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We introduceorthogonal quantum Latin squares, which restrict to traditional orthogonal Latin
squares, and investigate their application in quantum information science. We use quantum Latin
squares to build maximally entangled bases, and show how mutually unbiased maximally entangled
bases can be constructed in square dimension from orthogonal quantum Latin squares. We also
compare our construction to an existing construction due toBeth and Wocjan [20] and show that
ours is strictly more general.

1 Introduction

In this paper we introduce a notion of orthogonality betweenquantum Latin squares(QLSs) [13],
mathematical objects which generaliseLatin squares. We use this concept to give a new construction of
maximally entangled mutually unbiased bases(MUBs), extending existing known techniques for Latin
squares [18, 20]. In addition we prove that our constructioncan produce bases that are unobtainable
by existing methods [18, 20]. We also introduce the concept of mutually weak orthogonal quantum
Latin squares(MOQLS) which generalisemutually orthogonal Latin squares(MOLS), about which a
significant body of research exists in connection with quantum information, and particularly pertaining
to the connection between MOLS and MUBs [5, 10, 14]. Mutuallyunbiased bases are of fundamental
importance to quantum information, as they capture the physical notion of complementary observables,
quantities that cannot be simultaneously measured. Entanglement is one of the central phenomena of
quantum theory that is at the foundation of quantum information and computation.

The results presented in this paper were developed using thegraphical calculus of categorical
quantum mechanics (CQM), and we have made use of it where we believe it elucidates some detail.
For those unfamiliar with CQM, there is a short introductionof the concepts necessary to understand this
paper in Appendix A; for a thorough introduction please refer to [1, 2, 6]. Everything that we present
here is in the categoryFHilb of finite Hilbert spaces and linear maps, but could be interpreted in any
monoidal category such asRel with quantum-likeproperties, which have been extensively researched as
quantum toy theories.

We start with a definition of quantum Latin squares.

Definition 1. A quantum Latin square of order nis ann×n array of elements of the Hilbert spaceCn,
such that every row and every column is an orthonormal basis.

Example 2. Here is an example of a quantum Latin square given in terms of the computational basis
states|i〉 for i ∈ {0, ...,9}, and the following states:
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|a〉 :=
1√
3
(|3〉+ |4〉+ i|5〉) (1)

|b〉 :=
1√
6
(2|3〉− |4〉+ i|5〉) (2)

|c〉 :=
1√
14

(−2i|3〉− i|4〉+3|5〉) (3)

|α〉 :=
1√
3
(|0〉+ |1〉+ |2〉) (4)

|β 〉 :=
1√
3
(|0〉+e

2π i
3 |1〉+e

−2π i
3 |2〉) (5)

|γ〉 :=
1√
3
(|0〉+e

−2π i
3 |1〉+e

2π i
3 |2〉) (6)

|0〉 |2〉 |1〉 |3〉 |5〉 |4〉 |6〉 |8〉 |7〉
|2〉 |1〉 |0〉 |5〉 |4〉 |3〉 |8〉 |7〉 |6〉
|1〉 |0〉 |2〉 |4〉 |3〉 |5〉 |7〉 |6〉 |8〉
|6〉 |8〉 |7〉 |0〉 |2〉 |1〉 |3〉 |5〉 |4〉
|8〉 |7〉 |6〉 |2〉 |1〉 |0〉 |5〉 |4〉 |3〉
|7〉 |6〉 |8〉 |1〉 |0〉 |2〉 |4〉 |3〉 |5〉
|a〉 |c〉 |b〉 |6〉 |8〉 |7〉 |α〉 |γ〉 |β 〉
|c〉 |b〉 |a〉 |8〉 |7〉 |6〉 |γ〉 |β 〉 |α〉
|b〉 |a〉 |c〉 |7〉 |6〉 |8〉 |β 〉 |α〉 |γ〉

It can be checked that every row and every column is an orthonormal basis.

Definition 3 (Latin square). A Latin squareis a QLS with entries that all come from the computational
basis. For those who are familiar with the traditional definition, it is recovered by mapping each
computational basis state to a different symbol.

The main result of this paper is a construction of mutually unbiased maximally entangled bases from
orthogonal QLSs. We now define the necessary concepts.

Definition 4 (Mutually unbiased bases). Two orthonormal bases|ai〉 and|b j〉 for a Hilbert spaceH of
dimensionn aremutually unbiasedwhen, for alli, j ∈ {0, ...,n−1} [3]:

|〈ai |b j〉|2 =
1
n

(7)

Definition 5 (Maximally entangled state). A maximally entangled stateof a bipartite system is a state
|ψ〉 of a product Hilbert spaceHA⊗HB with dim(HB) = n, such that the partial trace over one of the
systems of its density operatorρAB = |ψ〉〈ψ | is proportional to the identity. i.e [11].

ρA := ∑
k=0

(idA⊗〈k|)ρAB(idA⊗|k〉) = 1
n

idA⊗B (8)

Remark 1. For the Hilbert spaceH ⊗H with dim(H ) = n, all maximally entangled states are of
the following form, whereU is a unitary linear map and is the classical structure (see Appendix A)
corresponding to the orthonormal basis|k〉 [16]:

|U〉 :=
1√
n

n−1

∑
k=0

|k〉⊗U |k〉 or equivalently |U〉 :=
1√
n

U (9)
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Definition 6 (Maximally entangled basis). A maximally entangled basis(MEB) for a bipartite system
represented by a tensor product Hilbert spaceH ⊗H , is an orthonormal basis such that each basis state
is maximally entangled.

Two MEBsA := |Ai〉 andB := |Bi〉 are equivalent when there exist unitariesU andV and complex
numbers of modulus 1,ci such that:

Ai

= ci
Bi

U V
(10)

In Section 2 we introduce our main result, the most general construction of mutually unbiased bases
of the three presented in this paper. We introduce orthogonal quantum Latin squares and show how
they can be used to construct MUBs, and we construct an explicit example. In Section 3 we start with
traditional orthogonality of Latin squares and then show that the definition of orthogonality for QLSs in
Section 2 generalises it. In Section 4 we present Beth and Wocjan’s construction for MUBs in square
dimension, and show that ours is strictly more general. In Section 5 we explain the correspondence
between unitary error bases and maximally entangled bases and introduce mutually unbiased error bases.
Finally in Section 6 we introduce mutually weak orthogonal quantum Latin squares, which generalise
mutually orthogonal Latin squares.
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2 New construction for square dimension MUBs

In this section we introduce the main result of this paper, a new construction for mutually unbiased
maximally entangled bases. In order to formulate our construction we introduceweak orthogonal
quantum Latin squareswhich, as we will show in Section 3, reduce to traditional orthogonal Latin
squares. It will be useful to introduce some notation for quantum Latin squares. Given a QLSQ we will
denote the vector appearing in theith column of thejth row as|Qi j 〉.

Before the main result it will be requisite to define generalised Hadamards.

Definition 7 (Hadamard, see [4], Definition 2.1). A Hadamard matrix of order nis ann×n matrix H
with the following properties for alli, j, which we write in both matrix and index form:

|Hi j |= 1 Hi j H
∗
i j = 1 (11)

H ◦H† = nIn ∑pHipH∗
jp = nδi j (12)

H†◦H = nIn ∑pH∗
piHp j = nδi j (13)

We now introduce a method for constructing MEBs given as input a family of Hadamards and a
quantum Latin square. This construction is in fact dual to the quantum shift-and-multiply method for
constructing unitary error bases [13], as we will explain inSection 5.
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Definition 8 (Quantum Latin square maximally entangled basis). Given a quantum Latin squareQ and
a family of HadamardsH j , a quantum Latin square maximally entangled basis B(Q,H j) is defined as
follows:

A :=

{

Ai j =
1√
n

n−1

∑
k=0

|k〉⊗ |Qk j〉〈k|H j |i〉 such thati, j ∈ {0, ..,n−1}
}

(14)

Lemma 9. Quantum Latin square maximally entangled bases are maximally entangled bases.

Proof. This MEB construction is the dual of the quantum shift-and-multiply basis construction, for a
proof of the correctness of that construction see [13, Theorem 19].

Definition 10 (Weak orthogonal quantum Latin squares). Given a pair of QLSsP andQ with vector
entries|Pi j 〉 and|Qi j 〉 respectively, they areweak orthogonalwhen for alli, j ∈ {0, ..,n−1}, there exists
uniquet ∈ {0, ...,n−1} such that:

n−1

∑
k=0

|k〉〈Qki|Pk j〉= |t〉 (15)

In words: if we take any row fromP and any row fromQ and compute the componentwise inner
product of their vector entries, the resultingn numbers will always ben−1 zeros and a single 1. If the 1
appears in thetth column then the output state of the linear map above will be|t〉.

Example 11. We present a pair of 9× 9 weak orthogonal quantum Latin squares, the first is the QLS
from Example 2. Again let|i〉, i ∈ {0, ...,9} be the computational basis states and define the states
|a〉, |b〉, |c〉, |α〉, |β 〉 and |γ〉 as in Equations (1) (2) (3) (4) (5) and (6). We define the following pair of
QLSs:

P :=

|0〉 |2〉 |1〉 |3〉 |5〉 |4〉 |6〉 |8〉 |7〉
|2〉 |1〉 |0〉 |5〉 |4〉 |3〉 |8〉 |7〉 |6〉
|1〉 |0〉 |2〉 |4〉 |3〉 |5〉 |7〉 |6〉 |8〉
|6〉 |8〉 |7〉 |0〉 |2〉 |1〉 |3〉 |5〉 |4〉
|8〉 |7〉 |6〉 |2〉 |1〉 |0〉 |5〉 |4〉 |3〉
|7〉 |6〉 |8〉 |1〉 |0〉 |2〉 |4〉 |3〉 |5〉
|a〉 |c〉 |b〉 |6〉 |8〉 |7〉 |α〉 |γ〉 |β 〉
|c〉 |b〉 |a〉 |8〉 |7〉 |6〉 |γ〉 |β 〉 |α〉
|b〉 |a〉 |c〉 |7〉 |6〉 |8〉 |β 〉 |α〉 |γ〉

Q :=

|0〉 |1〉 |2〉 |6〉 |7〉 |8〉 |3〉 |4〉 |5〉
|2〉 |0〉 |1〉 |8〉 |6〉 |7〉 |5〉 |3〉 |4〉
|1〉 |2〉 |0〉 |7〉 |8〉 |6〉 |4〉 |5〉 |3〉
|a〉 |b〉 |c〉 |0〉 |1〉 |2〉 |6〉 |7〉 |8〉
|c〉 |a〉 |b〉 |2〉 |0〉 |1〉 |8〉 |6〉 |7〉
|b〉 |c〉 |a〉 |1〉 |2〉 |0〉 |7〉 |8〉 |6〉
|6〉 |7〉 |8〉 |3〉 |4〉 |5〉 |α〉 |β 〉 |γ〉
|8〉 |6〉 |7〉 |5〉 |3〉 |4〉 |γ〉 |α〉 |β 〉
|7〉 |8〉 |6〉 |4〉 |5〉 |3〉 |β 〉 |γ〉 |α〉

(16)

It can be checked that if we take any row fromP and any row fromQ and compute the componentwise
inner product of their vector entries, the resultingn numbers will always ben−1 zeros and a single 1.

Theorem 12. Given two indexed families of n Hadamards Hk and Gjboth of size n× n, and a pair of
n×n weak orthogonal quantum Latin squaresP andQ, the bases B(Q,Hk) and B(P,G j) are mutually
unbiased.

Proof. See Appendix B.
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Example 13.Given as inputP andQ from Example 11 and the HadamardH = H0 = H1 = ...= Hn−1=
G0 = ...= Gn−1 defined below withω := e2π i/3 we have constructed a pair of maximally entangled mu-
tually unbiased basesA andB for the Hilbert spaceC9⊗C

9.

H :=

















1 1 1 1 1 1 1 1 1
1 ω ω2 1 ω ω2 1 ω ω2

1 ω2 ω 1 ω2 ω 1 ω2 ω
1 1 1 ω ω ω ω2 ω2 ω2

1 1 1 ω ω ω ω2 ω2 ω2

1 ω2 ω ω 1 ω2 ω2 ω 1
1 1 1 ω2 ω2 ω2 ω ω ω
1 ω ω2 ω2 1 ω ω ω2 1
1 ω2 ω ω2 ω 1 ω 1 ω2

















(17)

A sample of the 162 basis states ofA andB with some calculations showing mutual unbiasedness (see
Definition 7) can be found in Appendix C. We have performed inner product calculations for all 6561
combinations of states fromA andB and can confirm that they are mutually unbiased.

3 Weak orthogonality and Latin square conjugates

In this section we explain how weak orthogonality for QLSs restricts to orthogonality for Latin squares,
and why this is the natural generalisation of orthogonalityfor QLSs. We start with the traditional
definition of orthogonality.

Definition 14 (Orthogonal Latin squares). Given a pair of Latin squaresA andB of equal size, we take
each computational basis state fromA and form the ordered pair with the state fromB corresponding to
the same position in the grid.A andB areorthogonalwhen this procedure gives us all possible pairs of
computational basis states [12].

This definition does not lend itself to generalisation to QLSs since we may now have more thann2

possible ordered pairs, but we can take an alternative approach. We characterise orthogonality in the
following way:

Lemma 15. Latin squares A and B are orthogonal if and only if the following linear map P is a
permutation of basis states:

P :=
n−1

∑
i=0

n−1

∑
j=0

n−1

∑
k=0

|i〉| j〉〈Ai j |〈k|Bi j 〉〈k| (18)

Proof. We now rearrange the equation defining the linear mapP:

P := ∑
i

∑
j
∑
k

|i〉| j〉〈Ai j |〈k|Bi j 〉〈k|

= ∑
i

∑
j
∑
k

|i〉| j〉〈Ai j |〈Bi j |k〉〈k|

=
n−1

∑
i=0

n−1

∑
j=0

|i〉| j〉〈Ai j |〈Bi j |∑
k

|k〉〈k|

=
n−1

∑
i=0

n−1

∑
j=0

|i〉| j〉〈Ai j |〈Bi j |
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The second equality above holds because all|Bi j 〉 and |k〉 are real valued vectors, and so〈k|Bi j 〉 =
〈k|Bi j 〉 = 〈Bi j |k〉. The third equality is just a rearranging of terms. The last equality holds by virtue
of ∑k |k〉〈k| being the resolution of the identity. The linear mapP takes in the state|p〉|q〉 and outputs
a superposition of all the states|i〉| j〉 such that|Ai j 〉 = |p〉 and |Bi j 〉 = |q〉, or outputs 0 if no suchi, j
exist.P is a permutation if and only if for all inputsp,q there exists uniquei, j such that|Ai j 〉= |p〉 and
|Bi j 〉= |q〉, i.e. A andB are orthogonal Latin squares.

We now have a condition that we can apply to quantum Latin squares. However, for QLSsA andB
this turns out to preclude superpositions, thus makingA andB Latin squares.

Lemma 16. Given a pair of quantum Latin squares, if they obey equation(18), then they are Latin
squares.

Proof. Let A andB be QLSs such that the linear mapP as defined above is a permutation of basis states.
Then the adjoint ofP, P† = ∑i ∑ j ∑k |Ai j 〉|k〉〈i|〈Bi j |k〉〈 j| must also be a permutation of basis states. We
input computational basis statesp andq into P†

P†(|p〉|q〉) = ∑
k

|Apq〉|k〉〈Bpq|k〉

= ∑
k

|Apq〉|k〉〈k|Bpq〉

= ∑
k

|Apq〉|k〉〈k|Bpq〉

= |Apq〉
[

∑
k

|k〉〈k|
]

|Bpq〉

= |Apq〉|Bpq〉

The second equality is due to the fact that the inner product is Hermitian, the third equality is due to|k〉
being real valued for allk, the fourth equality is an algebraic rearrangement and the final equality is a
resolution of the identity. IfP† above is a permutation of basis states, then for allp,q ∈ {0, ...,n−1},
|Apq〉 and|Bpq〉 must be computational basis states. ThusA andB are Latin squares.

In order to define orthogonality for QLSs we will now make a (very) brief detour into quasigroup
theory. Latin squares can be thought of as the multiplication (Cayley) table for finite order
quasigroups [15] on the computational basis states. Let∗ be the binary operation given by a Latin
square. The fact that each state appears exactly once in eachrow and each column means that knowledge
of any two ofa,b and c in the equationa∗b= c uniquely determines the third. This means we can
canonically define the binary operation\ , read asleft divide, such thata∗b= c⇒ a\c= b. This new
binary operation defines a new quasigroup and therefore a newLatin square called theleft conjugate
Latin square(it can easily be checked that this does indeed give a Latin square) [15]. The map that takes
a Latin square and gives the left conjugateL

\−→ L′, is in fact involutive so we can recoverL from L′

by applying the map again. We will see a nice graphical characterisation of this fact below. The map
L

\−→ L′ is a bijection on the set of all Latin squares.

Definition 17 (Left orthogonality). Given a pair of Latin squares they areleft orthogonalwhen their left
conjugates are orthogonal.

Remark 2. We could equally well talk about the right conjugate given byright divide and define right
orthogonality. In this paper we only make use of left orthogonality.
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Since L
\−→ L′ is a bijection as mentioned above, the set of orthogonal Latin squares and left

orthogonal Latin squares are isomorphic. Left orthogonality is in fact the property that we have
generalised to QLSs in Definition 10.

To proceed further it will be useful to introduce some diagrams (see Appendix A). Let be a Latin
square and be the classical structure corresponding to the computational basis. Then the left divide
map has the following form:

\−→ (19)

The fact that\ is an involution can be verified using the snake equation:

\−→ \−→ (30)
= (20)

For Latin squaresA= andB= , equation (18) can be expressed diagramatically as follows:

P := is a permutation (21)

We now substitute in the left conjugates of Latin squaresA andB,
\−→ and

\−→ to
obtain a linear mapP′ which must be a permutation of basis states forA andB to be left orthogonal. The
condition thatA andB are left orthogonal is thus equivalent to the following statement:

P′ :=
(30)
= is a permutation (22)

In words: first we input two statesi and j and then compute the component-wise inner products of the
ith row of A and thejth row of B. There must be one unique column, says, such that〈Bs j|Asi〉 = 1 with
〈Br j |Ari〉= 0 for all r not equal tos. We then outputson the left and|Asi〉 on the right. The set of output
statess⊗|Asi〉 must be every possible combination of computational basis states.

We can interpret this for QLSs but again we encounter the samedifficulty.
Lemma 18. Every pair of left orthogonal QLSs are Latin squares.

Proof. For a contradiction assume thatA and B are left orthogonal QLSs that are not Latin squares.
There is some vector entry inA that is not a computational basis state say|Apq〉. For P′ as defined in
Equation (22) to be a permutation,|Apq〉 cannot be the output on the right for any inputq, j. This means
that no row ofB has the complex conjugate of|Apq〉 as itspth column entry. But each row ofB must have
one column entry that is the complex conjugate of the corresponding column entry of theqth row of A.
Thus at least two of the rows ofB have the same vector in the same column. This violates the rule that
B is a QLS and thus gives a contradiction. ThereforeA must be a Latin square. Reversing the roles, we
find thatB must be a Latin square too (left orthogonality, like orthogonality is a symmetric relation).
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The condition must therefore be weakened if we want to define aproperty that non-Latin square QLSs
can satisfy. One approach is to delete the output from the right hand wire and require that the linear map
thus obtained be a function on the computational basis states. This is in fact theweak orthogonality
property of Definition 10. This condition turns out to be strong enough to give rise to interesting and
useful properties such as using QLSs to build mutually unbiased MEBs (see Theorem 12), yet weak
enough so that pairs of Latin squares are weak orthogonal if and only if they are orthogonal.

Diagrammatically Definition 10 becomes the following:

f :=
(30)
= is a function (23)

Lemma 19. Given a pair of Latin squares, A and B the following are equivalent:

• A and B are weak orthogonal (see Definition 10).

• A and B are left orthogonal (see Definition 17).

Proof. If A and B are left orthogonal thenP′, as defined in Equation (22), is a permutation of basis
states, which clearly implies the weaker condition thatf as defined in Equation (23) is a function. For
the other implication letA and B be weak orthogonal Latin squares. Consider thepth columns ofA
and B. They both contain alln computational basis states and there must therefore exist values ofi
and j for all q∈ {0, ...,n− 1} such that|Api〉 = |Bp j〉 = |q〉. So for columnp there existi, j such that
P′(|i〉⊗ | j〉) = |p〉⊗ |q〉 for all q. This is true for all rowsq, soP′ is a permutation.

Remark 3. We defined weak orthogonality from left orthogonality by setting the requirement that the
linear mapP′ (see Equation (22))with the right hand output deleted needsto be a function on the basis
states, rather than requiringP′ itself to be a permutation of the basis states. We could have tried to
weaken orthogonality directly by requiring thatP (see Equation (21)) with the right hand output deleted
be a function on basis states. However, it turns out that thiswould still preclude non-Latin square QLSs.

4 Beth and Wocjan’s MUB construction

In their 2004 paper [20] Beth and Wocjan gave a construction for a pair of mutually unbiased bases
of a Hilbert spaceH of square dimensions= n2, given as input a pair ofn× n orthogonal Latin
squares and ann× n Hadamard matrix which was later put in explicit Latin squareform by Wehner
and Winter [18, 20].

The construction takes each Latin square together with the Hadamard and produces an MEB of
dimensionn2. The fact that the Latin squares are orthogonal is then shownto entail that these two
bases are mutually unbiased. I will refer to this MEB construction as the Left Beth-Wocjan maximally
entangled basis (LBW MEB) construction1.

1The construction presented here is technically the construction given by taking the left conjugate of the Latin squareL
first and then applying the construction defined by Beth and Wocjan. Since taking the left conjugate gives us a bijection (see
Equation (3)) on the set of Latin squares the MEBs obtainableare not affected by this.
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Definition 20 (Left Beth-Wocjan maximally entangled basis). Given ann×n Latin squareL and ann×n
HadamardH, thenB as defined below is aLeft Beth-Wocjan maximally entangled basis(LBW MEB). 2

B :=

{

Bi j =
1√
n

n−1

∑
k,p=0

|k, p〉Hik〈Lkp| j〉 such thati, j ∈ {0, ..,n−1}
}

(24)

The graphical calculus gives a good notation with which to compare LBW MEBs to QLS MEBs (see
Definition 8).

Lemma 21. Under the restriction to Latin squares and to having a singlefixed Hadamard the QLS MEBs
are the same as LBW MEBs.

Proof. We construct an LBW MEBBi j and a QLS MEBCi j from the latin squareL = and Hadamard
H.

Left Beth-Wocjan MEB Quantum Latin square MEB

Bi j :=
1√
n

H

i

j
Ci j :=

1√
n

H

i

j

We see that the diagrams are the same.

Theorem 22. Given a pair of n× n left3 orthogonal Latin squares and an n× n Hadamard, construct
two LBW MEBs using each Latin square with the Hadamard. The bases are mutually unbiased.

Lemma 23. The construction of MUBs in Theorem 12 restricts to the construction of Theorem 22,
under the restriction of the QLS to a Latin square and the two families of Hadamards to a single fixed
Hadamard.

Proof. Follows directly from Lemma 21.

The following corollary gives a construction for MUBs in square dimension that is more general than
the LBW MUB construction but not as general as our main construction.

Corollary 24. Given two indexed families of n Hadamards Hk and Gj both of size n×n, and a pair of
n×n left orthogonal Latin squaresP andQ, the bases B(P,Hk) and B(Q,G j) are mutually unbiased.

So our new construction generalises Beth and Wocjan’s in twodirections, having two arbitrary
families of Hadamards rather than a single fixed Hadamard andquantum Latin squares rather than Latin
squares. The next theorem shows, by explicit example, that the generalisation is strict.

2 The definition below is slightly different to the one given byBeth and Wocjan even taking into account the use of the left
conjugate Latin square. However, when the input is a Latin square the two constructions agree precisely.

3In their paper Beth and Wocjan use orthogonal Latin squares,but since we defined their MEB construction on the left
conjugate theleft becomes necessary here.
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Theorem 25. The pair of mutually unbiased MEBs from Example 13 are inequivalent to any MEBs
obtainable by the LBW MEB construction.

Proof. It will be sufficient to prove that one of our MEBs is inequivalent to any obtainable by the LBW
MEB construction. Since equivalence of MEBs is the same as equivalence of UEBs we will take the dual
approach here (see Section 5 below) and prove that the UEB arising from QLSP and HadamardH in
Example 13, which we will refer to asX, is inequivalent to any LBW UEB.

We will proceed along the same lines as [13, Corollary 31]. Note that LBW UEBs are a restriction
to a single fixed Hadamard of shift-and-multiply UEBs. Thus by [13, Proposition 30], LBW UEBs are
monomial(meaning each unitary matrix of the basis is the product of a diagonal matrix and a permutation
matrix).

Suppose for a contradiction thatX is equivalent to a monomial basis. The first matrix ofX is as
follows:

X00 =

















1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0

















X00 is self adjoint. We obtain the equivalent UEBX′ by composing all the matrices ofX on the right
by X00. ThusX′

00 = id9. Now X′ contains the identity and is equivalent to a monomial basis so by [13,
Proposition 26]X′ is simultaneously monomializable.(See [13, Definition 25] . The least common
multiple of {1,2,3,4,5,6,7,8,9} is µ9 = 2520; thus by [13, Proposition 28] the 2520th powers of the
elements ofX will commute. Now letω = e2π i/3and considerX′

06 (left) andX′
07 (right) below:





















0 0 0 0 0 0 1√
3

1√
3

1√
3

0 0 0 0 0 0 1√
3

ω2√
3

ω√
3

0 0 0 0 0 0 1√
3

ω√
3

ω2√
3

1√
3

−i
√

2
7

√
2
3 0 0 0 0 0 0

1√
3

−i√
14

−1√
6

0 0 0 0 0 0
i√
3

3√
14

i√
6

0 0 0 0 0 0

0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0





















,





















0 0 0 0 0 0 1√
3

1√
3

1√
3

0 0 0 0 0 0 ω2√
3

ω√
3

1√
3

0 0 0 0 0 0 ω√
3

ω2√
3

1√
3

−i
√

2
7

√
2
3

1√
3

0 0 0 0 0 0
−i√
14

−1√
6

1√
3

0 0 0 0 0 0
3√
14

i√
6

i√
3

0 0 0 0 0 0

0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0





















For a contradiction we now compute the first column first row entry of the commutator:

K := (X′
06)

2520(X′
07)

2520− (X′
07)

2520(X′
06)

2520

〈0|K|0〉 ≈ −0.0219+0.0252i 6= 0

ThusX′ and thereforeX is not equivalent to any monomial basis, and in particular any LBW MEB.
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5 Mutually unbiased error bases

Unitary error bases (UEBs) are the mathematical data necessary for protocols such as dense coding and
teleportation as well as having important applications to quantum error correction. In this section we
explain how the results of this paper can also be described interms of UEBs via the correspondence
between maximally entangled bases in square dimension and UEBs by introducing the natural concept
of mutually unbiased UEBs.

Definition 26 (Unitary error basis). A unitary error basison ann-dimensional Hilbert space is a family
of n2 unitary matricesUi , each of sizen×n, such that [9]:

tr(U†
i ◦U j) = δi j n (25)

Via state-process duality a bijection exists between UEBs and MEBs (See Definition 6) [7]. The
correspondence is particularly clear diagrammatically.

Given a UEB,A := {Ui |0 < i ≤ n2} and the computational basis , we have the corresponding
MEB, B := {|Ui〉|0< i ≤ n2} defined as follows (see [17] Lemma 2):

Ui := Ui  

1√
n

Ui =: |Ui〉 (26)

By Equation (9) the condition that the matricesUi are unitary means that the states|Ui〉 are maximally
entangled. Under this duality equivalence of MEBs as described by Equation 10, becomes the usual
notion of equivalence for UEBs. The fact that the states on the right hand side of Equation (26) are
orthonormal follows directly from Equation (25) as follows:

〈Ui|U j〉 (26)
=

1
n Ui

U†
j

=
1
n

tr(U†
i ◦U j)

(25)
= δi j (27)

In this paper the dual MEB constructions of two of the main constructions for UEBs were used. As
mentioned above Lemma 9 the QLS MEB of that lemma is the dual ofthe quantum shift-and-multiply
error bases of this author’s paper with Jamie Vicary [13]. The MEB used in Corollary 24 is the shift-and-
multiply basis introduced by Werner [19]. Thus the LBW MEB construction described in Definition 22
gives us a family of UEBs strictly contained within Werners construction.

The duality of MEBs and UEBs makes it natural to talk about mutually unbiased unitary error bases.

Definition 27 (Mutually unbiased error bases). A pair of unitary error bases over a Hilbert spaceH of
dimensionn, A = {Ui |i ∈ {0, ...,n−1}} andB = {Vj | j ∈ {0, ...,n−1}} aremutually unbiasedwhen
the following equation holds for alli, j:

|tr(U†
i ◦Vj)|2 =

1
n

(28)

We had two choices in defining mutually unbiased UEBs above, we used the inner product of
Equation (25) to interpret Equation (7) of Definition 7 directly but we could have defined mutually
unbiased UEBs to be UEBs with corresponding MEBs that are mutually unbiased. Fortunately it does
not matter as they are equivalent by a similar argument to Equation (27).
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This definition brings up the question of what it may mean for two teleportation protocols to be
mutually unbiased, or what kind of error correction could beperformed by a pair of mutually unbiased
error bases.

The main result of this paper can now be interpreted as a construction for a pair of mutually unbiased
unitary error bases from a pair of weak orthogonal quantum Latin squares.

6 Mutually orthogonal quantum Latin squares

In this section we introduce the concept of families of orthogonal quantum Latin squares. In their 2004
paper Beth and Wocjan [20] introduced the construction of square dimensional MUBs from orthogonal
Latin squares as described in Section 4. They used this construction to improve the known lower bounds
for maximal sets of pairwise mutually unbiased bases. A set of mutually orthogonal Latin squares
(MOLs) is a set of two or more Latin squares that are pairwise orthogonal. Beth and Wocjan use their
construction on a set ofw MOLs of sizen×n and givew+2 MUBs for dimensionn2. The extra two
MUBs come from the two squares of vectors (which do not satisfy the axioms to be Latin squares, or
even quantum Latin squares) described below:4

• The first is then×n grid with theith row consisting of the repeated entry|i〉 for every column.

• The second is then×n grid with ∑n−1
k |k〉 as every diagonal entry and 0s elsewhere.

Some thought reveals that although they are not Latin squares, these two squares are left orthogonal to
everyn×n Latin square and to each other. Note that the bases obtained from these extra two however
are not maximally entangled. The following definition is a natural extension of the concept of sets of
MOLs.

Definition 28 (Mutually weak orthogonal quantum Latin squares). A set ofw quantum Latin squares are
Mutually weak orthogonal quantum Latin squares(MOQLs) when they are pairwise weak orthogonal.

There are no generalisations of the two squares of vectors described above that would be weak
orthogonal to every QLS. However, with a particular set of MOQLs, an analogue of the first vector square
above can be found by considering the subspaces spanned by the non-computational basis states. As an
example we present a square of vectors that is weak orthogonal to both of the pair of weak orthogonal
QLSs from Example 11. Again let|i〉, i ∈ {0, ...,9} be the computational basis states and define the states
|a〉, |b〉, |c〉, |α〉, |β 〉 and|γ〉 as in Equations (1) (2) (3) (4) (5) and (6). We define the following square of

4Note that due to the presentation of Beth and Wocjan’s construction in Section 4, in which we start by taking the left-
conjugate, the left conjugate map must also be applied to these squares of vectors to recover the ones used by Beth and Wocjan.
In addition the second square here only gives a basis using the original Beth-Wocjan method and not the altered version given
by definition 20 (See footnote 2).
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vectors:
|0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |α〉 |α〉 |α〉
|1〉 |1〉 |1〉 |1〉 |1〉 |1〉 |β 〉 |β 〉 |β 〉
|2〉 |2〉 |2〉 |2〉 |2〉 |2〉 |γ〉 |γ〉 |γ〉
|a〉 |a〉 |a〉 |3〉 |3〉 |3〉 |3〉 |3〉 |3〉
|b〉 |b〉 |b〉 |4〉 |4〉 |4〉 |4〉 |4〉 |4〉
|c〉 |c〉 |c〉 |5〉 |5〉 |5〉 |5〉 |5〉 |5〉
|6〉 |6〉 |6〉 |6〉 |6〉 |6〉 |6〉 |6〉 |6〉
|7〉 |7〉 |7〉 |7〉 |7〉 |7〉 |7〉 |7〉 |7〉
|8〉 |8〉 |8〉 |8〉 |8〉 |8〉 |8〉 |8〉 |8〉

It can be checked that this square is weak orthogonal toP and Q in Example 11. It is also weak
orthogonal to any QLS weak orthogonal toP or Q. To see this consider that any two weak orthogonal
QLSs must have columns that are permutations of each other.

This example relies on theblock-like structure of the QLSs in question. Any family of MOQLS
having a similar structure will admit a similar square of vectors. It is unknown whether all QLSs are of
this form, but to the authors knowledge none have been found yet that do not have this structure up to
equivalence.

The lower bound for the number of MOQLS in dimensionn must be at least the lower bound for the
number of MOLS, more research is required to say any more thanthat at this stage.

7 Conclusion

In our 2015 paper [13] the author together with Jamie Vicary introduced the quantum combinatorial
objects of quantum Latin squares and gave a construction of UEBs using them. In this paper we have built
upon that work by introducing mutually orthogonal quantum Latin squares which generalise mutually
orthogonal Latin squares, which have been used extensivelyto derive results in quantum information.
As an application we have given a construction for mutually unbiased bases in square dimension which
gives MUBs that are inequivalent to those that can be constructed by any known method. There is the
potential for improved bounds on maximal families of MUBs incomposite dimensions using the main
result of this paper.
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A Categorical quantum mechanics

The graphical calculus of categorical quantum mechanics gives us a diagrammatic notation through
which certain kind of problems are easier. The results of this paper were all achieved using these high
level techniques.

In order to read these diagrams the first thing to understand is that wires represent Hilbert spaces and
boxes between wires are linear maps. We will use the convention that diagrams are read from bottom to
top. The composition of linear mapsU andV is given by vertical composition and the tensor product is
given by horizontal composition. We representn-partite states by triangles with no wires in andn wires
out. Scalars are represented by boxes with no wires in or out and can move freely around the diagram.
Adjoints are given by vertical mirror image, so asymmetry inthe boxes representing linear maps is
introduced to avoid ambiguity. Thus we have the following diagrammatic rendering of(U ◦V|k〉)⊗U†|l〉:

(U ◦V|k〉)⊗U†|l〉 :=

V

U

k

U

l

(29)

We will represent quantum Latin squares as linear mapsand , these are obtained from QLSs by
having the left input wire represent the columns , and the right input wire represent the rows of the QLS
indexed by the computational basis states. So the(i, j)th entry |Qi j 〉, of some QLSQ, is represented by
the following diagram:

|Qi j 〉 :=
i j

The final definition we require is that of a classical structure. Classical structuresare dagger special
frobenius algebras. InFHilb given an orthonormal basis|i〉, classical structures are equivalent to families
of linear mapsH ⊗s → H ⊗r for varyingsandr (possibly zero) of the following form [8]:

s
︷ ︸︸ ︷

︸ ︷︷ ︸
r

:=
n−1

∑
i=0

s
︷ ︸︸ ︷

i

i

i

i

i

i

i

i

︸ ︷︷ ︸
r

Classical structures are thus in one to one correspondence with orthonormal bases. It is standard notation
to use different colours to represent different bases. Throughout this paper we use the grey classical
structure to represent the computational basis. The following theorem gives us a way to rewrite
connected diagrams of classical structures.

Theorem 29 (Spider merge theorem). Given a family of linear maps : H ⊗r → H ⊗s for varying
r,s∈ N the following are equivalent:
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• is a classical structure

• any connected tensor diagram of the linear maps with swap maps and identities is equal to the
unique linear map fromH ⊗r to H ⊗s

e.g.
s

︷ ︸︸ ︷

︸ ︷︷ ︸
r

=

s
︷ ︸︸ ︷

︸ ︷︷ ︸
r

(30)

Classical structures are also useful for performing linearalgebraic operations such as the trace of a
linear map, the following diagram shows how this is done:

Trace(U) := U (31)

Classical structures copy the basis states of the corresponding orthonormal basis.

k

=

kk

(32)

If the state|k〉 is real valued then the following holds:

k =

k

(33)

On the left, the classical structure acts as a transpose which is equal to the adjoint since|k〉 is real valued.

B Proof of main theorem

Theorem 12. Given two indexed families ofn HadamardsHk andG j both of sizen×n, and a pair of
n×n weak orthogonal quantum Latin squaresP andQ, the basesB(Q,Hk) andB(P,G j) are mutually
unbiased.
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Proof. Let P := , Q := and be the computational basis. By Definition 8 the(i, j)th state of the
basisA and the(p,q)th state of the basisB are as follows:

Ai j =
1√
n

n−1

∑
k=0

|k〉⊗ |Pk j〉〈k|H j |i〉

Bpq =
1√
n

n−1

∑
s=0

|s〉⊗ |Qsq〉〈s|Gq|p〉

Graphically they are as follows:

Ai j :=
1√
n

H j

i

j

Bpq :=
1√
n

Gq

p

q

(34)

P andQ are weak orthogonal so by Equation (23),f defined as follows is a function on computational
basis states:

f := (35)

Since f is a function on basis states,f (| j,q〉) is a computational basis state, say|t〉 i.e.

qj

f =

t

(36)

We are now ready to show thatA andB are mutually unbiased.

|〈Bpq|Ai j 〉|2 (34)
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1
n

H j

i

j

Gq

p

q

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

(33)
=

1
n2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

H j

i

j

Gq

p

q

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

(36)
=

1
n2
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∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

H j

i

j

Gq

p

q
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(35)
=

1
n2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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∣
∣
∣

H j

i

j

Gq

p

q

f
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(36)
=

1
n2
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t

i

Gq
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(32)
=

1
n2
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i
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p
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(33)
=

1
n2

∣
∣
∣
∣
∣

H j

ti

Gq

t p
∣
∣
∣
∣
∣

2

(29)
=

1
n2 |(H j )it (G

†
q)t p|2 (11)

=
1
n212 =

1
n2

C Quantum Latin square 9×9 example MUB

We now give a sample of the 81 states of basisA and the 81 states of basisB from Example 13, with
some calculations of their inner products showing mutual unbiasedness. We give everything in terms of
the computational basis states|i, j〉 such thati, j ∈ {0, ...,n−1}. And we define the scalarω := e2π i/3.
Here are some states fromA andB:

A74 =
1
3
(|0,8〉+ω2|1,7〉+ω |2,6〉+ω2|3,2〉+ω |4,1〉+ |5,0〉+ω |6,5〉+ |7,4〉+ω2|8,3〉)

A46 =
1
3
(

ω√
3
|0,3〉+ ω2

√
3
|0,4〉+ i√

3
|0,5〉−ω

√

2
7
|1,3〉− iω2

√
14

|1,4〉+ 3√
14

|1,5〉+ iω
√

2
3
|2,3〉

− ω2
√

6
|2,4〉+ i√

6
|2,5〉+ω2|3,6〉+ω |4,8〉+ |5,7〉+ 1√

3
|6,0〉+ ω√

3
|6,1〉+ ω2

√
3
|6,2〉

+
1√
3
|7,0〉+ 1√

3
|7,1〉+ 1√

3
|7,2〉+ 1√

3
|8,0〉+ ω2

√
3
|8,1〉+ ω√

3
|8,2〉)

B38 =
1
3
(|0,7〉+ |1,8〉+ |2,6〉+ω |3,4〉+ω |4,5〉+ω |5,3〉+ ω2

√
3
|6,0〉+ 1√

3
|6,1〉+ ω√

3
|6,2〉

+
ω2
√

3
|7,0〉+ ω√

3
|7,1〉+ 1√

3
|7,2〉+ ω2

√
3
|8,0〉+ ω2

√
3
|8,1〉+ ω2

√
3
|8,2〉)

B03 =
1
3
(|0,1〉+ |1,2〉+ |2,0〉+ |3,7〉+ |4,8〉+ |5,6〉+ |6,4〉+ |7,5〉+ |8,3〉)

Here are some calculations for mutual unbiasedness. Note that they all equal181 as required:

|〈A74|B38〉|2 = |1
9

ω |2 = 1
81

|〈A74|B03〉|2 = |1
9

ω2|2 = 1
81
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|〈A46|B38〉|2 = |1
9

[
1
3
(ω2+ω +1)+

1
3
(ω2+ω +1)+

1
3
(ω2+ω +1)

]

|2 = 1
81

|〈A46|B03〉|2 = |1
9

ω |2 = 1
81
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