A Topological Perspective on Interacting Algebraic Theories

Amar Hadzihasanovic

Techniques from higher categories and higher-dimensional rewriting are becoming increasingly important for understanding the finer, computational properties of higher algebraic theories that arise, among other fields, in quantum computation. These theories have often the property of containing simpler sub-theories, whose interaction is regulated in a limited number of ways, which reveals a topological substrate when pictured by string diagrams. By exploring the double nature of computads as presentations of higher algebraic theories, and combinatorial descriptions of "directed spaces", we develop a basic language of directed topology for the compositional study of algebraic theories. We present constructions of computads, all with clear analogues in standard topology, that capture in great generality such notions as homomorphisms and actions, and the interactions of monoids and comonoids that lead to the theory of Frobenius algebras and of bialgebras. After a number of examples, we describe how a fragment of the ZX calculus can be reconstructed in this framework.

In Ross Duncan and Chris Heunen: Proceedings 13th International Conference on Quantum Physics and Logic (QPL 2016), Glasgow, Scotland, 6-10 June 2016, Electronic Proceedings in Theoretical Computer Science 236, pp. 70–86.
Published: 1st January 2017.

ArXived at: http://dx.doi.org/10.4204/EPTCS.236.5 bibtex PDF
References in reconstructed bibtex, XML and HTML format (approximated).
Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org