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We give a scheme for interpreting shaded tangles as quantum programs, with the property that

isotopic tangles yield equivalent programs. We analyze many known quantum programs in this

way—including entanglement manipulation and error correction—and in each case present a fully-

topological formal verification, yielding in several cases substantial new insight into how the program

works. We also use our methods to identify several new or generalized procedures.

1 Introduction

1.1 Overview

In this paper we introduce a new knot-based language for designing and verifying quantum programs.

Terms in this language are shaded tangles, which look like traditional knot diagrams, possibly involving

multiple strings and strings with open ends, and decorated with a shading pattern. Examples of shaded

tangles are given in Figure 2.

We give an operational semantics in which a shaded tangle is interpreted as a linear map between

Hilbert spaces. Since this is the basic mathematical foundation for quantum information, this enables

us to interpret our shaded tangles as quantum programs. Under this interpretation, we read our shaded

tangles as quantum circuits, with time flowing from bottom to top, and with individual geometrical

features of the diagrams—such as shaded regions, cups and caps, and crossings—interpreted as distinct

quantum circuit components, such as qudits1, qudit preparations, and 1- and 2-qudit gates (see Figure 1

for this part of the graphical language.)

Given two shaded tangles with the same shading pattern on their boundaries, we say they are isotopic

just when, ignoring shading and considering them as ordinary knotted strings, one can be deformed

topologically into the other. We show that our semantics is sound with respect to this isotopy relation:

that is, if two shaded tangles are isotopic, then they have equal interpretations as quantum programs.

This yields a powerful method for the design and verification of quantum procedures. We draw one

shaded tangle for the program, describing the exact steps the quantum computer would perform, and

another shaded tangle for the specification, describing the intended computational effect. The program

is then verified simply by showing that the two shaded tangles are isotopic. Since humans have an

innate skill for visualizing knot isotopy, this verification procedure can often be performed immediately

1A qudit is a d-dimensional quantum system; a qubit is a qudit for d = 2.

(a) Qudit (b) Qudit preparation (c) 1-qudit gate (d) 2-qudit gate

Figure 1: Part of the graphical language along with its interpretation in terms of quantum structures.
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by eye, even in sophisticated cases. We illustrate this idea in Figure 2, which illustrates the program

and specification for constructing a GHZ state, an important primitive resource in quantum information.

It can be seen by inspection that, ignoring shading, the tangles are isotopic, and hence the program is

correct. By reference to Figure 1, we see that the program Figure 2(a) involves three qudit preparations,

two 1-qudit gates, and two 2-qudit gates.

1.2 Main results

In our main results, we apply this new high-level technique to represent and verify 9 quantum programs,

some generalized from their form in the literature, and some completely new.

• Section 4.1. A generalization of a program due to Uchida et al [61] for constructing GHZ states.

• Section 4.2. Programs due to Briegel et al [11, 18] for converting certain GHZ and cluster states.

• Sections 4.3 and 4.4. Programs related to those of van den Nest and others [47] for cutting and splic-

ing cluster chains, which play an important role in measurement-based quantum computation [27].

We present novel versions of these programs for qudits.

• Sections 5.1 and 5.2. The phase code and the Shor code [40, 48, 59], important error correcting codes

in quantum information, which are built from Hadamard matrices.2

• Section 5.3. New generalizations of the phase code and Shor code, based on unitary error bases3

rather than Hadamard matrices.

1.3 Significance

We outline some areas of potential significance of our work.

Novelty. Some of the programs we verify are generalizations of those described in the literature, or are

completely new. Perhaps most significantly, we highlight the new constructions of error correcting codes

based on unitary error bases (Section 5.3), and our identification of the π
2

-rotations around the X -axis on

the Bloch sphere as having privileged topological properties among all qubit Hadamards (Section 2.3).

Insight. Throughout, the shaded tangle syntax gives considerable new insight into why each procedure

works. For example, in our verification of error correcting codes the errors are literally ‘trapped by

bubbles’ and removed from the diagram, and in our verification of cluster chain surgery procedures the

qubits are literally untangled from the chain. In both cases, this gives a powerful intuition for these

schemes which we believe to be new.

Efficiency. Where our methods apply, we can often give the program, specification and verification in a

concise way; compare for example our discussion of Figure 2 above with the traditional verification of a

related program due to Uchida et al [61], which requires a page of algebra, and is also less general. As

a consequence, even in this short extended abstract, we are able to give detailed analyses of 9 distinct

procedures. We suggest that our methods would therefore be suitable for reasoning about large-scale

quantum programs, such as architectures for quantum computers.

2A Hadamard is a unitary matrix with all coefficients having the same absolute value. Hadamard matrices are important

primitive structures in quantum information, playing a central role in quantum key distribution and many other phenomena [22].
3A unitary error basis is a basis of unitary operators on a finite-dimensional Hilbert space, orthogonal with respect to the

trace inner product. They provide the basic data for all quantum teleportation and dense coding procedures [67], and some error

correction procedures [42, 60].

(a) Program (b) Specification

Figure 2: Shaded tangles giving the program and specification for constructing a tripartite GHZ state.
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1.4 Criticism

Completeness. We define our semantics to be sound if topological isotopy implies computational

equivalence, and complete if computational equivalence implies topological isotopy. The main semantics

we give is sound, allowing the verification method for quantum programs that we use throughout the

paper. However, it is not complete, meaning that there exist quantum programs that cannot be verified

by our methods.4 Achieving completeness will be a focus of future work. We note that the ZX calculus

(see Section 1.5), a dominant existing high-level approach to quantum information, shares this property

of being sound but not complete in general [69], although it is complete for the stabilizer fragment [6].

Algorithms. All of our examples are in the broad area of quantum communication; we do not study

quantum algorithms, such as Grover’s or Shor’s algorithms [48]. These algorithms have been analyzed

in the related CQM approach [65]; in future work we aim to analyze them using our new syntax.

1.5 Related work

Categorical quantum mechanics (CQM). Our work emerges from the CQM research programme, ini-

tiated by Abramsky and Coecke [1] and developed by them and others [2, 6, 12–17, 20, 26, 41, 57, 65],

which uses monoidal categories with duals to provide a high-level language for quantum programs, using

in particular a graph-based language called the ZX calculus [13, 17]. CQM verifications have been given

for some programs related to those we analyze, including the Steane code [19], and cluster state argu-

ments [13, 20]. Many of the advantages of our calculus over traditional techniques—such as the power

of the diagrammatic language, and its topological flavour—inherit directly from the CQM programme.

The current authors have previously shown that CQM methods can be extended to a higher-

categorical setting [54, 63, 64], developing the work of Baez on a categorified notion of Hilbert space [7],

and this paper develops these ideas further.

We give here some important points of distinction between traditional CQM techniques and our

present work. Unlike the ZX calculus, our calculus is purely topological, and hence complex deductions

can sometimes be perceived by eye in a single step. Also, our calculus is incomparable in strength to

the ZX calculus, which is restricted (in its basic form) to Clifford quantum theory; neither calculus can

simulate the other in general. As a result, we are able to analyze many protocols that have not previously

been analyzed with ZX methods, as well as discover a number of new and generalized protocols.

Statistical mechanics. There is a rich interplay between quantum information (QI), knot theory (KT)

and statistical mechanics (SM). The KT-SM and SM-QI relationships are quite well-explored in the

literature, unlike the KT-QI relationship, which is our focus here.

The KT-SM relationship was first studied by Kauffman, Jones and others [8, 33, 38], who showed

how to obtain knot invariants from certain statistical mechanical models. Much of the mathematical

foundations of our paper are already present in the paper [33], including the shaded knot notation.

Work on the SM-QI relationship has focused on finding efficient quantum algorithms for approximating

partition functions of statistical mechanical systems [3–5, 62], for which the best known classical

algorithm is often exponential.‘Chaining’ these relationships allows one to obtain a statistical mechanical

model from a knot, and then write down a quantum circuit approximating the model’s partition function,

giving overall a mapping from knots to quantum circuits, which closely matches our construction.

The direct KT-QI relationship has also been emphasized by Kauffman and collaborators [36, 39], and

also in the field of topological quantum computing [50, 66], where (as here) a strong analogy is developed

between topological and quantum entanglement, although the technical details are quite different.

4Our language is also not universal, meaning that not all quantum programs can be constructed. It would be easy to make it

universal by adding additional 1-qubit generators; however, without completeness, this has limited value.
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Planar algebras. The graphical notation we employ can be described formally as a shaded planar

algebra, although we do not use that terminology in this paper, preferring a more elementary

presentation. The relationship between shaded planar algebras and Hadamard matrices was first

suggested by Jones [34], and developed by the present authors [54, 63, 64].

Recently, Jaffe, Liu and Wozniakowski have described a related approach to quantum information

based on planar para algebras [29–32].

Classical verification. There has been some work on using knot-theoretic methods for verification in

linear logic [21, 45] and separation logic [68]. We do not see a direct technical connection to our results,

although we expect this to be a fruitful direction for further investigation.

Acknowledgements

We thank Paul-André Mellies for suggesting the shaded tangle representation, Amar Hadzihasanovic for

detailed conversations, Matty Hoban, Nathan Bowler and Niel de Beaudrap for help with cluster states,

and Arthur Jaffe, Zhengwei Liu and Alex Wozniakowski for discussions about planar para algebras.

2 Mathematical foundations

2.1 Graphical calculus

The graphical calculus for describing composition of multilinear maps was proposed by Penrose [51],

and is today widely used [2, 12, 35, 49, 58]. In this scheme, wires represent Hilbert spaces and vertices

represent multilinear maps between them, with wiring diagrams representing composite linear maps.

In this article we use a generalized calculus that involves regions, as well as wires and vertices; see

Figure 3(a) for an example. This is an instance of the graphical calculus for 2-categories5 [9, 10, 28, 56]

applied to the 2-category 2Hilb of finite-dimensional 2-Hilbert spaces [7]. The 2-category of 2-Hilbert

spaces can be described as follows [23, 63]:

• objects are natural numbers;

• 1-morphisms are matrices of finite-dimensional Hilbert spaces;

• 2-morphisms are matrices of linear maps.

We represent composite 2-morphisms in this 2-category using a graphical notation involving regions,

wires and vertices, which represent objects, 1-morphisms and 2-morphisms respectively.

Elementary description. While these structures are widely used in higher representation theory, they

are not yet prevalent in the quantum computing community. To help the reader understand these new

5Here and throughout, we use the term ‘2-category’ to refer to the weak structure, which is sometimes called ‘bicategory’.
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generalized calculus.
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Figure 3: The generalized graphical calculus.
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concepts, we also give a direct account of the formalism in elementary terms, that can be used without

reference to the higher categorical technology (see also [54]).

In this direct perspective, regions are labelled by finite sets. Wires and vertices now represent families

of Hilbert spaces and linear maps respectively, indexed by the elements of the sets labelling all adjoining

regions. A composite surface diagram represents a family of composite linear maps, indexed by the

elements of all regions open on the left or right. For regions open only at the top or bottom of the

diagram, we take the direct sum over elements of the indexing set, while for closed regions, we take the

vector space sum over elements of the indexing set.

We give an example in Figure 3. In the diagram on the left, regions are labelled by finite sets

(S,T,U ), with unshaded regions labelled implicitly by the 1-element set; wires are labelled by families of

finite-dimensional Hilbert spaces (A,B,C,D,E,F); and vertices are labelled by families of linear maps

(L,M,N). For wires and vertices, the families are indexed by the sets associated to all neighbouring

regions: for example, for s ∈ S and t ∈ T , we have Hilbert spaces As, Bst and Ct , and Lst : Bst ⊗Ct −→ As

is a linear map. The single diagram on the left represents an entire family of linear maps, with the maps

comprising this family given by the right-hand diagram for different values of s ∈ S. We take the direct

sum over index u ∈ U , since its region is open only at the bottom of the diagram, and the vector space

sum over index t ∈ T , since its region is closed.

Given this interpretation of diagrams D as families of linear maps Di, we define two diagrams D,D′

to be equal when all the corresponding linear maps Di,D
′
i are equal; we define the scalar product λD as

the family of linear maps λDi; we define the adjoint D† as the family of adjoint linear maps (Di)
†; and

we say that D is unitary if all the maps Di are unitary. Following convention [58], we depict the adjoint

of a vertex by flipping it about a horizontal axis.

Restricted calculus. We use a highly restricted portion of this calculus. Every shaded region we assume

to be labelled by a single fixed finite set S. All wires bound precisely one shaded region and one unshaded

region, and these wires are always labelled by a family of 1-dimensional Hilbert spaces C. Nonetheless,

the calculus is not trivial. For example, we can build the identity on a nontrivial Hilbert space as the

diagram Figure 1(a); under the rules set out above, this is the identity map on ⊕s∈S(C⊗C)≃ C
|S|.

Also, we add the following components to our language. In the first case there is an open region, and

we use the obvious isomorphism C≃ C⊗C to build the associated families of linear maps.

∀s ∈ S,C ≃ C⊗C 1 7→ ∑i∈S |i〉 (1)

Flipping these components about a horizontal axis denotes the adjoint of these maps, as discussed above.

With these definitions the equations illustrated in Figure 4 can be demonstrated; in that figure, the vertex

L and the scalar λ ∈C are arbitrary.

(a) = = (b) = = (c) = (d) = |S|

(e) L = L (f) λ












= λ = λ = λ

Figure 4: Some identities in the graphical calculus.
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2.2 Shaded tangles

The Reidemeister moves [44, Section 2.4] are the basic relations of classical knot theory. In this section

we present an equational theory of shaded knots, which use shaded versions of the Reidemeister moves.

This theory follows work of Jones [33] on shaded tangle invariants from statistical mechanical models.

We begin by supposing the existence of a shaded crossing, depicted as follows:

(2)

We say that this crossing satisfies the basic calculus when it satisfies the equations of Figure 5(a)–(d), and

the extended calculus when it additionally satisfies equation Figure 5(e)–(f).6 A shaded tangle diagram

is a diagram constructed from the components of this calculus, the shaded cups (1), and their adjoints.

The extended calculus has the following attractive property.

Theorem 2.1. Two shaded tangle diagrams with the same upper and lower boundaries are equal under

the axioms of the extended calculus (up to overall scalar factors) just when their underlying tangles,

obtained by ignoring the shading, are isotopic as classical knots.

In 2Hilb, we can classify representations of the basic calculus as follows. Note that from the

discussion of Section 2.1, a vertex of type (2) represents in 2Hilb a linear map of type C
|S| −→ C

|S|,
and is therefore canonically represented by a matrix, which we assume to have matrix entries Ha,b.

Theorem 2.2. In 2Hilb, a shaded crossing yields a solution of the basic calculus just when it is equal to

a self-transpose Hadamard matrix.

The following theorem identifies the additional constraint given by the extended calculus.

Theorem 2.3. In 2Hilb, a self-transpose Hadamard matrix satisfies the extended calculus just when:

∑
|S|−1

r=0 HarHbrHcr =
√

|S|HabHacHbc (3)

A full classification of representations of this extended calculus is not known. However, it is known that

solutions exist in all finite dimensions; we present this in Appendix A.

2.3 Programs and specifications

Scalar factors. From this point onwards we drop the scalar factors appearing in the shaded tangle

calculus, since they complicate the diagrams. More formally, every component we use in the remainder

of the paper is proportional to an isometry, and we silently replace it with its isometric equivalent.

Programs. We write our programs in terms of four basic components of this shaded tangle language.

6In presenting this calculus, λ is an arbitrary nonzero constant, and we implicitly use the rule described in Section 2.1

regarding the representation of the adjoint as a reflected diagram, which causes the crossing type to change. This calculus also

defines a rotated crossing in Figure 5(a).

(a) = (b) = = (c) =
1

|S| =

(d) = (e) = λ (f) =
√

|S|

Figure 5: The shaded tangle calculus.
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= 1√
d

(

H11 ··· H1d

··· ··· ···

Hd1 ···Hdd

)

=







H11 ··· 0 0 ··· 0

··· ··· 0 0 ··· ···

0 0 H1d 0 0 0

0 0 0 H21 ··· 0

··· ··· 0 0 ··· ···

0 ··· 0 0 ···Hdd





 = 1√
d

(

H11 ··· Hd1

··· ··· ···

H1d ··· Hdd

)

=







H11 ··· 0 0 ··· 0

··· ··· 0 0 ··· ···

0 0 H1d 0 0 0

0 0 0 H21 ··· 0

··· ··· 0 0 ··· ···

0 ··· 0 0 ···Hdd







(a) 1-qudit gate (b) 2-qudit gate (c) Adjoint 1-qudit gate (d) Adjoint 2-qudit gate

Figure 6: Explicit expressions for the 1- and 2-qudit gates.

• Qudits. As mentioned above, Figure 1(a) is interpreted as the identity map on C
|S|, some finite-

dimensional Hilbert space. This gives us our qudit.

• Qudit preparations. In expression (1) above we draw a blue ‘cup’ to indicate the state ∑i∈S |i〉 ∈C
|S|,

which we interpret as a qudit preparation (see Figure 1(b).)

• Qudit gates. Applying our graphical calculus, given that (2) corresponds to a self-transpose

Hadamard with matrix entries Hi j = H ji, we obtain concrete representations for our 1- and 2-qudit

gates, given in Figure 6.

Specifications. We can write our specifications using the entire language, including all the cups and caps

arising from (1) and their adjoints. We excluded some of these components from the program language

illustrated in Figure 1 because they are not directly interpretable as circuit components. This does not

prevent us using them in specifications, however, since these will not be directly executed; they exist

only to define the mathematical behaviour of the overall program.

Examples. We give some concrete examples of our basic circuit components. A standard Hadamard

which gives a representation of the basic calculus is the qubit Fourier Hadamard, illustrated in

Figure 7(a). Other programs require a Hadamard representing the extended calculus; an example is

the metaplectic Hadamard illustrated in Figure 7(b) constructed using the methods of Appendix A. This

Hadamard has been used in the cluster state literature for neighbourhood inversion on a cluster graph [27,

Proposition 5], an operation we verify in Section 4.4 for a linear graph, but its strong topological

properties do not seem to have been noted more generally.

3 Entangled states

In this section we describe several forms of entanglement and their representations in our calculus.

3.1 GHZ states

GHZ states were introduced by Greenberger, Horne and Zeilinger [25] to give a simplified proof of Bell’s

theorem. We define the unnormalized n-partite qudit GHZ state as follows:

|GHZn〉 := ∑d−1
k=0 |k, · · · ,k〉 (4)

Proposition 3.1. GHZ states are represented as in Figure 8(a).

This arises directly from the representation of GHZ states in the CQM programme [15]. Important

special cases for qubits are the |+〉 state |GHZ1〉= |0〉+ |1〉, and the Bell state |GHZ2〉= |00〉+ |11〉.
3.2 Cluster chains

Another important class of entangled states are the cluster states or graph states [11, 27, 55] and their

qudit generalizations associated to Hadamard matrices [18]. Cluster states have numerous applications,

=
1√
2

(

1 1

1 -1

)

=







1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 -1
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e
πi
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(
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)

= e- πi
8







1 0 0 0

0 i 0 0

0 0 i 0

0 0 0 1







(a) A Fourier Hadamard (b) A metaplectic Hadamard

Figure 7: Different examples of our circuit elements.
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|GHZn〉 = |Cn〉=

(a) The n-partite GHZ state (b) The n-partite cluster chain

Figure 8: Examples of entangled states.

most prominently in the theory of measurement based quantum computation [52, 53] and quantum error

correction [55]. Here we will focus on qudit cluster chains, cluster states entangled along a chain.

Given a self-transpose d-dimensional Hadamard matrix H , the n-partite qudit cluster chain associated

to H is the following, where we conjugate the matrix due to our conventions:

|Cn〉 := ∑d−1
a1,...,an=0 Ha1,a2

· · ·Han−1,an
|a1 · · ·an〉 (5)

Proposition 3.2. Cluster chains are represented as in Figure 8(b).

This is essentially the same as the representation of cluster states in the CQM programme [13, 20]. If all

Hadamard matrices in (5) are the Fourier Hadamard, then this recovers conventional cluster chains [11].

3.3 Tangle gates and tangle states

More generally, a tangle gate is any circuit built from 1- and 2-qudit gates and their adjoints, and a

tangle state is a tangle with no inputs built from qudit preparations and tangle gates (see Figure 9.) Such

tangle states and gates can be arbitrarily complex, and have all the algebraic richness of knot topology.

If a Hadamard represents the extended calculus, then two tangle states or gates are equal just when the

corresponding tangles are isotopic, as established by Theorem 2.1.

4 Manipulating quantum states

In this section we verify a wide variety of programs for creating and manipulating entangled states,

including a new program for robust state transfer within a cluster chain–based quantum computer.

4.1 Constructing GHZ states (Figure 2)

Overview. We use our formalism to design and verify a program for constructing n-partite GHZ states.

Program Figure 2(a). Begin by preparing n qudits, then apply a sequence of 2- and 1-qudit gates as

indicated in Figure 2(a) for n = 3 qudits.

Specification Figure 2(b). This is the tangle state corresponding to a 3-qudit GHZ-state (Figure 8(a)).

Verification. Immediate by isotopy: the middle and rightmost qudit preparations in Figure 2(a) move up

and left, underneath the diagonal strand, producing Figure 2(b). This only requires the basic calculus.

Novelty. The GHZ version is known for the qubit Fourier Hadamard and was described very recently [61]

for the qudit Fourier matrices Hab =
1√
d

e
2πi
d

ab. For the self-transpose qudit Hadamard case covered here,

the procedure seems new.

4.2 Local unitary equivalence (Figure 10)

Overview. In the case of 2 or 3 parties, cluster chains can be converted into GHZ states by applying

1-qudit gates on certain sites. This means that, in a strong sense, they are equivalent computational

resources. The reverse process, converting GHZ states to cluster chains, could be just as easily described.

1

2

Figure 9: A tangle gate and a tangle state.
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1

2

1

2

(a) Program (b) Specification (c) Program (d) Specification

Figure 10: Converting 2- and 3-party cluster states into GHZ states.

Program. For 2 and 3 parties, we illustrate the programs in Figure 10(a) and (c), respectively.

1 Construct a cluster state. 2 Perform a 1-qubit gate at certain sites.

Specification. Illustrated in Figure 10(b) and (d), these are instances of the general GHZ specifica-

tion Figure 8(a).

Verification. Immediate by isotopy. In both cases, loops of string in the corners of Figure 10(a) and (c)

contract to the top, giving Figure 10(b) and (d), respectively. This only requires the basic calculus.

Novelty. This is known both for conventional [11] and generalized [18] cluster chains. For more than 3

parties it is known to be false, and indeed our method fails in these instances.

4.3 Cutting cluster chains (Figure 11(a) and (b))

Overview. Given a cluster chain of length n we can cut a target node from the chain, yielding two chains

of total length n−1 and the target node in the |+〉 state.7

Program Figure 11(a). 1 Prepare a cluster state, of which only a central part is shown. 2 Perform two

adjoint 2-qudit gates both involving a central target qudit.

Specification Figure 11(b). Prepare two separate cluster chains, and separately prepare the target node

in the |+〉 state.

Verification. Immediate by isotopy: starting with Figure 11(a), we cancel the inverse pairs of crossings

on the left and right of the central qudit, yielding Figure 11(b). This only requires the basic calculus.

Novelty. For the qubit Fourier Hadamard matrix this is well known; see [47] and [27, Section 3]. Here,

and in the next subsection, our verification provides new insight into how these chain manipulation

programs work.

4.4 Splicing cluster chains (Figure 11(c) and (d))

Overview. Given a cluster chain of length n we can splice a target node from the chain, yielding a single

chain of length n−1, and the target node in the |+〉 state.

Program Figure 11(c). 1 Prepare a cluster state (only a central part is shown). 2 Perform a 1-qudit gate

on the target qudit, and then two 2-qudit gates involving the target qudit and each of its adjacent qudits.

Specification Figure 11(d). Prepare a cluster chain of length n−1, and separately prepare the target

node in the |+〉 state.

7In some variants the target node is instead destroyed by a projective measurement, and controlled operations performed

on the adjacent qudits [27, Section 3]; the mathematical structure is identical to the version we analyze. A similar comment

applies to the splicing procedure of Section 4.4.

1

2

1

2

(a) Program (b) Specification (c) Program (d) Specification

Figure 11: Cutting and splicing a cluster chain.
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Verification. By isotopy, although harder to see by eye than previous examples. Looking closely, one

can see that the target qudit in Figure 11(c) is unlinked from the other strings, and so the entire shaded

tangle can be deformed to give Figure 11(d). This requires the extended calculus.

Novelty. It is well-known that certain local operations on cluster chains splice the chain (neighbourhood

inversion on graph states, see [47] and [27, Prop. 5]); our analysis is more general since it applies for any

qudit Hadamard satisfying the extended calculus. The standard procedures use cluster chains based on

the qubit Fourier Hadamard, and require additional phase corrections, which effectively serve to convert

the Hadamard into one representing the extended calculus. We avoid this by building the cluster chain

itself from a Hadamard representing the extended calculus.

5 Quantum error correction

We now apply our calculus to the theory of quantum error correction. We give a graphical verification of

the phase and Shor codes, and a substantial new generalization of both based on unitary error bases.

Basic definitions. We begin by establishing notation. For n,k, p,d ∈ N, an [[n,k, p]]Ed code uses n

physical qudits to encode k logical qudits, in a way which is robust against errors occurring on at most

⌊(p−1)/2⌋ physical qudits, such that each error is drawn from the subgroup E ⊆ U(d). We will be

concerned with two types of errors: full qudit errors, for which E =U(d), and phase errors, for which

E = P ⊂ U(d), the subgroup of diagonal unitary matrices. The Knill-Laflamme theorem [43] gives a

way to identify these codes.

Definition 5.1. An operator e : (Cd)n −→ (Cd)n is (p,E )-local when it is of the form e =U1 ⊗·· ·⊗Un,

such that Ui ∈ E for all 1 ≤ i ≤ n, and such that at most p−1 of the operators Ui are not the identity.

Theorem 5.2 (Knill-Laflamme [43]). An isometry i : (Cd)k −→ (Cd)n gives an [[n,k, p]]Ed code just when,

for any (p,E )-local operator e : (Cd)n −→ (Cd)n, the following composite is proportional to the identity:

(Cd)k i−→ (Cd)n e−→ (Cd)n i†−→ (Cd)k (6)

Informally, the Knill-Laflamme theorem says that we have a [[n,k, p]]Ed code just when, if we perform

the encoding map, then perform a (p,E )-local error, then perform the adjoint of the encoding map, the

result is proportional to our initial state. To be clear, any proportionality factor is allowed, even 0.

Representing errors. Following the general rules of our graphical calculus presented in Section 2.1, we

represent arbitrary qudit phases and qudit gates as follows, respectively:

We draw them in red as they are interpreted here as errors.

5.1 The phase code

Overview. We present a [[n,1,n]]Pd code: that is, a code which uses n physical qudits to encode 1 logical

qudit in a way that corrects ⌊(n−1)/2⌋ phase errors on the physical qudits. The data is a family of n

d-dimensional Hadamard matrices.

Program. The encoding map i is depicted in Figure 12(a).

Specification. Satisfaction of the conditions of Theorem 5.2.

Verification. In Figure 13 we illustrate the n = 3 version of the code. We must show that the composite

i† ◦ e ◦ i, for any 3-local phase error in which 2 qudits are corrupted by arbitrary phases, is proportional
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n

...

n n
n2

...

... ...

(a) Phase code (b) Shor code

Figure 12: The encoding maps i for the phase and Shor codes.

to the identity. Given the symmetry of the encoding map, there are two cases: the errors can occur

on adjacent or nonadjacent qudits. We analyze the case of adjacent errors here; the verification for

nonadjacent errors is analogous. In the first image of Figure 13 we represent the composite i† ◦ e ◦ i,

using some artistic licence to draw the closed curves as circles. We apply moves to cause the errors to

become ‘captured’ by bubbles floating in unshaded regions, which therefore (see Figure 4(f)) give rise to

overall scalar factors. This only requires the basic calculus.

Novelty. A major novel feature is the visceral sense of how the protocol works that Figure 13 conveys:

the phase errors are ‘captured by bubbles’ and turned into scalar factors. We believe this intuition has

not been described elsewhere. In terms of the mathematics, for the qubit Fourier Hadamard, this code

is well known [48, 59]. The generalization to arbitrary qudit Hadamard follows from work of Ke [40].

Our treatment reveals a further generalization: each of the n Hadamards used to build the encoding map i

may be distinct, since throughout the verification, we only apply the basic calculus moves to a Hadamard

and its own adjoint. Our usual requirement for the Hadamards to be self-transpose is not necessary here,

since we never rotate the crossings.

5.2 The Shor code

Overview. We present a [[n2,1,n]]
U(d)
d code: that is, a code which uses n2 physical qudits to encode 1

logical qudit in a way that corrects ⌊(n−1)/2⌋ arbitrary physical qudit errors. The data is a family of n

d-dimensional Hadamard matrices.

Program. We choose the encoding map from Figure 12(b).

Specification. Satisfaction of the conditions of Theorem 5.2.

Verification. In Figure 14 we illustrate one error configuration for the n = 3 case, where e encodes two

full qudit errors. All other cases work similarly. The general principle is the same as for Section 5.1.

This only requires the basic calculus.

Novelty. For d = 2, n = 3 and the qubit Fourier Hadamard, this is exactly Shor’s 9-qubit code [59]. The

qudit generalization for a general Hadamard is discussed in [40]. As with the phase code, our version is

more general still, since each of the Hadamards can be different.

5.3 Unitary error basis codes

Overview. We show that the phase and Shor codes described above still work correctly when the

Hadamards are replaced by unitary error bases (UEBs). These new codes have the same types

i

e

i†

=
Fig. 4(f)

∝ =
Fig. 4(f)

∝

Figure 13: Verification of the [[3,1,3]]Pd phase code.
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F.4(c)
=

F.4(e)
= =

F.4(f)
∝ =

F.4(f)
∝

Figure 14: Verification of the [[9,1,3]]
U(d)
d Shor code.

[[n,1,n]]P
d2 , [[n2,1,n]]

U(d)

d2 as the phase and Shor codes, except with the additional restriction that the

systems are of square dimension, since unitary error bases always have a square number of elements.

Unitary error bases (UEBs). UEBs are fundamental structures in quantum information which play

a central role in quantum teleportation and dense coding [67], and also in error correction when they

satisfy the additional axioms of a nice error basis [42]. However, the new UEB codes we present here

are seemingly unrelated, and do not require the additional nice error basis axioms.

Definition 5.3. On a finite-dimensional Hilbert space H , a unitary error basis is a basis of unitary

operators Ui : H −→ H such that Tr(U†
i U j ) = δi j dim(H).

UEBs have an elegant presentation in terms of our graphical calculus [54, 64].

Theorem 5.4 (See [54]). Unitary error bases correspond to vertices of the following type, satisfying

equations analogous to Figure 5(b) and (c):

(7)

For a precise description of the necesasry equations see [54, Proposition 9]. The wires with unshaded

regions on both sides represent the Hilbert space C
d , and the shaded region is labelled by a set of

cardinality d2.

Program. We choose the encoding maps of Figure 15(a) and (b) to generalize the phase and Shor codes.

Specification. Satisfaction of the conditions of Theorem 5.2.

Verification. The procedure is identical to the phase and Shor code verifications, the only difference

being that some regions are differently shaded. To make this clear, in Figure 15(c) and (d) we give the

graphical representations of the Knill-Laflamme i† ◦e◦ i composites for these new codes; compare these

images to the first graphics in Figures 13 and 14.

Novelty. As error correcting codes, these have the same strength as the traditional phase and Shor

codes. However, they are constructed from completely different data8, and therefore push the theory of

quantum error correcting codes in a new direction. This showcases the power of our approach to uncover

new paradigms in quantum information.

8Although some UEBs can be constructed from Hadamards, they do not all arise in that way [46, 54].

(a) Phase code (b) Full qudit code (c) Condition for phase code (d) Condition for full code

Figure 15: The UEB codes and their Knill-Laflamme conditions.
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A Reidemeister III Hadamard matrices

The additional RIII condition (3) induces substantial constraints on a self-transpose Hadamard matrix.

Here, we show that these equations have solutions in all finite dimensions. We consider two different

families of solutions: Potts-Hadamard matrices, and metaplectic invariants. Almost everything in this

section follows directly from results of Jones [33] on building link invariants from statistical mechanical

models.

Potts-Hadamard matrices. A Potts-Hadamard matrix is a self-transpose Hadamard matrix of the

following form, that satisfies (3):

= λ +µ (8)

In tensor notation, this means that Ha,b = λ δa,b + µ . We can classify Potts-Hadamard matrices exactly.

Theorem A.1. Every d-dimensional Potts-Hadamard matrix has µ = 1√
d

λ with

λ ∈U(1) and λ 2 +λ
2
=−

√
d (9)

where d is the dimension of the Hadamard matrix. This has the following solutions:

• d = 2 and λ ∈ {e
3πi
8 ,e−

3πi
8 ,e−

5πi
8 ,e

5πi
8 };

• d = 3 and λ ∈ {e
5πi
12 ,e−

5πi
12 ,e−

7πi
12 ,e

7πi
12 };

• d = 4 and λ ∈ {i,−i}.

The d = 2 Potts-Hadamard matrices have the following form:

e- πi
8

√
2

(

1 i

i 1

)

e
πi
8

√
2

(

1 -i

-i 1

)

e
7πi
8

√
2

(

1 i

i 1

)

e- 7πi
8

√
2

(

1 -i

-i 1

)

In fact, it can be shown by direct calculation that these are the only two dimensional self-transpose

Hadamard matrices fulfilling (3).

Equation (8) (together with (9)) is a rescaled version of the defining relation of Kauffman’s bracket

polynomial [37]; evaluating one of these matrices on a closed link diagram therefore yields (after suitable

renormalization) the Jones polynomial of the link at certain roots of unity.

Metaplectic invariants. Following Jones and others [24, 29, 33], given d ∈ N with d > 0, we make the

following definitions:

ξ :=−e
πi
d ω := 1√

d
∑d−1

k=0 ξ k2

(10)

Let λ be a square root of ω , and for 0 ≤ a,b ≤ d −1, define Ha,b as follows:

Ha,b =
λ√
d

ξ (a−b)2

(11)

Then we have the following.

Theorem A.2. The coefficients Ha,b define a self-transpose Hadamard matrix satisfying (3).

This establishes that solutions to our graphical equations can be found in all finite dimensions.
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= = = =

RI RII RIII

Figure 16: The unshaded Reidemeister moves up to rotations and reflections.

B Omitted proofs

Theorem 2.1. Two shaded tangle diagrams with the same upper and lower boundaries are equal under

the axioms of the extended calculus (up to overall scalar factors) just when their underlying tangles,

obtained by ignoring the shading, are isotopic as classical knots.

Proof. It is well known that two tangle diagrams are isotopic just when they can be transformed into each

other using local Reidemeister moves. All Reidemeister moves can be obtained from arbitrary rotations

and reflections of the moves depicted in Figure 16. Since our tangles are shaded, they transform under

shaded Reidemeister moves - ordinary Reideimeister moves with a choice of checkerboard shading.

Thus, up to rotations and reflections, there are 2 shaded versions of RI, 4 shaded versions of RII and 2

shaded versions of RIII. To prove Theorem 2.1, we therefore have to show that (up to scalar factors) all

these shaded Reidemeister moves are implied by the basic axioms of the extended calculus presented

in Figure 5. Using the shaded RII equations, it can be shown that the two shaded RIII equations are

equivalent. Using shaded RII and RIII, it can be shown that the two shaded RI equations are equivalent.

Therefore, two shaded tangles are isotopic if and only if they can be transformed into each other using

all four shaded RII equations and one shaded RI and RIII equation, respectively.

Theorem 2.2. In 2Hilb, a shaded crossing yields a solution of the basic calculus just when it is equal to

a self-transpose Hadamard matrix.

Proof. Solutions to the shaded Reimeister II equations in 2Hilb Figure 5(b) and (c) were classified in

terms of Hadamard matrices in [54, Proposition 7]. The additional equation Figure 5(d) implies that the

corresponding Hadamard matrix is self-transpose. An equivalent classification using slightly different

terminology can be found in [33].

Theorem 2.3. In 2Hilb, a self-transpose Hadamard matrix satisfies the extended calculus just when:

∑
|S|−1
r=0 HarHbrHcr =

√

|S|HabHacHbc (3)

Proof. Translating the Reimeister III equation Figure 5(f) into the corresponding family of tensor

diagrams (as described in Figure 3) yields the following:

=
√

|S| ! ∀d−1

a,b,c=0



















d−1

∑
x=0

a x

c

b

Hc,x

Hb,x

Ha,x =
√

|S| a

b

c

Ha,b

Ha,c

Hb,c



















Here a,b, and c label the left, top right, and bottom right shaded region, respectively. The central shaded

region is labelled by x and summed over. Note that the Hadamard matrix H is self-transpose. Thus, this
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results in equation (3). Similarly, the Reidemeister I equation Figure 5(e) translates into the following

equation which is a direct algebraic consequence of (3) for a = b (with λ =
√

|S|Ha,a): ∑
|S|−1

r=0 Hc,r = λ .

An equivalent classification using slightly different terminology can be found in [33].

Theorem A.1. Every d-dimensional Potts-Hadamard matrix has µ = 1√
d

λ with

λ ∈U(1) and λ 2 +λ
2
=−

√
d (9)

where d is the dimension of the Hadamard matrix. This has the following solutions:

• d = 2 and λ ∈ {e
3πi
8 ,e−

3πi
8 ,e−

5πi
8 ,e

5πi
8 };

• d = 3 and λ ∈ {e
5πi
12 ,e−

5πi
12 ,e−

7πi
12 ,e

7πi
12 };

• d = 4 and λ ∈ {i,−i}.

Proof. For a shaded crossing of the form (8) the two Reidemeister II equations look as follows:

!
=

(8)
= λλ +λ µ +µλ +µµ

Fig. 4(d)
= |λ |2 +

(

λ µ +µλ +d |µ |2
)

1

d

!
=

(8)
= λλ +λ µ +µλ +µµ

Fig. 4(c)
= |µ |2 +

(

λ µ +µλ + |λ |2
)

In other words, |λ |= 1, |µ |= 1√
d

, and λ µ +µλ =−1. Reidemeister III yields the following:

(8)
= λ + µ

RII
= λ +dµ

!
=

√
d

(8)
=

√
d λ +

√
d µ
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In short, µ = λ√
d

. Together with the constraints from RII this proves the theorem.

Theorem A.2. The coefficients Ha,b define a self-transpose Hadamard matrix satisfying (3).

Proof. Note that ω (defined in (10)) and its square root λ have modulus one. A proof of this fact using

the discrete Fourier transform can be found in [29, Proposition 2.15]. Therefore, |Ha,b|= 1√
d

. The matrix

H is unitary, since

d−1

∑
c=0

Ha,cHb,c
(11)
=

1

d

d−1

∑
c=0

ξ (a−c)2−(b−c)2

=
1

d
ξ a2−b2

d−1

∑
c=0

ξ 2bc−2ac (10)
=

1

d
ξ a2−b2

d−1

∑
c=0

e
2πi
d
(b−a)c = δa,b.

It satisfies (3), since

d−1

∑
r=0

Ha,rHb,rHc,r
(11)
=

λ

d
3
2

d−1

∑
r=0

ξ−(a−r)2+(b−r)2+(c−r)2

=
λ

d
3
2

ξ b2+c2−a2
d−1

∑
r=0

ξ r2+2r(a−b−c)

=
λ

d
3
2

ξ b2+c2−a2−(a−b−c)2
d−1

∑
r=0

ξ (r+(a−b−c))2

=
λ

d
3
2

ξ b2+c2−a2−(a−b−c)2
d−1

∑
r=0

ξ r2

(12)

(10)
=

λ

d
ξ−2a2+2ab+2ac−2bc.

The second equality in (12) holds since ξ d2

= 1. On the other hand,

√
d Ha,bHa,cHb,c =

λ

d
ξ−(a−b)2−(a−c)2+(b−c)2

=
λ

d
ξ−2a2+2ab+2ac−2bc.

Thus, H is a self-transpose Hadamard matrix fulfilling (3).
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