponding compressed
monoidal signature I (Σ) to have objects O , morphisms {φ : (φ ,w) ∈M }, dom is defined to map φ to
the input edges of w for each (φ ,w) ∈M and similarly cod maps φ to the output edges of w.

For example, the !-tensor signature Σ with objects {X ,Y} and morphisms {( f , X̂•X̌∞),(g, X̂•Y̌ •X̌•)}
becomes the !-graph signature with the two morphisms f : [X∞]→ [X•] and g : [Y •,X•]→ [X•]. This
results in a !-typegraph GI (Σ)! of the form:

•

•∞

• •

f g
X

Y

For the rest of this section we will suppose we are working in a fixed signature Σ = (O,M ).
The !-tensor formalism avoids the need to name nodes, but we will need to assign them with unique

names if we want to convert to !-graphs. We do this using an indexing set. Say G is a !-tensor and
let J be a set indexing the nodes (subexpressions of the form φe, 1b̂ǎ or 1) of G, write N j for the node
corresponding to j ∈ J. In converting to a !-graph, the node N j can be labelled j.

We can define a function I taking !-tensors to what we will prove to be !-graphs with simple overlap
and neighbourhood orders:
Definition 3.5. I taking !-tensor expressions to !-graphs with neighbourhood orders is defined recur-
sively:
• I (1) := {}
• I (1b̂ǎ) := {a→ b}
• I (φe = N j) := {a→ j : ǎ ∈ e}∪{ j→ a : â ∈ e}∪{B→ a : B ∈ ectxe(a)}
• I (GH) := I (G)∪I (H)

• I ([G]B) := I (G)∪{B→ x : x ∈U(I (G))}∪{B→ B′ : B′ ≤ B}
The typing function on vertices maps j→ φ where N j = φe, !-boxes to ! and edge names to their edge
type. The neighbourhood order is nhd( j) := e for each N j = φe.

So, for example, from the tensor expression φ〈ǎ]A [ψâ[b̌〉B [1]
B]A1d̂č if we index the nodes from left to

right using {1,2,3,4} then we get the following after I :

I (N1) =
a

A I (N2) =
a

b
B I (N3) = I (N4) =

c

d

Going through the recursive definition these combine to the !-graph we would expect:

I (φ〈ǎ]A [ψâ[b̌〉B [1]
B]A1âc) =
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3.2 I is Well-Behaved

We now check I behaves as desired so we can use this mapping to encode !-tensors in Quantomatic.

Theorem 3.6. Given G∈TΣ, I (G) is a GI (Σ)!-typed !-graph with simple overlap and a neighbourhood
order.

Proof. Let J index the nodes in G.

• We first go through the four conditions of Definition 1.8 to check we have a GI (Σ)!-typed !-graph:

BG1. Take (φ ,w) a morphism in I (Σ). The typegraph GI (Σ) contains a node φ with •-edges
to/from the •-tagged edges in w. Given φe = N j, the •-edge neighbourhood of j is the finite
arity edges in e which are the same as •-tagged edges in w. Hence we have a bijection.
From the definition of I , wire vertices come directly from edge names. The unique (possi-
ble) occurrence of â results in a wire _→ a and the unique (possible) occurrence of ǎ results
in a wire a→ _. Hence each a must have at most one incoming and one outgoing edge.

BG2. The full subgraph !(G) is the reflexive, transitive closure of the ‘child of’ relation on !-boxes.
Hence it is reflexive, transitive and antisymmetric (ensuring ‘child of’ is cycle-free).

BG3. Take B ∈!(G) and write X for U(C(B)), so we need to show that X is an open subgraph
of U(G). We first show that any wire-vertex adjacent to a vertex in X is in X . From the
definition of I , the only time an edge is added from a box-vertex to a node-vertex j, there
are also edges added to each neighbour of j. Any two adjacent wire-vertices must come from
I (1âb̌), so that B→ a⇔ B→ b.
Incident edges can only come from node-vertices not in X with adjacent wire-vertices in X .
Hence, the wire comes from a directed edge with B in its edge context which means it is
∞-tagged in the typegraph.

BG4. An edge between box-vertices, A→ B must be added by I ([H]A) during the recursive defi-
nition, where B and C(B) are already in I (H). Hence we get edges A→ x for all x ∈C(B)
meaning C(B)⊆C(B′).

• Next we check that any overlap of non-nested !-boxes B,B′ is simple.
Suppose j is a node-vertex such that B→ j and B′ → j. From the definition of I we see

that B and B′ must appear in the node context of N j and so one is nested inside the other. This
contradiction proves that C(B)∩C(B′) contains only wire vertices

Suppose a is a wire-vertex such that B→ a and B′→ a. If a is adjacent to another wire-vertex
b then this edge must have come from 1b̂ǎ or 1âb̌ so a and b are nested inside the same !-boxes.
Hence the intersection C(B)∩C(B′) contains only the interiors of zero or more wires.

Suppose both endpoints are wire-vertices. Hence the edges have come from identity wires 1b̂ǎ
which must have B and B′ in their node context which would require them to be nested.

Suppose a wire-vertex a ∈C(B)∩C(B′) is adjacent to the node-vertex j. If j was not in C(B)
nor C(B′) then both B and B′ must occur in the edge context of a and hence would be nested. We
conclude that j must occur in exactly one of C(B) or C(B′).

• Finally we wish to check that nhd is a neighbourhood order on I (G). For j ∈ N(I (G)) the
incoming edges a to j come from inputs ǎ and the outgoing edges b come from outputs b̂ as
required. Also, for the node N j = φe, !-boxes with edges to a ∈ ectxe but not to j are exactly those
which appear in ectxe(a) = ectxnhd(φ)(a).
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Hence I takes a !-tensor expression and returns a correctly typed !-graph with a neighbourhood
order. By the following theorem, the definition of I can be lifted from specific !-tensor expressions to
!-tensors (equivalence classes of !-tensor expressions).

Theorem 3.7. ∀G,H ∈ TΣ, G ≡ H if and only if I (G) and I (H) are equivalent up to renaming and
wire homeomorphisms.

Proof. We prove first that all !-tensor equivalences from Definitions 2.3 and 3.3 are preserved through
I . In both formalisms bound variables can be renamed freely, so we will not worry about names here.

• Since edgeterms are copied directly from !-tensors to !-graphs, the edgeterm equivalences are still
preserved. The associativity, commutativity and identity equivalences on !-tensor expressions have
no affect on the graphical formalism so these are also preserved. The only thing left to check are
the two equivalences involving inserting identity wires 1b̂ǎ. These two conditions come down to
wire homeomorphism in the !-graph framework. First we are given that b̌ exists in G and (for some
!-box B) we look at InsB31b̂ǎ

(G) under I . This becomes a graph with edges a→ b→ x for some
x and since a and b are both wire-vertices this is wire homeomorphic to G[b̌ 7→ ǎ]. The other case
is similar but with arrows reversed.

• For the other direction suppose I (G) and I (H) differ only by a single wire homeomorphism, so
there exist wire-vertices a,b and a vertex c in I (G) with a→ b→ c, and I (H) is I (G) but with
a→ b→ c replaced with a→ c. From the definition of I we see that there exists some G′ and
!-box B such that G = InsB31b̂ǎ

(G′) (this is the only way two wire vertices can be connected) and
also b̌ must exist in G. H must be the same as G′ except the edge b̌ is replaced by the edge ǎ.

G≡ InsB31b̂ǎ
(G′)

≡ G′[b̌ 7→ ǎ]

≡ H

We have shown I is injective on !-tensors and hence is a bijection onto its image. We can hence take
any !-tensor G and work with it in Quantomatic in the form of I (G). To work as an encoding we would
hope that !-box operations are equivalent in each formalism. Applying the !-box operation OpB to I (G)
and then returning to the !-tensor formalism should result in a !-tensor equivalent to OpB(G). By the
previous theorem we need only check that OpB ◦I =I ◦OpB and it then follows that I −1 ◦OpB ◦I =
OpB.

Theorem 3.8. OpB(I (G)) = I (OpB(G)) for any !-box operation OpB and G ∈TΣ.

Proof. This can be shown by case analysis on the recursive definition of TΣ going through each op-
eration CopyB, DropB, KillB. Most cases are trivial, the interesting case is showing OpB(I ([G]B)) =
I (OpB([G]B)) for each operation:
CopyB(I ([G]B)) is defined by a pushout of the inclusion 1 ↪→I ([G]B) with itself, so equals the disjoint
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union of two copies of I ([G]B). Hence (for rn a renaming function):

CopyB(I ([G]B)) = I ([G]B)∪I ([rn(G)]rn(B))

= I ([G]B[rn(G)]rn(B))

= I (CopyB([G]B))

DropB(I ([G]B)) = DropB(I (G)∪{B→ x : x ∈U(I (G))}∪{B→ B′ : B′ ≤ B})
= I (G)

= I (DropB([G]B))

KillB(I ([G]B)) = KillB(I (G)∪{B→ x : x ∈U(I (G))}∪{B→ B′ : B′ ≤ B})
= {}
= I (1)

= I (KillB([G]B))

Corollary 3.9. The concrete instances of I (G) are the concrete instances of G with I applied to them.

4 Future work

4.1 Theory

This paper demonstrates work in progress and there are a few things which need to be added to the theory.
Firstly, we would like to show that I is a bijection on to the set of !-graphs with simple overlap and
neighbourhood order. This would allow us to replace Theorem 3.6 with an if and only if statement:

Conjecture 4.1. ∃G ∈TΣ such that I (G) = (X ,nhd) if and only if all of the following hold:

• X is a GI (Σ)!-typed !-graph

• X has simple overlap

• nhd is a neighbourhood order on X

Related to this, we would like to explore the differences between simple overlap and the stricter
property of trivial overlap of !-boxes [14].

Matching (finding occurrences of one !-graph inside another) and substitution (replacing matches
with equivalent graphs) are the key parts of diagrammatic reasoning with !-graphs. Matching a string
graph G with a string graph K means finding a monomorphism from G in to K showing that G is isomor-
phic to a subgraph of K. For example, in a commutative theory the following is a string graph matching:

a b x y

This may not be the case if we are working with non-commutative nodes. If the top node-vertex in G
has edges ordered ab and the top node-vertex in K has edges ordered yx then we can not find a matching.
This can be seen from their !-tensor equivalents:
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b

Hence we hope to define a matching from (G,nhdG) to (K,nhdK) to be a !-graph matching i : G→ K
satisfying i(nhdG(x)) = nhdK(i(x)) ∀x ∈ N(G). This is currently being looked into by the author, along
with checking that substitution works without any changes.

Once matching and substitution are formalised we can start comparing the differences between
rewriting using substitution in !-graphs with neighbourhood orders and !-logic as defined in [13]. Ideally
we would like to demonstrate that any case of proof by substitution of !-graphs (with neighbourhood
order) can be shown in !-logic for !-tensors and conversely that each rule in !-logic can be implemented
using substitution.

4.2 Implementation

The key contribution of this paper is to demonstrate that !-tensors could be quickly implemented in a
program such as Quantomatic by adding neighbourhood order data to node vertices. Hence an obvious
piece of further work would be to actually implement this in Quantomatic. There are three key areas to
work on here. First is to code the new neighbourhood data on the !-graph datatype. Secondly we should
update the matching and substitution algorithms to respect neighbourhood orders. Finally the user needs
to be able to interact with !-graphs in a new way allowing neighbourhood orders to be chosen.

We add neighbourhood orders by recursively defining an edgeterm datatype (using the set of edge
and !-box names) and then adding a node-vertex indexed table of edgeterms to the !-graph datatype.
Code can be written to enforce the restrictions of Definition 2.4 whenever a !-graph is updated. The
functions acting on !-graphs can then be extended to also work on the individual edgeterms. For example
!-box operations should be defined to act on edgeterms as described in Definition 2.5.

Once the theory has been checked, the matching and substitution algorithms can be updated to test
orders on neighbourhoods are preserved. A naive approach to matching would be to look for all matches
ignoring edgeterms and then to filter out those in which edgeterms do not match up. This would be easy
to implement but not very efficient. More work is needed to find a better method, checking edgeterms
as the matching algorithm searches. As for substitution, the requirement that two !-tensors in a !-tensor
equation have compatible boundaries should make sure that substitution does not create any issues.

We present a planned graphical user interface for !-tensors in Quantomatic in Appendix A.
Since non-commutativity is added to each node-vertex individually it may be possible for Quan-

tomatic to have commutative and non-commutative nodes interacting in one diagram. This is something
which needs to be explored further.
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A Graphical user interface

Implementing the gui could require a large amount of work. The current method for drawing edges
simply draws a line directly between nodes. This will need to be changed for non-commutative nodes
where it becomes important where edges enter/leave a node. New edges will need to be curves defined by
their source and target nodes and angles. We will add handles to each edge controlling which direction
the edge should go. Figure 2 demonstrates what this may look like. We envisage Quantomatic choosing
the angles initially and only letting the user drag one edge handle over another edge to reorder them. If
the user wished to have more control, double clicking the handle would allow them to control the angle
exactly. The user should also be able to choose the angle of the tick.

Figure 2: Reordering edges
Figure 3: Manipulating arcs

Figure 3 demonstrates the second major interface modification. We need to draw and let the user
interact with arcs over edges entering a !-box. Whenever the user draws an edge between a non-
commutative node and a !-box, Quantomatic will automatically add an arc over the edge (grouping
multiple edges if possible). To change the arcs the user should be able to click on any part of an arc and
drag. This would start a new arc containing every edge the user drags over in the direction of dragging.
Hence arcs over multiple edges can be split apart by drawing each single arc in its required direction.

Split/order arcAdd an edge Swap edges

Figure 4: An example workflow in Quantomatic


	1 Background
	1.1 Motivation
	1.2 String graphs as typed graphs
	1.3 !-Graphs

	2 !-Graphs with simple overlap and ordered neighbourhoods
	2.1 Simple overlap
	2.2 Adding orders to neighbourhoods

	3 Encoding !-tensors
	3.1 Defining the mapping I
	3.2 I is Well-Behaved

	4 Future work
	4.1 Theory
	4.2 Implementation

	A Graphical user interface

