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We introduceorthogonal quantum Latin squaresvhich restrict to traditional orthogonal Latin
squares, and investigate their application in quantunrin&ion science. We use quantum Latin
squares to build maximally entangled bases, and show howattyitinbiased maximally entangled
bases can be constructed in square dimension from orthbgoaatum Latin squares. We also
compare our construction to an existing construction duBeth and Wocjan. [20] and show that
ours is strictly more general.

1 Introduction

In this paper we introduce a notion of orthogonality betwegantum Latin square$QLSs) [13],
mathematical objects which generallsatin squares We use this concept to give a new construction of
maximally entangled mutually unbiased ba@&éJBs), extending existing known techniques for Latin
squares|[18, 20]. In addition we prove that our constructian produce bases that are unobtainable
by existing methods _[18, 20]. We also introduce the concépnuotually weak orthogonal quantum
Latin squaredMOQLS) which generalisenutually orthogonal Latin squargdOLS), about which a
significant body of research exists in connection with quaninformation, and particularly pertaining
to the connection between MOLS and MUBSI[5, 110, 14]. Mutualhpiased bases are of fundamental
importance to quantum information, as they capture theipalysotion of complementary observables,
guantities that cannot be simultaneously measured. Eletaegt is one of the central phenomena of
guantum theory that is at the foundation of quantum inforomsand computation.

The results presented in this paper were developed usingreégghical calculus of categorical
guantum mechanics (CQM), and we have made use of it where lievédét elucidates some detalil.
For those unfamiliar with CQM, there is a short introductafrthe concepts necessary to understand this
paper in AppendiXx_A; for a thorough introduction please réfe[1,(2,6]. Everything that we present
here is in the categorfHilb of finite Hilbert spaces and linear maps, but could be in&tgat in any
monoidal category such &l with quantum-likeproperties, which have been extensively researched as
guantum toy theories.

We start with a definition of quantum Latin squares.

Definition 1. A quantum Latin square of orderis ann x n array of elements of the Hilbert spac#,
such that every row and every column is an orthonormal basis.

Example 2. Here is an example of a quantum Latin square given in termieotomputational basis

stategli) fori € {0,...,9}, and the following states:
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It can be checked that every row and every column is an orthoaldasis.

Definition 3 (Latin square) A Latin squareis a QLS with entries that all come from the computational
basis. For those who are familiar with the traditional défini, it is recovered by mapping each
computational basis state to a different symbol.

The main result of this paper is a construction of mutuallgiased maximally entangled bases from
orthogonal QLSs. We now define the necessary concepts.

Definition 4 (Mutually unbiased basesYwo orthonormal base;) and|b;) for a Hilbert space”” of
dimensionn aremutually unbiaseavhen, for alli, j € {0,...,n—1} [3]:
1

(& |bj)[* = n (7)

Definition 5 (Maximally entangled state)A maximally entangled statef a bipartite system is a state

|@) of a product Hilbert space?a @ s#g with dim(2g) = n, such that the partial trace over one of the
systems of its density operatokg = |@)(y| is proportional to the identity. i.e [11].

PA = k;(idA ® (K)pas(ida®|K)) = %idA@aB (8)

Remark 1. For the Hilbert space? @ s with dim(.7’) = n, all maximally entangled states are of

corresponding to the orthonormal bafs [16]:

1 n-1
U)=— Ky ®@U |k or equivalently U):= (9)
) \/ﬁkZO|> [K) )

Bl



110 Constructing Mutually Unbiased Bases from Quantum Latingses

Definition 6 (Maximally entangled basis)A maximally entangled basi®EB) for a bipartite system
represented by a tensor product Hilbert spa€es .77, is an orthonormal basis such that each basis state
is maximally entangled.

Two MEBs.«Z := |Aj) and.%Z := |B;) are equivalent when there exist unitafi¢andV and complex
numbers of modulus %; such that:

(10)

In Sectior 2 we introduce our main result, the most genenadtcoction of mutually unbiased bases
of the three presented in this paper. We introduce orthdggurantum Latin squares and show how
they can be used to construct MUBs, and we construct an éxgkiample. In Sectiohl3 we start with
traditional orthogonality of Latin squares and then shost the definition of orthogonality for QLSs in
Section 2 generalises it. In Sectioh 4 we present Beth andaWecaconstruction for MUBs in square
dimension, and show that ours is strictly more general. Icti&e[8 we explain the correspondence
between unitary error bases and maximally entangled basdataoduce mutually unbiased error bases.
Finally in Sectior 6 we introduce mutually weak orthogonaatum Latin squares, which generalise
mutually orthogonal Latin squares.
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2 New construction for square dimension MUBs

In this section we introduce the main result of this paperga wonstruction for mutually unbiased
maximally entangled bases. In order to formulate our cantttn we introduceweak orthogonal
guantum Latin squarewhich, as we will show in Sectiohl 3, reduce to traditionalhogonal Latin
squares. It will be useful to introduce some notation forguen Latin squares. Given a QL3 we will
denote the vector appearing in ffecolumn of thejth row as|Qjj).

Before the main result it will be requisite to define genseadi Hadamards.

Definition 7 (Hadamard, see|[4], Definition 2.1A Hadamard matrix of order s ann x n matrix H
with the following properties for all, j, which we write in both matrix and index form:

Hj| =1 HiHi =1 (11)
HoH' =nI, > pHipHjp =3 (12)
HToH = nI, Y pHpiHp; =N, (13)

We now introduce a method for constructing MEBs given astirgptamily of Hadamards and a
guantum Latin square. This construction is in fact dual ® dlantum shift-and-multiply method for
constructing unitary error bases [13], as we will explaisactior] 5.
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Definition 8 (Quantum Latin square maximally entangled bas@iven a quantum Latin squar& and
a family of Hadamardsi;, aquantum Latin square maximally entangled bas{sZBH;) is defined as
follows:

1t : :
o = Aj=— Z k) ® |Qx;j)(k/H;li) such thai, j € {0,..,n—1} (14)
ars:
Lemma 9. Quantum Latin square maximally entangled bases are makliraatangled bases.

Proof. This MEB construction is the dual of the quantum shift-angltiply basis construction, for a
proof of the correctness of that construction see [13, Téradt9]. O

Definition 10 (Weak orthogonal quantum Latin square§iven a pair of QLSs?” and 2 with vector
entries|R;) and|Q;;) respectively, they areeak orthogonalhen for alli, j € {0,..,n— 1}, there exists
uniquet € {0,...,n— 1} such that:

n—-1
kzo|k> (QuilRj) = It) (15)

In words: if we take any row from” and any row from2 and compute the componentwise inner
product of their vector entries, the resultingiumbers will always ba— 1 zeros and a single 1. If the 1
appears in thé" column then the output state of the linear map above wilthe

Example 11. We present a pair of @ 9 weak orthogonal quantum Latin squares, the first is the QLS
from Example[2. Again leti), i € {0,...,9} be the computational basis states and define the states
|a),|b),[c),|a),|B) and]|y) as in Equations (1] {2) [3)(4)1(5) and (6). We define the folfmpair of
QLSs:

01211 ]13)[I5) 14| 16) | 18) | [7) O [D 12 ]16)[7)]18) ] 3) | 14|15
2 [D]10) [543 18|17 ]16) 211018 ]16) [ 15|13 |4
D10 12141315 |17)|16) ] 18) D210 ]7)]18)]16) 14 |53
6) 187101211 3] 15|14 @) [Ib)]1e) |10 [11) 12| 16) | [7) | I8)
Z:=18)]17]16)[12|11) [10)[15) |14 |13) | 2:=]lc)|[a)|[b)|[2)|10)[[1)|8)|6)][7)]| (16)
7)116)18) [11) [10) [12) | 14) | 13) | 19 b) [[e) [1a) [11) [[12)[10) | [7) | 18) | 16)
2) I} | [0)|[6) | 18)|[7)|la)] [v) | B) ©) [[7)]18 |13 ]14) 15| [a)|B) | 1y)
©) |[0) [[2)[18)[17)]16) | [v) | IB)]|a) 8)116) [17)[1S) [13) |14 ] ly) [la) | IB)
b) [1a) [le) [[7)[16) [ 18) ] 1B) [l | [V) 718 ]16) [14) 15 [13)]1B) | v) |[a)

It can be checked that if we take any row fro# and any row from2 and compute the componentwise
inner product of their vector entries, the resultmgumbers will always be— 1 zeros and a single 1.

Theorem 12. Given two indexed families of n Hadamardg &hd Gboth of size n« n, and a pair of
nx n weak orthogonal quantum Latin squargsand 2, the bases BZ, Hy) and B(#7, G;) are mutually
unbiased.

Proof. See AppendikB. O
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Example 13. Given as input?Z and2 from E_xamplﬂll and the Hadamadd=Hgo=H; = ... = H_1=
Go = ... = G,_1 defined below withw := €?/3 we have constructed a pair of maximally entangled mu-
tually unbiased bases’ and.Z for the Hilbert spac&€® @ C°.

11 1 1 1 1 1 1 7T

1 w o 1 w o 1 w o
1 0 w 1 o w 1 o w
1 1 1 w 0w w o o? o
H=[1 1 1 w w w & o (17)

1 0 w w 1 o «® w 1

1 1 1 o 0 o w 0w
1 w o & 1 w w o 1

1 0 w o w 1 w 1 o

A sample of the 162 basis states@fand. % with some calculations showing mutual unbiasedness (see
Definition[4) can be found in Appendix] C. We have performecemproduct calculations for all 6561
combinations of states from¥ and.% and can confirm that they are mutually unbiased.

3 Weak orthogonality and Latin square conjugates

In this section we explain how weak orthogonality for QLSstriets to orthogonality for Latin squares,
and why this is the natural generalisation of orthogondiity QLSs. We start with the traditional
definition of orthogonality.

Definition 14 (Orthogonal Latin squares)siven a pair of Latin square& andB of equal size, we take
each computational basis state frénand form the ordered pair with the state fr@wworresponding to
the same position in the gridh andB are orthogonalwhen this procedure gives us all possible pairs of
computational basis states [12].

This definition does not lend itself to generalisation to @lsthce we may now have more thaf
possible ordered pairs, but we can take an alternative approWe characterise orthogonality in the
following way:

Lemma 15. Latin squares A and B are orthogonal if and only if the follogilinear map P is a

permutation of basis states:
n—1n-1n-1

Pi= 2 3 2 DA 1By (K (18)
Proof. We now rearrange the equation defining the linear Riap
P= Z;Z“HD(AU | (K[Bij ) (K]
= Z;me@qj (B [K) (K]

n—1n-1

3, 2, i) A (B3 ok

n—1n-1

i;};\iHD(PﬂHBn\
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The second equality above holds becauseBy) and |k) are real valued vectors, and $kiBjj) =
(k|Bij) = (Bij|k). The third equality is just a rearranging of terms. The lagiadity holds by virtue
of S |k)(k| being the resolution of the identity. The linear mRpakes in the statép)|q) and outputs
a superposition of all the statdi$|j) such thafAj) = |p) and |Bjj) = |q), or outputs O if no suc, |
exist. P is a permutation if and only if for all inputp, g there exists uniqug j such thatA;) = |p) and

|Bij) = |g), i.e. AandB are orthogonal Latin squares. O

We now have a condition that we can apply to quantum Latinreguadowever, for QLS4 andB
this turns out to preclude superpositions, thus makiragdB Latin squares.

Lemma 16. Given a pair of quantum Latin squares, if they obey equai®), then they are Latin
squares.

Proof. Let AandB be QLSs such that the linear mBas defined above is a permutation of basis states.
Then the adjoint oP, P = 5; 5, S« |Aj ) |K) (i|(Bij[K) (j| must also be a permutation of basis states. We
input computational basis statpsndq into P

P(|p)|a)) = Z | Apg) [K) (Bpg|K)

= Z |Apg)|K) (K[Bpg)
= Z |Apg)|K) (K[Bpg)

Z\kﬂk!] [Boa)

= ‘APQ>’BPQ>

The second equality is due to the fact that the inner produdermitian, the third equality is due tk)
being real valued for ak, the fourth equality is an algebraic rearrangement and tizé équality is a
resolution of the identity. IPT above is a permutation of basis states, then fopaile {0,...,n— 1},

|Apg) and|Bpg) must be computational basis states. TAwdB are Latin squares. O

= |Apq)

In order to define orthogonality for QLSs we will now make argyebrief detour into quasigroup
theory. Latin squares can be thought of as the multiplicati€ayley) table for finite order
qguasigroups| [15] on the computational basis states. xLe¢ the binary operation given by a Latin
square. The fact that each state appears exactly once im@aetmd each column means that knowledge
of any two ofa,b andc in the equatioraxb = c uniquely determines the third. This means we can
canonically define the binary operatign read adeft divide such thataxb = c=-a\c=b. This new
binary operation defines a new quasigroup and therefore aLaéiw square called thkeft conjugate
Latin square(it can easily be checked that this does indeed give a Latiare [15]. The map that takes
a Latin square and gives the left conjugate\—> L', is in fact involutive so we can recovérfrom L’
by applying the map again. We will see a nice graphical chiargation of this fact below. The map
L — L’ is a bijection on the set of all Latin squares.

Definition 17 (Left orthogonality) Given a pair of Latin squares they dedt orthogonalwhen their left
conjugates are orthogonal.

Remark 2. We could equally well talk about the right conjugate givenrigit divide and define right
orthogonality. In this paper we only make use of left orthagjay.
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SinceL — L' is a bijection as mentioned above, the set of orthogonalnLsguares and left
orthogonal Latin squares are isomorphic. Left orthogtyab in fact the property that we have
generalised to QLSs in Definition 110.

To proceed further it will be useful to introduce some diagsgsee Appendix]A). Leté, be a Latin

A s [O\T/ (19)

The fact that\ is an involution can be verified using the snake equation:

/i\gﬂf/g/qoé\/i\ (20)

For Latin squares = &, andB = &, equation[(IB) can be expressed diagramatically as follows

P = is a permutation (22)

We now substitute in the left conjugates of Latin squakeandB, 4, — (*¢/ and 4, — (¢’ to
obtain a linear map’ which must be a permutation of basis states¥@ndB to be left orthogonal. The
condition thatA andB are left orthogonal is thus equivalent to the following staént:

||
P/ = is a permutation (22)
|

In words: first we input two statdsand j and then compute the component-wise inner products of the
i row of A and thej'" row of B. There must be one unique column, saguch that(Bsj|As)) = 1 with
(Brj|Avi) = 0 for all r not equal tas. We then outpus on the left andAs;) on the right. The set of output
statess® |Asj) must be every possible combination of computational bastes

We can interpret this for QLSs but again we encounter the shffieulty.

Lemma 18. Every pair of left orthogonal QLSs are Latin squares.

map has the following form:

Proof. For a contradiction assume thatand B are left orthogonal QLSs that are not Latin squares.
There is some vector entry i that is not a computational basis state $&y,). For P’ as defined in
Equation [(2R) to be a permutatio,,) cannot be the output on the right for any inpu§. This means
that no row ofB has the complex conjugate (@) as itsp" column entry. But each row d& must have
one column entry that is the complex conjugate of the comeding column entry of thet" row of A.
Thus at least two of the rows & have the same vector in the same column. This violates themat

B is a QLS and thus gives a contradiction. Therefénmust be a Latin square. Reversing the roles, we
find thatB must be a Latin square too (left orthogonality, like orthogidy is a symmetric relation). O
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The condition must therefore be weakened if we want to defpregerty that non-Latin square QLSs
can satisfy. One approach is to delete the output from tlint hignd wire and require that the linear map
thus obtained be a function on the computational basissstakhis is in fact theveak orthogonality
property of Definitio_ID. This condition turns out to be sigoenough to give rise to interesting and
useful properties such as using QLSs to build mutually wsenaMEBs (see Theoreml]12), yet weak
enough so that pairs of Latin squares are weak orthogonatlibaly if they are orthogonal.

Diagrammatically Definition J0 becomes the following:

@ = % @:\\ is a function (23)

Lemma 19. Given a pair of Latin squares, A and B the following are eqléag
e A and B are weak orthogonal (see Definitfod 10).
e A and B are left orthogonal (see Definitibn]17).

Proof. If A andB are left orthogonal the®’, as defined in Equation (R2), is a permutation of basis
states, which clearly implies the weaker condition thats defined in Equatiol_(23) is a function. For
the other implication leA and B be weak orthogonal Latin squares. Consider piecolumns ofA
and B. They both contain alh computational basis states and there must therefore eisew ofi
andj for all q € {0,...,n— 1} such thaiAy) = |Bpj) = |g). So for columnp there exist, j such that
P(li)®[j)) =|p) ®|q) for all g. This is true for all rowsy, soP’ is a permutation. O

Remark 3. We defined weak orthogonality from left orthogonality bytiet the requirement that the
linear mapP’ (see Equation (22))with the right hand output deleted néedi® a function on the basis
states, rather than requirirfg itself to be a permutation of the basis states. We could haeée to
weaken orthogonality directly by requiring tHat(see Equatior (21)) with the right hand output deleted
be a function on basis states. However, it turns out thattbisld still preclude non-Latin square QLSs.

4 Beth and Wocjan’'s MUB construction

In their 2004 papern [20] Beth and Wocjan gave a constructanafpair of mutually unbiased bases
of a Hilbert spaces# of square dimensios = n?, given as input a pair of x n orthogonal Latin
squares and an x n Hadamard matrix which was later put in explicit Latin squésanm by Wehner
and Winter|[13,, 20].

The construction takes each Latin square together with théakhard and produces an MEB of
dimensionn?. The fact that the Latin squares are orthogonal is then shoventail that these two
bases are mutually unbiased. | will refer to this MEB condiom as the Left Beth-Wocjan maximally
entangled basis (LBW MEB) constructiin

1The construction presented here is technically the cortdrugiven by taking the left conjugate of the Latin squire
first and then applying the construction defined by Beth andjslvo Since taking the left conjugate gives us a bijecti@® (s
Equation[(B)) on the set of Latin squares the MEBs obtainatdenot affected by this.
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Definition 20 (Left Beth-Wocjan maximally entangled basi§iven ann x n Latin squard. and amxn
HadamardH, thenZ as defined below is keft Beth-Wocjan maximally entangled ba@i8wW MEB).@

1 : :
B = {Bij = %kpzzoyk, P)Hik(Lkp| j) such thai, j € {0,..,n— 1}} (24)

The graphical calculus gives a good notation with which tmpare LBW MEBs to QLS MEBSs (see
Definition[8).
Lemma 21. Under the restriction to Latin squares and to having a sirfided Hadamard the QLS MEBs
are the same as LBW MEBSs.

Proof. We construct an LBW MEB;; and a QLS MERC;; from the latin squaré = &, and Hadamard
H.

L eft Beth-Wocjan MEB Quantum Latin square MEB
1 C &
Bij = — L 1
T VRN g
\VZ
V
We see that the diagrams are the same. O

Theorem 22. Given a pair of nx n lefd orthogonal Latin squares and anxan Hadamard, construct
two LBW MEBSs using each Latin square with the Hadamard. Tisedare mutually unbiased.

Lemma 23. The construction of MUBs in Theordm] 12 restricts to the aoetibn of Theoreni 22,
under the restriction of the QLS to a Latin square and the tnilies of Hadamards to a single fixed
Hadamard.

Proof. Follows directly from Lemma21. O
The following corollary gives a construction for MUBSs in sqa dimension that is more general than

the LBW MUB construction but not as general as our main cocston.

Corollary 24. Given two indexed families of n Hadamardg &hd G both of size i« n, and a pair of
nx n left orthogonal Latin squares” and 2, the bases B”,Hy) and B2, G;) are mutually unbiased.

So our new construction generalises Beth and Wocjan’s in dikections, having two arbitrary
families of Hadamards rather than a single fixed Hadamardjaadtum Latin squares rather than Latin
squares. The next theorem shows, by explicit example, tleagéneralisation is strict.

2 The definition below is slightly different to the one given Bgth and Wocjan even taking into account the use of the left
conjugate Latin square. However, when the input is a Latirasg|the two constructions agree precisely.

3In their paper Beth and Wocjan use orthogonal Latin squdmassince we defined their MEB construction on the left
conjugate théeft becomes necessary here.
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Theorem 25. The pair of mutually unbiased MEBs from Examiplé 13 are inegjant to any MEBs
obtainable by the LBW MEB construction.

Proof. It will be sufficient to prove that one of our MEBSs is inequieat to any obtainable by the LBW
MEB construction. Since equivalence of MEBs is the same aiwalgnce of UEBs we will take the dual
approach here (see Sectldn 5 below) and prove that the UEB@from QLSZ? and HadamardH in
Example_1B, which we will refer to as, is inequivalent to any LBW UEB.

We will proceed along the same lines as| [13, Corollary 31]teNbat LBW UEBs are a restriction
to a single fixed Hadamard of shift-and-multiply UEBs. Thygh3, Proposition 30], LBW UEBs are
monomial(meaning each unitary matrix of the basis is the product ehgahal matrix and a permutation
matrix).

Suppose for a contradiction thAtis equivalent to a monomial basis. The first matrixXofs as
follows:
0

Xoo =

cNeoNeoNelNolNolNoly
eoNeolelolNoll o)
[ecNeoNeololNolNoll o)
[cNeoNoNeN NolNolNo)
OO PFrPOO0OOO0OOo
OO OPFrOOO0OOo
OO0OPFrPOOOCO0OO0OO0o
[cNeoNeoNeoNoNolNolNo)

o

0

o
o
o
o
=

Xoo is self adjoint. We obtain the equivalent UBB by composing all the matrices of on the right
by Xoo. ThusXj, = idg. Now X’ contains the identity and is equivalent to a monomial basisys[13,
Proposition 26]X’ is simultaneously monomializablgSee [13, Definition 25] . The least common
multiple of {1,2,3,4,5,6,7,8,9} is g = 2520; thus by![13, Proposition 28] the 2%2@owers of the
elements oK will commute. Now letw = €#"/3and considei/, (Ieft) andX{; (right) below:

|

= O o o

o

L

. o o o

o
ooo%I—%I,'_\mo o o

1
ooo&|—§|.';w%‘o o o
oOopr © OO o o o

|

coo © o o ulukFEk
coo o o o sEL&SF
ooo © o o Sli%sle -
ocoo © o o slEskel
coo © © o Slssle Sl-
Oo0oo © o o P P [ [

oo oul-GlFek o o o
oOor © 0O O o o o
RPOO © O O o o o
Or o © O O o o o

oo oglsksl © o o
Rroo © OO0 o o o
Or o © OO0 o o o

> o ol
o © offi

For a contradiction we now compute the first column first rowvyeaf the commutator:

K 1= (X06)?*2U%67) 22— (Xg7)2°%(Xge) 2°%°
(0|K|0) &~ —0.0219+0.0253 # 0

ThusX’ and thereforeX is not equivalent to any monomial basis, and in particulgrlzBW MEB. [
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5 Mutually unbiased error bases

Unitary error bases (UEBSs) are the mathematical data nexgeks protocols such as dense coding and
teleportation as well as having important applications uarqum error correction. In this section we

explain how the results of this paper can also be describedrins of UEBs via the correspondence
between maximally entangled bases in square dimension &% Uy introducing the natural concept

of mutually unbiased UEBS.

Definition 26 (Unitary error basis) A unitary error basison ann-dimensional Hilbert space is a family
of n? unitary matricesJ;, each of sizea x n, such that [9]:
tr(UoUj) = &;n (25)

Via state-process duality a bijection exists between UERSMEBs (See Definition]6) [7]. The
correspondence is particularly clear diagrammatically.

MEB, % := {|U;)|0 < i < n?} defined as follows (see [17] Lemma 2):

. A 1 Ui = |U;
U = - % =1 |U;) (26)

By Equation [(9) the condition that the matridgsare unitary means that the states) are maximally
entangled. Under this duality equivalence of MEBs as desdriby Equatiof 10, becomes the usual
notion of equivalence for UEBs. The fact that the states enrifht hand side of Equatioh (26) are
orthonormal follows directly from Equation (R5) as follows

(27)

In this paper the dual MEB constructions of two of the mainstarctions for UEBs were used. As
mentioned above Lemnia 9 the QLS MEB of that lemma is the dutleofjuantum shift-and-multiply
error bases of this author’s paper with Jamie Vicary [13Je MEB used in Corollary 24 is the shift-and-
multiply basis introduced by Werner [19]. Thus the LBW MEBstruction described in Definitidn P2
gives us a family of UEBSs strictly contained within Werneamstruction.

The duality of MEBs and UEBs makes it natural to talk aboutually unbiased unitary error bases.

Definition 27 (Mutually unbiased error basesh pair of unitary error bases over a Hilbert spa#g of
dimensionn, &7 = {Ui|i € {0,...,n—1}} and % = {Vj|j € {0,...,n—1}} aremutually unbiasedvhen
the following equation holds for all j:

1
tr(UT o)) 2 = =

(28)

We had two choices in defining mutually unbiased UEBs abowe,used the inner product of
Equation [(Zb) to interpret Equatiohl (7) of Definitioh 7 ditgcbut we could have defined mutually
unbiased UEBs to be UEBs with corresponding MEBSs that areiafiyitunbiased. Fortunately it does
not matter as they are equivalent by a similar argument tattwou [27).
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This definition brings up the guestion of what it may mean feo teleportation protocols to be
mutually unbiased, or what kind of error correction couldieeformed by a pair of mutually unbiased
error bases.

The main result of this paper can now be interpreted as arctisin for a pair of mutually unbiased
unitary error bases from a pair of weak orthogonal quantutmlsguares.

6 Mutually orthogonal quantum Latin squares

In this section we introduce the concept of families of oghieal quantum Latin squares. In their 2004
paper Beth and Wocjan [20] introduced the construction ahsg dimensional MUBs from orthogonal
Latin squares as described in Secfibn 4. They used thisraatien to improve the known lower bounds
for maximal sets of pairwise mutually unbiased bases. A $ehwtually orthogonal Latin squares
(MOLs) is a set of two or more Latin squares that are pairwiseogonal. Beth and Wocjan use their
construction on a set af MOLs of sizen x n and givew+ 2 MUBs for dimensiom?. The extra two
MUBSs come from the two squares of vectors (which do not satlsé axioms to be Latin squares, or
even gquantum Latin squares) described belbw:

e The first is then x n grid with theit" row consisting of the repeated entiyfor every column.

e The second is the x n grid with 23*1 |k) as every diagonal entry and Os elsewhere.

Some thought reveals that although they are not Latin sgu#rese two squares are left orthogonal to
everyn x n Latin square and to each other. Note that the bases obtainedtifiese extra two however
are not maximally entangled. The following definition is dumal extension of the concept of sets of
MOLs.

Definition 28 (Mutually weak orthogonal quantum Latin square&)set ofw quantum Latin squares are
Mutually weak orthogonal quantum Latin squa@®OQLs) when they are pairwise weak orthogonal.

There are no generalisations of the two squares of vect@srided above that would be weak
orthogonal to every QLS. However, with a particular set of @13, an analogue of the first vector square
above can be found by considering the subspaces spanned bgrilcomputational basis states. As an
example we present a square of vectors that is weak orthbgmbath of the pair of weak orthogonal
QLSs from Example11. Again léib, i € {0, ...,9} be the computational basis states and define the states
|a),|b),[c),|a),|B) and|y) as in Equationd (1) {2) [3)(4){(5) arid (6). We define the follaysquare of

4Note that due to the presentation of Beth and Wocjan’s cocon in Sectioi 4, in which we start by taking the left-
conjugate, the left conjugate map must also be applied sethguares of vectors to recover the ones used by Beth andiwoc;j
In addition the second square here only gives a basis usingriinal Beth-Wocjan method and not the altered versigargi
by definition 20 (See footnoig 2).
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vectors:
0)110)[10)10) |10} |10) | [a) | |a) | @)
DD DD D15 ]18) [1B) | 1B)
2122222V
@) |12 [ ]13)]13)]13)]13) ]33
[b) [1b) [ 1) | [4) |[4) |14)| |4) | |4) | |4)
©[lc) 10159195155
6)[16)[16)]16)|16)|16)| |6) | [6) | 16)
DD DD DD D717
8)[18)[18)]18)]18)]18)]18)|I8) |8

It can be checked that this square is weak orthogona¥#tand 2 in Example[1l. It is also weak
orthogonal to any QLS weak orthogonal £6 or 2. To see this consider that any two weak orthogonal
QLSs must have columns that are permutations of each other.

This example relies on thielock-like structure of the QLSs in question. Any family of MOQLS
having a similar structure will admit a similar square oftegs. It is unknown whether all QLSs are of
this form, but to the authors knowledge none have been foehdhat do not have this structure up to
equivalence.

The lower bound for the number of MOQLS in dimensiomust be at least the lower bound for the
number of MOLS, more research is required to say any morettterat this stage.

7 Conclusion

In our 2015 paper [13] the author together with Jamie Vicatyoduced the quantum combinatorial
objects of quantum Latin squares and gave a constructiofeBBUIsing them. In this paper we have built
upon that work by introducing mutually orthogonal quantuatih squares which generalise mutually
orthogonal Latin squares, which have been used extendiwealgrive results in quantum information.
As an application we have given a construction for mutuatipiased bases in square dimension which
gives MUBs that are inequivalent to those that can be coctstiuby any known method. There is the
potential for improved bounds on maximal families of MUBsciomposite dimensions using the main
result of this paper.
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A Categorical quantum mechanics

The graphical calculus of categorical quantum mechaniessgus a diagrammatic notation through
which certain kind of problems are easier. The results &f plaiper were all achieved using these high
level techniques.

In order to read these diagrams the first thing to understatiaht wires represent Hilbert spaces and
boxes between wires are linear maps. We will use the cororettiat diagrams are read from bottom to
top. The composition of linear mafpsandV is given by vertical composition and the tensor product is
given by horizontal composition. We represerpartite states by triangles with no wires in amdires
out. Scalars are represented by boxes with no wires in orraitan move freely around the diagram.
Adjoints are given by vertical mirror image, so asymmetrythie boxes representing linear maps is
introduced to avoid ambiguity. Thus we have the followinggtammatic rendering @) oV|k)) @UT|I):

[u\
(UoVIk)aUTl) = U/ (29)
[V \

v oV

We will represent quantum Latin squares as linear mépand 4., these are obtained from QLSs by
having the left input wire represent the columns , and thiet iigput wire represent the rows of the QLS
indexed by the computational basis states. Sdithje!" entry|Qjj), of some QLSZ, is represented by

the following diagram:
1Qij) == ; %

The final definition we require is that of a classical struetu€lassical structuresare dagger special
frobenius algebras. IRHilb given an orthonormal basiis, classical structures are equivalent to families
of linear maps#°®s — #“" for varyings andr (possibly zero) of the following form [8]:

ST
MY R

Classical structures are thus in one to one correspondeititenthonormal bases. It is standard notation
to use different colours to represent different bases. Ugtout this paper we use the grey classical

S

r

r,s € N the following are equivalent:
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e any connected tensor diagram of the linear maps with swapsmaag identities is equal to the
unique linear map fromp#®" to #®S

e.g.

= (30)

r r

Classical structures are also useful for performing liredgebraic operations such as the trace of a
linear map, the following diagram shows how this is done:

TracgU) := [Ul (31)

Classical structures copy the basis states of the corrdspmporthonormal basis.

= (32)

If the statelk) is real valued then the following holds:

= (33)

On the left, the classical structure acts as a transposéwherual to the adjoint sindk) is real valued.

B Proof of main theorem

Theorem[12. Given two indexed families of Hadamarddd, andG; both of sizen x n, and a pair of
nx nweak orthogonal quantum Latin squargsand2, the base8(2, Hx) andB(#, G;) are mutually
unbiased.



124 Constructing Mutually Unbiased Bases from Quantum Latingses

basise” and the(p, q)" state of the basig are as follows:

n—1
Aj = %k§01k>®\m><kmm>

n—-1
Bog = \% > 19 1Qs9(SCalp

Graphically they are as follows:

-1 -1
Aij '_\/ﬁ o < BPQ'_\/ﬁ (34)
[\
\

2 and 2 are weak orthogonal so by Equatién](28)jefined as follows is a function on computational
basis states:

= (35)

Sincef is a function on basis statek(|j,q)) is a computational basis state, $8yi.e.

vV OV vV

We are now ready to show that and.% are mutually unbiased.
2

Il
B

|(BpalAj) 2
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8

B

I8

C Quantum Latin square 9 x 9 example MUB

We now give a sample of the 81 states of bagisnd the 81 states of bas#g from Exampld 1B, with
some calculations of their inner products showing mutublasedness. We give everything in terms of
the computational basis statisj) such that, j € {0,...,n—1}. And we define the scalap := /3,
Here are some states from and %:

1
1a=3(10,8)+ @*[1,7) + w[2,6) +w2|3 2) + w|4,1) +|5,0) + w|6,5) + |7,4) + w?|8,3))

o= 2103+ Lo+ |05 \[|13 w” A 3 |15>+iw\/§|23>
46 — 3 \/7 \/é 9 14 9 3 9
wZ
——_|2,4)4+ —|2,5) + w?|3,6) + w|4,8) + |5,7) + —6,0) + —6,1) + —6,2
\@I ) \@I ) 3,6) + w[4,8) +[5,7) \@I ) ﬁl ) ﬁl )
1 1 1 1 w? W
+—|7,0)+ —=|7,1) + —=|7,2) + —=8,0) + —=|8,1) + —= 8,2
\@\ ) \@! ) \@! ) \/:—3! ) \/:—3\ ) \@\ )
1 w? 1 w
PBag==(|0,7) +|1,8) + [2,6) + w|3,4) + w|4,5) + w|5,3) + —6,0) + —6,1) + —6,2
383(‘>‘>‘>‘>‘>‘>\/§‘>\/§‘>\/§‘>
w? w 1 w? w? w?
+—|7,0)+ —|7,1) + —|7,2) + —8,0) + —|8,1) + — 8,2
\@I ) ﬁl ) ﬁl ) \/gl ) \/gl ) \@I )
1

Here are some calculations for mutual unbiasedness. Natéhiky all equa&l as required:

1 1
ra|Bag) 2 = |02 = =
| (74| Bgs)| |9w| 8l
1 1

o 2_ 1 202 _
|(F74| Bo3)| |9w| 8l
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171 1 1 1

2_ 2|22 L2 L2 2+

|(Aa6| B3g)| _|9 3(a) +w+l)+3(a) +w+l)+3(a) +w+1)|| a1
1

1
2_ 1 2_
|(ag| Bos) |~ = |9w| a1
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