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In this work, we use tools from non-standard analysis to introduce infinite-dimensional quantum
systems and quantum fields within the framework of Categorical Quantum Mechanics. We define a
dagger compact category ∗Hilb suitable for the algebraic manipulation of unbounded operators, Dirac
deltas and plane-waves. We cover in detail the construction of quantum systems for particles in boxes
with periodic boundary conditions, particles on cubic lattices, and particles in real space. Not quite
satisfied with this, we show how certain non-separable Hilbert spaces can also be modelled in our
non-standard framework, and we explicitly treat the cases of quantum fields on cubic lattices and
quantum fields in real space.

1 Introduction

The rigorous diagrammatic methods of Categorical Quantum Mechanics [1, 3, 5, 6, 7, 8] have found widely
successful application to quantum information, quantum computation and the foundations of quantum
theory. Until very recently, however, a major limitation of the framework was its lack of applicability
to infinite-dimensional quantum systems, which include many iconic examples from textbook quantum
mechanics and quantum field theory. Previous work by the authors [11] partially overcame this limitation,
using non-standard analysis à la Robinson [23] to define a dagger compact category ?Hilb of infinite-
dimensional separable Hilbert spaces. A non-standard approach was chosen because it enables a consistent
mathematical treatment of infinitesimal and infinite quantities, such as those involved in the manipulation
of unbounded operators, Dirac deltas, plane waves, and many other gadgets and structures featuring in
traditional approaches to quantum mechanics.

The debate about the physical interpretation of infinitesimals and infinities is as old as calculus
itself [16], and their use always attracts a healthy dose of scepticism. In time, this has lead to an interesting
dichotomy, where infinitesimals are used as a quick way to convince oneself of the validity of a statement,
but limits are then required for formal justification. Non-standard analysis simply provides a framework
to completely replace limits with a consistent algebraic treatment of infinitesimals and infinities. As long
as one is willing to assign physical meaning to non-convergent limit constructions—and mainstream
quantum mechanics certainly seems to be—there should be little or no problem of physical interpretation.

The original definition of ?Hilb from Ref. [11] featured unital †-Frobenius algebras on all objects,
the main ingredient of Categorical Quantum Mechanics (CQM) which was missing from the category
Hilb of infinite-dimensional Hilbert spaces and bounded operators [2]. It enabled some first, successful
applications of CQM methods to infinite-dimensional quantum systems, but was otherwise somewhat
limited: most notably, it could not be applied to the case of unbounded quantum particles on real spaces
(the single most important textbook example), nor could it tackle the non-separable Hilbert spaces required
for the treatment of quantum fields as will be understood as part of this work.
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The limitations of the original definition were self-imposed, aimed at keeping the framework simple and
more easily relatable, and did not play any relevant role in most constructions we presented. The starting
point of this work, in Section 2, is a re-definition of the category ?Hilb, addressing those unnecessary
limitations. Specifically, we remove the requirement that the underlying Hilbert spaces for the objects of
?Hilb be standard and separable, and we provide a basis-independent formulation of the objects themselves:
aside from making the formalism significantly more powerful, this choice has the categorically pleasing
effect of identifying ?Hilb as a full subcategory of the Karoubi envelope for the category of non-standard
Hilbert spaces and ?C-linear maps.

The rest of this work is dedicated to the explicit construction of quantum systems of interest in
a number of traditional applications of quantum mechanics. In Section 3 we construct the space of
wavefunctions in an n-dimensional box with periodic boundary conditions Tn, while in Section 4 we
construct the space of wavefunctions on an n-dimensional lattice Zn; both these examples were sketched
in the original Ref. [11], and are here reproduced in additional detail. In Section 5 we construct the space
of unbounded wavefunctions in an n-dimensional real space Rn, which we approximate using an infinite
lattice of infinitesimal mesh (a well-tested trick in non-standard analysis [23]). For each of these three
constructions, we provide a strongly complementary pair corresponding to the position and momentum
observables. In Sections 6 and 7, we proceed to treat two cases of non-separable standard Hilbert spaces,
exploiting a somewhat surprising fact about exponentials of infinite non-standard integers: in Section 6
we construct the space of quantum fields on an n-dimensional lattice Zn; in Section 7, we once again use
an infinite lattice of infinitesimal mesh to construct the space of quantum fields in real space Rn.

Before moving on, we should remark that the originality of this work and the work of Ref. [11]
does not lie in the application of non-standard methods to conventional quantum theory, for which a
rich literature already exists [10, 19, 20, 21, 22, 26]. Rather, it lies in the application of non-standard
methods to solve a set of issues—lack of Frobenius algebras, compact closed structure and strongly
complementary pairs, to mention just a few—which prevented the algebraic/diagrammatic methods of
Categorical Quantum Mechanics from being applied to the infinite-dimensional setting.

2 Redefining ?Hilb

We define the symmetric monoidal category ?Hilb (read: Star Hilb) to have objects in the form of pairs
H := (|H |,PH ), where |H | is a non-standard Hilbert space1 (the underlying Hilbert space) and
PH : |H | → |H | is an internal non-standard ?C-linear map which satisfies the following requirements.
• The map PH is a self-adjoint idempotent (we refer to it as the truncating projector).

• There is some family |en〉Dn=1 of orthonormal vectors2 in |H |, for some D ∈ ?N, such that:

PH =
D

∑
n=1
|en〉〈en| (2.1)

The existence of such families is guaranteed by Transfer Theorem. Again by Transfer Theorem,
D is the same for all such choices of orthonormal families, and we can consistently define the
dimension of H to be dimH := D ∈ ?N.

The morphisms of our re-defined ?Hilb take the same form as those given in the original definition (they
are internal non-standard ?C-linear maps, with the truncating projectors acting as identities):

Hom?Hilb [H ,G ] := { PG ◦F ◦PH | F : |H | → |G | internal linear map} . (2.2)
1Note that we dropped the requirement that |H | be separable, or even that |H |= ?V for some standard Hilbert space V .
2Note that we dropped the requirement that |en〉Dn=1 be (a non-standard extension of) a standard orthonormal basis.
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This means that ?Hilb is now a genuine full subcategory of the Karoubi envelope for the category of
non-standard Hilbert spaces and non-standard ?C-linear maps. The rest of the construction proceeds
exactly as it did in the original definition, and ?Hilb is a dagger symmetric monoidal category (†-SMC,
for short). Morphisms can still be represented as matrices (although no longer in a canonical way), by
choosing orthonormal sets which diagonalise the relevant truncating projectors:

F̄ := PG ◦F ◦PH =
dimG

∑
m=1

dimH

∑
n=1
| fm〉

(
〈 fm|F |en〉

)
〈en|. (2.3)

The tensor, symmetric braiding and dagger can be defined as usual by looking at the matrix decomposition,
and by Transfer Theorem they are invariant under different choices of diagonalising orthonormal sets.
Similarly, unital special commutative †-Frobenius algebras can be constructed for all orthonormal bases of
an object H (i.e. for all orthonormal families diagonalising the truncating projector PH ). The interested
reader is referred to Ref. [11] for the details of the original constructions, which are unchanged.

Contrary to the dagger symmetric monoidal structure, the compact closed structure in the original
definition was given in terms of the chosen orthonormal basis for each object, and needs to be adapted
to our new basis-invariant definition. Consider an object H of ?Hilb, together with a diagonalisation
PH = ∑

dimH
n=1 |en〉〈en| of its truncating projector. Also consider the dual |H |∗ to the underlying Hilbert

space |H | of H (which exists by Transfer Theorem), together with the orthonormal set |ξn〉dimH
n=1 of

vectors in |H |∗ specified by the adjoints of the states3 in the orthonormal family |en〉dimH
n=1 . We define the

dual object H ∗ to be given by the pair H ∗ := (|H |∗,PH ∗), where the truncating projector is defined by
PH ∗ := ∑

dimH
n=1 |ξn〉〈ξn| (it is a standard check that this definition is basis-invariant). The compact closed

structure is defined as follows (once again, it is a standard check that this definition is basis-invariant):

dimH

∑
n=1
|ξn〉⊗ |en〉:= :=

dimH

∑
n=1
〈en|⊗ 〈ξn| (2.4)

The dual object H ∗ has the same dimension as H , and the non-standard natural number dimH coincides
with the scalar given by the definition of dimension in dagger compact categories:

dimH

∑
n=1
〈ξn|ξn〉⊗〈en|en〉= = dimH (2.5)

Let ? sHilb be the full subcategory of ?Hilb given by those objects H such that |H | = ?V for
some separable standard Hilbert space V , and such that the truncating projector spans all near-standard
vectors. Let ? sHilb(std) be the sub-†-SMC of ? sHilb given by near-standard morphisms. In particular,
the original ?Hilb from Ref. [11] is a full subcategory of the newly defined ? sHilb, and the original
?Hilb(std) featuring in Theorem 3.4 of Ref. [11] is a full subcategory of the newly defined ? sHilb(std).
We can define a standard part functor st : ? sHilb(std)→ sHilb, which acts as H 7→ |H | on objects
and as F 7→ st(F) on morphisms. The standard part functor is C-linear, and identifies two near-standard
maps F,G : H →K if and only if F−G has infinitesimal operator norm; this defines an equivalence
relation on morphisms in ? sHilb(std), which we denote by ∼ and refer to as infinitesimal equivalence.
The equivalence relation ∼ respects composition, tensor product and dagger, and endows ? sHilb(std) with
the structure of a †-symmetric monoidal 2-category. We can also define a weak4 truncation functor

3I.e. |ξn〉 is the vector in |H |∗ specified by the linear operator 〈en| on |H |.
4By weak we mean that composition and tensor product are respected only up to infinitesimal equivalence, i.e. that we have

liftω [ f ◦g]∼ liftω [ f ]◦ liftω [g] and liftω [ f ⊗g]∼ liftω [ f ]⊗ liftω [g]
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liftω : sHilb→ ? sHilb(std), which acts as V 7→ (V,P(V )) on objects5 and sends the standard morphism
f : V →W to the non-standard morphism P(W ) ◦ ? f ◦P(V ) (here ? f is the non-standard extension of f ).
The following result relates sHilb and ? sHilb(std)ω , the full subcategory of ? sHilb(std) spanned by those
objects H having dimension dimH ∈ ?N which is either a finite natural or the infinite natural ω .

Theorem 2.1 (Updated version of Theorem 3.4 from Ref. [11]).
The standard part and truncation functors determine a weak equivalence between sHilb and ? sHilb(std)ω :

(i) st is a full dagger monoidal functor, which is surjective on objects;
(ii) liftω is a weak dagger monoidal faithful functor from a †-SMC to a †-symmetric monoidal 2-category,

which is injective and essentially surjective on objects (its restriction to fHilb is strict);
(iii) st is a left inverse to liftω ;

(iv) for all objects H of ? sHilb(std)ω there is a canonical unitary isomorphism ūH : H → liftω [st(H )],
the unique one which satisfies st(ūH ) = idst(H );

(v) for all morphisms F : H → G in ? sHilb(std)ω we have ū†
G ◦ liftω [st(F)]◦ ūH ∼ F.

Proof. Essentially the same of Theorem 3.4 from Ref. [11], using the fact that the subspace defined by
the truncating projector PH contains at least all near-standard vectors in H .

Remark 2.2. Unfortunately, the updated version of Theorem 3.4 only covers standard separable Hilbert
spaces, while we will see that our re-defined ?Hilb allows us to treat some standard non-separable spaces
as well. We believe Theorem 3.4 to be likely to extend to some subcategory of standard non-separable
spaces, but an exact determination of the necessary and sufficient conditions is left to future work.

The essence of Theorem 2.1 is that sHilb is equivalent to the subcategory ? sHilb(std)ω of ?Hilb given by
near-standard morphisms, as long as we take care to equate morphisms which are infinitesimally close.
The equivalence allows one to prove results about sHilb by working in ?Hilb and taking advantage of the
full CQM machinery, according to the following general recipe:

(i) start from a morphism in sHilb;

(ii) lift to ? sHilb(std)ω via the lifting functor;
(iii) work in ?Hilb, obtain a result in ? sHilb(std)ω ;
(iv) descend to sHilb via the standard part functor.

This procedure is conceptually akin to using the two directions of the transfer theorem to prove results of
standard analysis using non-standard methods. When proving equalities of morphisms in sHilb, it is in
fact sufficient to lift both sides via liftω , and prove the equality in ?Hilb without further constraints (this is
because both sides will necessarily be lifted to ? sHilb(std)ω ).

The arbitrary choice of infinite natural ω in the lifting part of the recipe might seem unnatural at
first, as the objects liftω [V ] and liftω ′ [V ] are not isomorphic in ?Hilb for different infinite naturals ω 6= ω ′.
However, this is not actually an issue: from the perspective of sHilb, the two spaces are equivalent
for all intents and purposes, and any proof that can be performed in one space can also be performed
in the other. This could be made precise by saying that setting Φω,ω ′ := (liftω ′ ◦st) defines a weak
equivalence Φω,ω ′ :? Hilb(std)ω →? Hilb(std)

ω ′ such that st(Φω,ω ′(F̄)) = st(F̄) holds for all morphisms F̄

in ?Hilb(std)ω . From this point of view, the same limiting objects (e.g. Diract deltas, plane-waves and
unbounded operators) corresponding to different choices of ω can be interpreted as incarnations of the
same conceptual objects seen at different values for the “infinite cut-off parameter” ω .

5The truncating projectors P(V ) are defined by appropriately choosing an orthonormal basis |e(V )
n 〉n for each separable V , and

letting P(V ) := ∑
dimV
n=1 |e

(V )
n 〉〈e

(V )
n | (where we set dimV := ω for infinite-dimensional standard Hilbert spaces V ).
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3 Particles in boxes with periodic boundary conditions

Consider a quantum particle in a n-dimensional box with periodic boundary conditions: this can equiva-
lently be seen as a quantum particle in an n-dimensional torus , and hence it corresponds to the Hilbert
space L2[Tn] (the n-dimensional torus is acted freely and transitively upon by its translation group Tn).
The momentum eigenstates for the particle form a countable complete orthonormal basis for L2[Tn], with
the eigenstate of momentum kh̄ (k ∈ Zn) given by the following square-integrable function Tn→ C:

|χk〉 := x→ e−i2π k·x (3.1)

We take a non-standard extension |χk〉+ω

k1,...,kn=−ω
of the standard orthonormal basis of momentum eigen-

states, where ω ∈ ?N is some infinite non-standard natural, and we consider the
(
(2ω +1)n

)
-dimensional

object HTn := ( ? L2[Tn],PHTn ) defined by the following truncating projector:

PHTn :=
+ω

∑
k1=−ω

...
+ω

∑
kn=−ω

|χk〉〈χk| (3.2)

We take this object to be our model in ?Hilb of a quantum particle in an n-dimensional box with periodic
boundary conditions, and we refer to the family |χk〉+ω

k1,...,kn=−ω
as the momentum eigenstates for HTn .

Pretty much by definition, this object comes with a unital special commutative †-Frobenius algebra
corresponding to the momentum observable for the particle:

:=
+ω

∑
k1=−ω

...
+ω

∑
kn=−ω

〈χk|:=
+ω

∑
k1=−ω

...
+ω

∑
kn=−ω

|χk〉⊗ |χk〉⊗〈χk|

(3.3)
The labels of the momentum eigenstates can be endowed with the infinite abelian group structure of
( ?Zn

2ω+1,⊕,0), which is defined in full detail in the Appendix, and we can consider the linear extension
of the group multiplication and unit:

:= |χ0〉:=
+ω

∑
k1,h1=−ω

...
+ω

∑
kn,hn=−ω

|χk⊕h〉⊗〈χk|⊗ 〈χh| (3.4)

It is immediate to check that these two maps form, together with their adjoints, a unital quasi-special
commutative †-Frobenius algebra, with normalisation factor (2ω +1)n. Furthermore, a result of Ref. [12]
guarantees that ( , ) is a strongly complementary pair of unital †-Frobenius algebras6. The following
position eigenstates |δx〉, indexed by x ∈ 1

2ω+1
?Zn

2ω+1 (a lattice in the non-standard torus ?Tn) are the
-classical states (they are orthogonal7 and have square norm (2ω +1)n; see the Appendix for a proof):

|δx〉 :=
+ω

∑
k1=−ω

...
+ω

∑
kn=−ω

χk(x)∗|χk〉 (3.5)

For all x ∈ 1
2ω+1

?Zn
2ω+1 and all standard smooth f ∈ L2[Tn], the position eigenstates satisfy the identity

st(〈δx| f 〉) = f (st(x)) by Transfer Theorem: hence the position eigenstates (as we defined them) behave
exactly as expected from Dirac delta functions, and we can legitimately refer to as the position
observable for the particle. Note the duality between the large-scale cut-off on momenta in ?Zn (which
are bounded in magnitude by

√
nω h̄) and the small-scale cut-off on positions in ?Tn (which are discretised

onto a lattice of infinitesimal mesh 1
2ω+1 ): in our non-standard framework, this well-known phenomenon

arises in a purely algebraic way from the copy condition for -classical states (see the Appendix).
6The relevant result is Theorem 3.4 of Ref. [12], which requires to have enough classical states (the momentum eigenstates),

( , ) to endow the -classical states with the structure of a group (the group ?Zn
2ω+1), and to be -classical.

7They are orthogonal because they are copied by a quasi-special commutative †-FA in a SMC where scalars form a field [9].
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4 Particles on lattices

Consider a particle on an n-dimensional cubic lattice, corresponding to the Hilbert space L2[Zn]. The
position eigenstates for the particle form a countable complete orthonormal basis for L2[Zn], with the
eigenstate of position k ∈ Zn given by the following square-integrable function Zn→ C:

|δk〉 := h 7→

{
1 if k = h
0 otherwise

(4.1)

We take a non-standard extension |δk〉ωk1,...,kn=−ω
of the standard orthonormal basis of position eigenstates,

where ω ∈ ?N is some infinite non-standard natural, and we consider the
(
(2ω +1)n

)
-dimensional object

HZn := ( ? L2[Zn],PHZn ) defined by the following truncating projector:

PHZn :=
+ω

∑
k1=−ω

...
+ω

∑
kn=−ω

|δk〉〈δk| (4.2)

We take this object to be our model in ?Hilb of a quantum particle on an n-dimensional lattice, and we refer
to the family |δk〉+ω

k1,...,kn=−ω
as the position eigenstates for HZn . Pretty much by definition, this object

comes with a unital special commutative †-Frobenius algebra corresponding to the position observable
for the particle:

:=
+ω

∑
k1=−ω

...
+ω

∑
kn=−ω

〈δk|:=
+ω

∑
k1=−ω

...
+ω

∑
kn=−ω

|δk〉⊗ |δk〉⊗〈δk|

(4.3)
The labels of the position eigenstates can be endowed with the infinite abelian group structure of
( ?Zn

2ω+1,⊕,0), and we can consider the linear extension of the group multiplication and unit:

:= |δ0〉:=
+ω

∑
k1,h1=−ω

...
+ω

∑
kn,hn=−ω

|δk⊕h〉⊗〈δk|⊗ 〈δh| (4.4)

It is immediate to check that these two maps form, together with their adjoints, a unital quasi-special
commutative †-Frobenius algebra, with normalisation factor (2ω +1)n. Furthermore, a result of Ref. [12]
guarantees that ( , ) is a strongly complementary pair of unital †-Frobenius algebras.

The infinite abelian group ( ?Z2ω+1,⊕,0) is defined in full detail in the Appendix, and has the interval
of non-standard integers {−ω, ...,+ω} as its underlying set. Remarkably, it contains the standard integers
Z as a subgroup: as a consequence, the group ( ?Zn

2ω+1,⊕,0) is a legitimate non-standard extension of the
translation group Zn for the n-dimensional lattice. In a sense, we are seeing standard infinite lattices are
actually being periodic, but circling around “beyond standard infinity” rather than at some finite point.

A proof on the same lines of the one mentioned in the previous section shows that the following
momentum eigenstates |χx〉, indexed by x ∈ 1

2ω+1
?Zn

2ω+1, are the -classical states (they are orthogonal
and have square norm (2ω +1)n):

|χx〉 :=
+ω

∑
k1=−ω

...
+ω

∑
kn=−ω

e−i2π k·x|δk〉 (4.5)

From their formulation, it is immediately clear that these are exactly the plane waves, and as a consequence
we can legitimately refer to as the momentum observable for the particle on the lattice. Similarly to
the previous Section, we have a nice duality between the large-scale cut-off on positions in ?Zn (which
are bounded in magnitude by

√
nω) and the small-scale cut-off on momenta in ?Tn (which are discretised

onto a lattice of infinitesimal mesh h̄
2ω+1 ).
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5 Particles in real space

Consider a quantum particle in n-dimensional real space, corresponding to the Hilbert space L2[Rn].
This is a separable space, but for obvious reasons it does not come with a choice of complete countable
orthonormal basis of standard states which is invariant under the translation group Rn of the underlying
space. However, we can try and approximate one using a subdivision of Rn with infinitesimal mesh,
as done in Ref. [23] to model Riemann integration (as well as differentiation and a number of other
fundamental constructions of calculus).

We fix two infinite natural numbers: an infrared (IR) infinity ωir, which will govern the large
scale limit of our approximation, and a ultraviolet (UV) infinity ωuv, which will govern the small scale
limit. We require both to be odd, and we set 2ω +1 := ωuvωir. Consider the following internal lattice—
isomorphic to ?Zn

2ω+1, of which it inherits the group structure—in n-dim non-standard real space ?Rn:

1
ωuv

?Zn
2ω+1 :=

{
p ∈ ?Rn

∣∣∣∣ p =
k

ωuv
, k ∈ ?Zn

2ω+1

}
⊂ ?Rn (5.1)

Note that the group Rn is not a subgroup of 1
ωuv

?Zn
2ω+1, as the elements of the latter are non-standard

rational numbers. However the former can be approximated by the latter in the following rigorous sense:
there is a subgroup

( 1
ωuv

?Zn
2ω+1

)
0 /

1
ωuv

?Zn
2ω+1 given by taking the near standard elements, and taking a

quotient of this subgroup through the standard part function yields Rn as the quotient group (see Appendix).
We can interpret the group 1

ωuv
?Zn

2ω+1 as a lattice with infinitesimally fine mesh (specified by 1
ωuv

) which
approximates Rn, which covers it entirely, and which circles around “beyond standard infinity” (at a
point specified by ωir). Having seen this, we consider the following orthonormal family of non-standard
functions ?Rn→ ?C, indexed by the points p ∈ 1

ωuv
?Zn

2ω+1 of the lattice which we introduced above::

|χ p〉 := x 7→ 1
√

ωuv
e−i2π (p·x) (5.2)

Just like the family of momentum eigenstates defined in Section 3, this family is orthonormal, and
hence we can take it to define a

(
(2ω +1)n

)
-dimensional object HRn := ( ? L2[Rn],PHRn ) of ?Hilb, by

considering the following truncating projector:

PHRn :=
+ωir

∑
p1=−ωir

...
+ωir

∑
pn=−ωir

|χ p〉〈χ p| :≡
+ω

∑
k1=−ω

...
+ω

∑
kn=−ω

|χk/ωuv〉〈χk/ωuv | (5.3)

The shorthand notation ∑
ωir
p=−ωir

f (p) :≡ ∑
ω
k=−ω

f (k/ωuv) adopted above for summation over elements of
1

ωuv
?Zn

2ω+1 will be used through the rest of this work. We take this object to be our model in ?Hilb of an
unbounded quantum particle in an n-dimensional real space, and we refer to the family |χ p〉+ωir

p1,...,pn=−ωir

as the momentum eigenstates for HRn . Pretty much by definition, this object comes with a unital
special commutative †-Frobenius algebra corresponding to the momentum observable for the unbounded
particle:

:=
+ωir

∑
p1=−ωir

...
+ωir

∑
pn=−ωir

〈χ p|:=
+ωir

∑
p1=−ωir

...
+ωir

∑
pn=−ωir

|χ p〉⊗ |χ p〉⊗〈χ p|

(5.4)
The labels of the momentum eigenstates come endowed with the infinite abelian group structure of
( 1

ωuv
?Zn

2ω+1,⊕,0), and we can consider the linear extension of the group multiplication and unit:

:= |χ0〉:=
+ωir

∑
p1,q1=−ωir

...
+ωir

∑
pn,qn=−ωir

|χ p⊕q〉⊗〈χ p|⊗ 〈χq| (5.5)
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It is immediate to check that these two maps form, together with their adjoints, a unital quasi-special
commutative †-Frobenius algebra, with normalisation factor (2ω +1)n. Furthermore, a result of Ref. [12]
guarantees that ( , ) is a strongly complementary pair of unital †-Frobenius algebras.

The same proof from Section 3 can be adapted to show that the following position eigenstates,
indexed by x ∈ 1

ωir
?Zn

2ω+1, are the -classical states (orthogonal and with square norm (2ω +1)n):

|δx〉 :=
+ωir

∑
p1=−ωir

...
+ωir

∑
pn=−ωir

χ p(x)∗|χ p〉 (5.6)

Note once again the nice duality between the cut-offs of the momenta (which have magnitude bounded
above by

√
nωirh̄ and are discretised onto a lattice of infinitesimal mesh h̄

ωuv
) and the cut-offs of the posi-

tions (which have magnitude bounded above by
√

nωuv and are discretised onto a lattice of infinitesimal
mesh 1

ωir
). For all x ∈ 1

ωir
?Zn

2ω+1 and all standard smooth f ∈ L2[Rn], the position eigenstates can easily
be shown to satisfy the identity st(〈δx| f 〉) = f (st(x)): hence, the position eigenstates (as we defined them)
behave exactly as expected from Dirac delta functions, and we can legitimately refer to as the position
observable for the unbounded particle. Furthermore, standard smooth functions span the entirety of
L2[Rn], and hence the delta functions defined above show that the subspace defined by the truncating
projector PHRn spans the near-standard vectors in ? L2[Rn].

Weyl CCRs using diagrams in ?Hilb. As a sample application of our non-standard framework, we
provide a diagrammatic proof of the Weyl Canonical Commutation Relations, using the ?Hilb object
HRn which we have just constructed. For all x ∈ Rn, let Ux be the unitary on L2[Rn] corresponding to
space-translation of wavefunctions by x. For all p ∈ Rn, let Vp be the unitary corresponding to momentum-
boost by ph̄. Let x′ ∈ 1

ωir
?Zn

2ω+1 and p′ ∈ 1
ωuv

?Zn
2ω+1 be such that st(x′) = x and st(p′) = p. The unitaries

Ux and Vp can be expressed diagrammatically as follows (because acts as space-translation on delta
functions, and acts as momentum-boost on plane-waves):

Ux Vp
δx′

st= st=
χ p′

(5.7)

We can then deduce the Weyl Canonical Commutation relations for the position and momentum observ-
ables of a quantum particle in n-dimensional real space:

VpUx ei2π p·x UxVp
χ p′χ p′δx′ δx′

= χ†
−p′δx′ =st st=

(5.8)
The proof of the central equality can be carried out fully diagrammatically in the non-standard framework,
using strong complementarity for ( , ) together with the fact that delta functions are -classical states
and that plane-waves are -classical states:

δx′

=
χ†
−p′δx′

=

δx′ χ†
−p′

χ p′

(5.9)

=

δx′

=
χ†
−p′δx′

δx′ χ†
−p′

δx′χ†
−p′

χ p′

χ†
−p′δx′

(5.10)
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6 Quantum fields on lattices

In Section 5, we have seen that there are so many non-standard rational numbers that the standard reals
can be approximated with ease by considering an infinite lattice with infinitesimal mesh. In this Section,
we will see that there also are so many non-standard integers that quantum fields living on lattices,
traditionally forming a non-separable Hilbert space, can be modelled in our framework.

If V is a standard finite-dimensional Hilbert space with dimension greater than one, and X is some
countably infinite set, then it is well known that the space V⊗X of V -valued quantum fields on X is a
non-separable standard Hilbert space: any orthonormal basis would have cardinality (dimV )X , which is
strictly larger than ℵ0 whenever dimV > 1 and X is infinite (we use the infinite direct product V⊗X of
von Neumann [17]). Our model begins with the following observation: if D,m ∈ N then we have Dm ∈ N,
and hence by Transfer Theorem if D,µ ∈ ?N then we must have Dµ ∈ ?N. Fix D,m ∈ N+, and observe
that the natural numbers between 1 and Dm can be constructively interpreted as strings of length m with
characters chosen in {1, ...,D}. Denote the corresponding decoding/encoding functions as follows:

decD,m : {1, ...,Dm}→ {1, ...,D}m encD,m : {1, ...,D}m→{1, ...,Dm} (6.1)

By Transfer Theorem, we obtain a pair of corresponding decoding/encoding functions decD,µ and encD,µ

for each pair of positive non-standard naturals D,µ ∈ ?N+; we will use underlined letters s to denote
strings seen as functions s ∈ {1, ...,D}µ , and undecorated letters s to denote the corresponding encodings
of strings as numbers s ∈ {1, ...,Dµ}.

Take some orthonormal family |es〉 ∈ |H | of vectors in some non-standard Hilbert space |H |, and
a family ψs ∈ ?C of non-standard complex numbers, both indexed by the internal set of all strings
s ∈ {1, ...,D}µ for some positive non-standard naturals D,µ ∈ ?N+. By using the decoding function, we
can always construct a vector |ψ〉 of |H | as follows:

|ψ〉 :=
Dµ

∑
s=1

ψdecD,µ (s)|edecD,µ (s)〉 (6.2)

Now consider an object H := (|H |,PH ) of ?Hilb, with PH := ∑
dimH
d=1 |ed〉〈ed | for some orthonormal

family |ed〉dimH
d=1 : we wish to construct an object H ⊗?Zn

2ω+1 corresponding to a H -valued quantum field
living on the lattice ?Zn

2ω+1. Define the shorthands D := dimH and µ := (2ω +1)n, and consider the
following orthonormal family |es〉 of non-standard states in |H |⊗µ (a non-standard Hilbert space which
exists by Transfer Theorem) indexed by strings s ∈ {1, ...,D}µ :

|es〉 :=
+ω⊗

k1=−ω

...
+ω⊗

kn=−ω

|es(k)〉 (6.3)

We introduced the following shorthand to access the characters of the indexing strings:

s(k) :≡ s
(

enc2ω+1,n
(
k1 +ω +1, ...,kn +ω +1

))
∈ {1, ...,D} (6.4)

We have chosen to introduce the shorthand above because s is technically s : {1, ...,µ}→ {1, ...,D}, but it
is more physically significant to treat it as s : {−ω, ...,+ω}n→ {1, ...,D}, since we are working in the
context of n-dimensional lattices.
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Traditionally, this procedure would result in an uncountable family, which cannot be adequately
summed in the standard framework. In our non-standard framework, on the other hand, we can use the
encoding/decoding trick to sum it and define a legitimate truncating projector:

P
H
⊗?Zn

2ω+1
:=

Dµ

∑
s=1
|edecD,µ (s)〉〈edecD,µ (s)| (6.5)

We take the corresponding object H ⊗?Zn
2ω+1 := (|H |⊗µ ,P

H
⊗?Zn

2ω+1
) of ?Hilb to model H -valued quan-

tum fields on the lattice ?Zn
2ω+1 within our framework. As a matter of convenience, we will adopt a more

slender notation for sums over strings, leaving the decoding step s 7→ s := decD,µ(s) implicit:

P
H
⊗?Zn

2ω+1
= ∑

s
|es〉〈es| (6.6)

Now consider a decomposition PH :=∑
D
d=1 |φ

(k)
d 〉〈φ

(k)
d | of the truncating projector PH for the quantum

system H in terms of orthonormal families specified at each point k of the lattice, and let
(

(k)
)

k∈?Zn
2ω+1

be
the associated non-degenerate observable on H . Then the truncating projector P

H
⊗?Zn

2ω+1
for the quantum

field is correspondingly decomposed as P
H
⊗?Zn

2ω+1
:=∑s |φs〉〈φs|, where |φs〉 :=

⊗+ω

k1=−ω
...
⊗+ω

kn=−ω
|φ (k)

s(k)〉.
The associated non-degenerate observable for the quantum field is given by the following unital special
commutative †-Frobenius algebra:

:= ∑
s
〈φs|:=∑

s
|φs〉⊗ |φs〉⊗〈φs| (6.7)

In Sections 3 and 4, we constructed objects HTn and HZn having ? L2[Tn] and ? L2[Zn] as their
underlying Hilbert spaces, and we considered truncating projectors obtained from the extension of a
standard orthonormal basis. In Section 5, we constructed an object HRn having ? L2[Rn] as its underlying
Hilbert space, but we constructed the truncating projector using a genuinely non-standard orthonormal
basis. In all three cases, the underlying Hilbert space is the non-standard extension ?V of a separa-
ble standard Hilbert space V , and the connection to the traditional quantum mechanical formalism is
guaranteed by Theorem 2.1. Unfortunately, Theorem 2.1 is not applicable in this Section: in order to
establish a connection between H ⊗?Zn

2ω+1 and the traditional model for quantum fields on lattices, we will
formulate a suitable universal property for H ⊗?Zn

2ω+1 . In the remainder of this Section, we will assume
that |H |= ?V for some standard separable Hilbert space V .

Consider the infinite direct sum of standard Hilbert spaces ∏k∈Zn V . If W is another standard
Hilbert space, we say that a function f̃ :

(
∏k∈Zn V

)
→W is multilinear if for each k ∈ Zn and each

u : Zn\{k} → V the function f̃
∣∣
k,u : V →W defined by f̃

∣∣
k,u (v) := f̃ (u∪ {k 7→ v}) is linear. Now

consider the non-standard extension ∏k∈?Zn
?V of the direct sum, and let ∏k∈?Zn

2ω+1
H be the object

of ?Hilb obtained by restricting non-standard internal maps ?ϕ : ?Zn→ ?V to non-standard internal
maps ?ϕ : ?Zn

2ω+1→ ?V , extending the projector PH to the direct sum ∏k∈?Zn
2ω+1

?V by pointwise action.
Multilinear maps F̃ :

(
∏k∈?Zn

2ω+1
H
)
→K are defined analogously to the standard case.

Theorem 6.1 (Universal property for the infinite tensor product H ⊗?Zn
2ω+1).

Let |H |= ?V , and define θ :
(

∏k∈?Zn
2ω+1

H
)
→H ⊗?Zn

2ω+1 to be the following multilinear map:

θ
(

k 7→
D

∑
d=1

vd(k) |ed〉
)

:= ∑
s

( +ω⊗
k1=−ω

...
+ω⊗

kn=−ω

vs(k)(k) |es(k)〉
)

(6.8)
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Then for every object K with |K |= ?W and every multilinear map F̃ :
(

∏k∈?Zn
2ω+1

H
)
→K there is a

unique linear map F : H ⊗?Zn
2ω+1 →K such that the following diagram commutes:

∏
k∈?Zn

2ω+1

H
H ⊗?Zn

2ω+1

K

θ

F
F̃ (6.9)

Proof. The map F can be defined on the standard orthonormal basis of H ⊗?Zn
2ω+1 as follows:

F
( +ω⊗

k1=−ω

...
+ω⊗

kn=−ω

|es(k)〉
)

:= F̃
(

k 7→ |es(k)〉
)

(6.10)

Commutativity of Diagram 6.9 and uniqueness of F are both consequences of the following equation for
F̃ , together with the observation that θ

(
k 7→ |es(k)〉

)
=
⊗+ω

k1=−ω
...
⊗+ω

kn=−ω
|es(k)〉:

F̃
(

k 7→
D

∑
d=1

vd(k) |ed〉
)

= ∑
s

(
F̃
(

k 7→ |es(k)〉
)

∏
k∈?Zn

2ω+1

vs(k)(k)
)

(6.11)

Equation 6.11 itself is a consequence of Transfer Theorem, because the corresponding standard statement
is valid for all standard multilinear f̃ :

(
∏k∈{−m,...,+m}n V

)
→W , for any choice of m ∈ N.

7 Quantum fields in real space

In Section 5, we have seen that there are so many non-standard rational numbers that the standard reals
can be approximated with ease by considering an infinite lattice with infinitesimal mesh. In Section 6, we
have seen that there are so many non-standard integers that quantum fields on lattices can be modelled in
our framework. In this Section, we will put both tricks together to show that, in fact, quantum fields on
unbounded real space can also be modelled in our framework (a similar argument applies to tori).

Consider again an object H := (|H |,PH ) of ?Hilb, with PH := ∑
D
d=1 |ed〉〈ed | for some orthonormal

family |ed〉Dd=1. We fix two odd infinite natural numbers ωuv,ωir ∈ ?N, and let 2ω +1 := ωuvωir. We wish
to construct the system H ⊗ 1

ωuv
?Zn

2ω+1 corresponding to a H -valued quantum field living on the lattice
1

ωuv
?Zn

2ω+1 in ?Rn, which we have seen in Section 5 to approximate the real space Rn to infinitesimal
mesh 1

ωuv
(and all the way up to some infinity ωir, where the lattice “circles around”).

As objects of ?Hilb, the space H ⊗?Zn
2ω+1 we constructed in the previous Section and the space

H ⊗ 1
ωuv

?Zn
2ω+1 we wish to construct in this Section are isomorphic: to see this, it suffices to consider the

isomorphism of abelian groups sending k ∈ ?Zn
2ω+1 to p := 1

ωuv
k ∈ 1

ωuv
?Zn

2ω+1. As a consequence, the
only formal distinction is that we will write our summations over p rather than k, i.e. we will use the same
shorthand ∑

+ωir
p=−ωir

f (p) :≡ ∑
+ω

k=−ω
f (k/ωuv) that we introduced in Section 5.

When it comes to quantum field theory, however, the two objects H ⊗?Zn
2ω+1 and H ⊗ 1

ωuv
?Zn

2ω+1 have
very different interpretations, corresponding to the different ways in which the underlying lattice is
immersed into n-dimensional non-standard real space ?Rn (and successively related to standard real
space Rn). In the previous Section, the underlying lattice was embedded as the lattice ?Zn

2ω+1 of standard
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mesh 1 in ?Rn, while in this section the underlying lattice is embedded as the lattice 1
ωuv

?Zn
2ω+1of

infinitesimal mesh 1
ωuv

. From the perspective of non-standard reals, the two lattices are equivalent
(rescaling by a factor of ωuv ∈ ?R), but from the perspective of standard reals they are extremely different:
restricting to near-standard reals and quotienting by infinitesimal equivalence sends ?Zn

2ω+1 to the lattice
Zn, while 1

ωuv
?Zn

2ω+1 covers the entirety of Rn. We now provide justification for the interpretation of

H ⊗ 1
ωuv

?Zn
2ω+1 as a space of quantum fields on real space.

Just as we did in the previous Section, we will assume that |H | = ?V for separable standard V .
Consider the direct integral of Hilbert spaces

∫ ⊕
Rn V d p (in the sense of von Neumann [18]), i.e. the space

of square-integrable functions ϕ : Rn→V , together with the inner product 〈ψ|ϕ〉 :=
∫

Rn 〈ψ(p)|ϕ(p)〉d p.
Consider its non-standard extension, and let ∏p∈ 1

ωuv
?Zn

2ω+1
H be the object obtained by restricting non-

standard internal maps ?ϕ : ?Rn→V to non-standard internal maps ?ϕ : 1
ωuv

?Zn
2ω+1→V , and appropri-

ately extending the projector PH to the direct sum ∏p∈ 1
ωuv

?Zn
2ω+1

?V .

The universal property for the infinite tensor product H ⊗ 1
ωuv

?Zn
2ω+1 takes a form similar to that of

Theorem 6.1, and has a similar proof: one only needs to use ∏p∈ 1
ωuv

?Zn
2ω+1

H in place of the original

∏k∈?Zn
2ω+1

H . The non-trivial part is the connection between ∏p∈ 1
ωuv

?Zn
2ω+1

H and the direct integral∫ ⊕
Rn V d p. In the previous Section, the connection between ∏k∈?Zn

2ω+1
H and the direct sum ∏k∈Zn V

was immediate: a function ϕ : Zn → V extends to a function ?ϕ : ?Zn → ?V , which then restricts to
?ϕ : ?Zn

2ω+1→ ?V and then back to ϕ : Zn→V . In this Section, we note that
∫ ⊕

Rn V d p is the L2 completion
of the space of continuous square-integrable functions ϕ : Rn→ V , so it is enough to show that these
can be reconstructed from the corresponding ?ϕ : 1

ωuv
?Zn

2ω+1→ ?V . But this is indeed the case: if ϕ is
continuous then we have that st(x) = st(y) implies st( ?ϕ(x)) = st( ?ϕ(y)), and in particular we can obtain
ϕ back from ?ϕ in a unique way by setting ϕ(z) := st( ?ϕ(x)) for any x ∈ 1

ωuv
?Zn

2ω+1 such that st(x) = z.

8 Towards Quantum Field Theory in Categorical Quantum Mechanics

A legitimate question to ask at this point is: How does Quantum Field Theory fit into the framework we
described? Why are we talking about “quantum fields” in the context of certain infinite tensor products?

As part of canonical quantisation, classical fields from the Lagrangian formalism are translated into
certain operator-valued distributions, also known as field operators, acting upon quantum states living
in a Fock space. Using the field operators, the classical Lagrangian can be translated into the dynamics
and interactions of the quantum field theory, so it is no surprise that they occupy the vast majority of the
literature dedicated to the subject.

It is worth noting, however, that the field operators play a very different role from the classical fields
that they originally quantised: classical fields are states of a classical system, while field operators act
upon states of a quantum system (e.g. the vacuum). In this sense, the closest correspondents in quantum
field theory to the fields of classical field theory or the wavefunctions of quantum mechanics are, in fact,
the quantum states in the Fock space. Just as C2 is the space of quantum states for a qubit, so the Fock
space is the space of quantum states for a quantum field. And just as we freely refer to the object C2 as
a qubit, so we take the liberty to refer to the Fock space as a quantum field. We will use the term field
operator when talking about the operator-valued distributions obtained by canonical quantisation.

Let’s consider the textbook example of the real scalar field, a relativistic classical field φ(x, t) satisfying
the Klein-Gordon equation:

∂µ∂
µ

φ +m2
φ = 0 (8.1)
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When looking at the field in momentum space φ(p, t), the Klein-Gordon equation becomes:

(
∂ 2

∂ t
+(|p|2 +m2)

)
φ(p, t) = 0 (8.2)

Hence a momentum space solution φ(p, t) to the Klein-Gordon equation can be thought of as a field of
simple harmonic oscillators, each oscillator vibrating with its own amplitude and at a frequency given by
νp :=

√
|p|2 +m2 for each point p ∈ R3 of momentum space. In order to quantise the real scalar field φ ,

we simply need to quantise the simple harmonic oscillators. We do so in our non-standard framework.
Consider the object H of ?Hilb defined as follows, where τ is some infinite non-standard natural and

|n〉n∈?N is the standard orthonormal basis for ? L2[N]:

H :=
(
? L2[N],

τ

∑
n=0
|n〉〈n|

)
(8.3)

We will think of H as the non-standard counterpart for a quantum harmonic oscillator: the states |n〉
correspond to energy eigenstates for the oscillator, and we extended our range of energy values all the
way up to some infinite natural τ . We define the ladder operators a and a† on H as follows:

a|n〉=

{
0 if n = 0
√

n|n−1〉 otherwise
a†|n〉=

{
0 if n = τ
√

n+1|n+1〉 otherwise
(8.4)

It is easy to check that these operators satisfy the usual canonical commutation relations, up to a correction
factor accounting for the truncation of energy above the infinite τ:

[a,a†] = idH − (τ +1)|τ〉〈τ| (8.5)

When restricting ourselves to finite energy states, these operators are exactly the ladder operators for the
quantum harmonic oscillator. We then proceed to define the number operator N := a†a, and we obtain
the usual property and commutators for it (no correction this time):

N|n〉= n|n〉 [N,a†] = a† [N,a] =−a (8.6)

The number operator is associated to a †-SCFA on H , the number observable, with |n〉 as classical
states. For a quantum harmonic oscillator of frequency ν , the Hamiltonian can finally be defined as:

H := h̄νN (8.7)

Aside perhaps for the correction term in the canonical commutation relation, this is exactly what we
would expect the non-standard version of the quantum harmonic oscillator to look like, and the traditional
quantum harmonic oscillator is recovered exactly by restricting to states of finite energy.

We saw before that a solution to the Klein-Gordon can be interpreted to describe a field of simple
harmonic oscillators at each point p ∈ R3 of momentum space, vibrating independently with frequencies

given by the expression νp =
√
|p|2 +m2. The natural quantisation of such a scenario involves considering

independent quantum harmonic oscillators at each point p ∈ R3 of momentum space, i.e. an infinite direct
product of separable Hilbert spaces over the 3-dimensional continuum. Because such a space would be
mathematically unwieldy, and because only finite energy states are deemed to be physically interesting,
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the infinite direct product of quantum harmonic oscillators is never constructed, and the Fock space is
considered instead. The Fock space is the Hilbert space of joint states for the quantum harmonic oscillators
which is spanned by those separable states involving only finitely many oscillators not in their ground
state: the state |n〉 for the oscillator at point p ∈ R3 is considered to count the number of quantum particles
with definite momentum p, and the Fock space is spanned by all states containing finitely many particles.

Within our non-standard framework, we don’t have to worry about infinite tensor products, and we
don’t have to restrict ourselves to finite energy states or finite number of particles: as a consequence,
we quantise the real scalar field φ by constructing the field of quantum harmonic oscillators in all
its glory. This can be done by considering the space H ⊗ 1

ωuv
?Z3

2ω+1 defined in Section 7 above: we
discretise momentum space to an infinite lattice 1

ωuv
?Z3

2ω+1 of infinitesimal mesh 1/ωuv, and we place an
independent quantum harmonic oscillator H at each point of the lattice (with varying frequency νp).

For each p ∈ 1
ωuv

?Z3
2ω+1, we write ap and a†

p for the ladder operators acting on the quantum Harmonic
oscillator at p (tensored with the identity on all other oscillators), and |n, p〉τn=0 for the orthonormal basis
of the oscillator at p. We define the rescaled versions a(p) :=

√
ω3

uvap and a†(p) :=
√

ω3
uva†

p, which
satisfy the commutation relations [a(p),a(q)] = [a†(p),a†(q)] = 0 and:

[a(p),a†(q)] =

{
ω3

uv
(
id− (ν +1)|ν , p〉〈ν , p|

)
if p = q

0 otherwise
(8.8)

The usual field operators π(x) and φ(x) can be defined from a(p) and a†(p) through the following
discretised integral, for all points x ∈ 1

ωir
?Z3

2ω+1 in space:

φ(x) := ∑
p

1
ω3

uv

1√
νp

[
a(p)ei2π p·x +a†(p)e−i2π p·x

]
π(x) := ∑

p

1
ω3

uv
(−i)

√
νp

2

[
a(p)ei2π p·x−a†(p)e−i2π p·x

]
(8.9)

The field operators satisfy commutation relations similar to the ones of the rescaled ladder operators,
as would be expected. For every n : 1

ωuv
?Z3

2ω+1→{0, ...,τ}, we can define the state |n〉 :=⊗p|n(p), p〉.
Then the discretised integral of the (rescaled) number observables for all quantum harmonic oscillators at
all points p ∈ 1

ωuv
?Z3

2ω+1 of momentum space gives rise to the number operator N on H ⊗ 1
ωuv

?Z3
2ω+1 :

N := ∑
p

1
ω3

uv
a†(p)a(p) = ∑

p
a†

pap = ∑
n

(
∑
p

n(p)
)
|n〉〈n| (8.10)

The Hamiltonian for the quantum field is similarly obtained as a discretised integral:

H := ∑
p

1
ω3

uv
h̄νpa†(p)a(p) = ∑

p
h̄νpa†

pap = ∑
n

(
∑
p

h̄νpn(p)
)
|n〉〈n| (8.11)

The traditional Fock space is recovered by considering the states |n〉 with finite energy 〈n|H|n〉 (i.e. those
with a finite number of particles, all having finite momenta). The corresponding number of particles at a
standard point q ∈ R3 of standard momentum space, which we will denote by st(n)(q), is then given by
the following expression:

st(n)(q) := ∑
p∈ 1

ωuv
?Z3

2ω+1
such that st(p)=q

n(p) (8.12)

The further development of traditional QFT machinery within our framework is left to future work.
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9 Conclusions and Future Work
In the first section of this work, we have presented a more mature formulation of the category ?Hilb,
refining and expanding the original definition from Ref. [11] in a number of ways. Firstly, the new
definition is no longer restricted to standard Hilbert spaces and non-standard extensions of standard
orthonormal bases, but instead allows all kinds of non-standard Hilbert spaces and orthonormal families.
Secondly, the new definition is basis-independent and has a neater categorical presentation as a full
sub-category of the Karoubi envelope for the category of non-standard Hilbert spaces. Thirdly, objects are
no longer self-dual, and compact closure is now formulated in a basis-independent way, analogous to the
one used in fHilb. Backward compatibility is guaranteed by the fact that the category ?Hilb originally
defined in Ref. [11] is equivalent to a full-subcategory of the category ?Hilb redefined in this work.

Our new definition allowed us to push the framework beyond its original limitations, and the bulk
of this work was dedicated to the explicit constructions of five families of infinite-dimensional quantum
systems that are of interest to the practising quantum theorist. In Sections 3 and 4 we have presented
the quantum systems for particles in boxes with periodic boundary conditions and particles on lattices:
both constructions were already within reach of the original definition of ?Hilb, and the special case of a
particle in a one-dimensional box with periodic boundary conditions was already explored in Ref. [11].
The first real application of our extended ?Hilb category has come in Section 5, where it was put to work
in presenting the quantum system for particles in Rn. Key to this construction have been the use of a truly
non-standard orthonormal basis (i.e. not the extension of a standard one), together with an approximation
of Rn achieved by using a non-standard lattice of infinitesimal mesh in ?Rn.

We have also seen that our extended definition allows for the treatment of certain cases of interest in
quantum field theory. Thanks to a key observation about exponentials of infinite natural numbers—which
are themselves infinite natural numbers by Transfer Theorem—and exploiting the freedom to work with
non-separable spaces, we have constructed in Section 6 a quantum system suitable for the treatment of
quantum fields on a cubic lattice Zn. Finally, in Section 7 we have combined the ideas of Sections 5 and 6
to construct a quantum system suitable for the treatment of quantum fields in Rn, and in Section 8 we have
provided a first direct link to the traditional quantum field theoretic framework.

This work is a significant development of the original Ref. [11], and provides a solid basis for
the application of algebraic and diagrammatic methods from CQM to infinite-dimensional quantum
mechanics and quantum field theory. From here, we foresee a number of interesting further developments
and applications, some of which are briefly detailed below.

Future work. To begin with, an extension of Theorem 2.1 to the entirety of ?Hilb should be a priority
in future developments, as it would establish a uniformly tight relationship between our framework
and more traditional approaches to quantum mechanics and quantum field theory. In the same spirit of
relating to mainstream works, we endeavour to explicitly construct more quantum systems of widespread
interest—such as wavefunctions/fields over locally compact groups—and to explore more sophisticated
applications to quantum field theory and quantum gravity (e.g. constructing analogues of algebraic
quantum field theory and introducing Feynman diagrams).

On a different note, we believe that it would be extremely interesting to analyse the natural infinite-
dimensional extension of a number of quantum protocols already formalised in CQM. Examples might
include simple protocols—such as quantum teleportation and quantum key distribution—or more elabo-
rate protocols—such as the generalised Mermin-type non-locality arguments of Ref. [13], and infinite-
dimensional extensions of the work on tight reference-frame-independent quantum teleportation of
Ref. [25]. To kick-start this line of research, an application of ?Hilb to the Hidden Subgroup Problem for
the infinite group Zn has already appeared in Ref. [12], based on the original ?Hilb from Ref. [11].
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A The non-standard cyclic group ?Z2ω+1

The abelian group ?Z2ω+1 is defined to be the internal set of non-standard integers {−ω, ...,+ω} endowed
with 0 as unit and with the following binary operation ⊕ as group multiplication:

k⊕h :=


k+h if −ω ≤ k+h≤+ω

k+h− (2ω +1) if +ω < k+h
k+h+(2ω +1) if k+h <−ω

(A.1)

The group ?Z2ω+1 has the integers as a subgroup: if k,h ∈ Z are standard integers, then certainly
−ω ≤ k+h≤+ω , and hence k⊕h = k+h. More in general, the group ( ?Zn

2ω+1,⊕,0) contains Zn as
a subgroup, and as a consequence it is a legitimate non-standard extension of the translation group Zn

of an n-dimensional lattice. Furthermore, the group of automorphisms of ?Zn
2ω+1 contains the group of

automorphisms of Zn as a subgroup (rotations and reflections about the origin are the same, but there are
more translations of ?Zn

2ω+1 than there are of Zn).
It is not hard to show that ?Z2ω+1 ∼= Z×C for some dense abelian group C. As the elements of C, we

take exactly one representative from each full copy of Z in {−ω,+ω}, plus a single element representing
both the final segment +ω −N and the initial segment −ω +N. For each full copy of Z, we take the
representative to be the zero element of that copy, and in particular we let 0C := 0 (the zero element of the
standard integers). Furthermore, we imagine the final segment +ω−N and the initial segment −ω +N as
glued together to form a single copy of Z, and without loss of generality we pick the representative to be
−ω (so that −ω is the zero element for that that virtual copy of the integers). Given these considerations,
we can always decompose k ∈ ?Z2ω+1 uniquely as (k′,θk) in terms of a standard integer component k′ ∈Z
and a representative θk ∈C:

k′ =


k−θk if θk 6=−ω

k+ω if θk =−ω and k ∈ −ω +N

k− (ω +1) if θk =−ω and k ∈+ω−N

(A.2)

The standard integer components can be added independently of the representatives in C (with some
care taken for the boundary case of θk =−ω), so that this defines a group isomorphism ?Z2ω+1 ∼= Z×C.
Also, recall that the infinite positive and negative integers form two dense, uncountable sets, each having
no maximum or minimum, and with the finite integers Z in between [23]: as a consequence, the group C
is dense and uncountable (but, unlike the non-standard integers, it is not totally ordered).
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There are three different embeddings of the periodic non-standard cubic lattice ?Zn
2ω+1 that are of interest

in this work, reflecting distinct applications to the modelling of cubic lattices Zn, the approximation of
real space Rn, and the approximation of real toroidal space Tn:

(i) the embedding as the lattice ?Zn
2ω+1 in ?Rn, where we send k ∈ ?Zn

2ω+1 to k ∈ ?Rn (not a subgroup);

(ii) the embedding as the lattice 1
ωuv

?Zn
2ω+1 in ?Rn, where ω := ωuvωir for some infinite ωuv,ωir ∈ ?N+

and we send k ∈ ?Zn
2ω+1 to p := k/ωuv ∈ ?Rn (also not a subgroup);

(iii) the embedding as the subgroup 1
2ω+1

?Zn
2ω+1 in ?Tn, where we send k ∈ ?Zn

2ω+1 to 1
2ω+1 k ∈ ?Tn.

The first embedding uses ?Zn
2ω+1 to approximate Zn, under the observation that the latter is a subgroup of

the former. The second embedding instead uses ?Zn
2ω+1 to approximate Rn: this is a bit more complicated,

as Rn cannot be seen as a subgroup of ?Zn
2ω+1 (the latter is discrete, while the former is dense). However,

we can consider the subgroup of ?Zn
2ω+1 given by those k such that p := k/ωuv is a near-standard vector

in ?Rn, and we can quotient it by infinitesimal equivalence of vectors to obtain the group Rn. Hence the
second embedding can be seen to approximate Rn by using a non-standard lattice of infinitesimal mesh, and
working up to infinitesimal equivalence. The third embedding is used similarly to the second embedding,
but to approximate Tn instead of Rn (with a quotient group homomorphism 1

2ω+1
?Zn

2ω+1 � Tn).
It should be noted that 1

ωuv
?Zn

2ω+1 is a lattice, and as such it does not enjoy the same symmetries of the
continuum Rn: finite translations can be approximated up to infinitesimals, but rotations cannot. This is in
contrast to the ?Zn

2ω+1 case, the automorphisms of which contain the automorphisms of Zn as a subgroup.
When working with quantum systems, however, we are not really interested in the symmetries Φ of Rn,
but rather in the unitary automorphisms UΦ of L2[Rn] that they induce: because the subspace defined by
the truncating projector PHRn spans the near-standard vectors, all these unitaries lift from L2[Rn] to HRn .
From the point of view of the non-standard quantum system HRn , it is “as if” 1

ωuv
?Zn

2ω+1 really possessed
all the symmetries of Rn.

B Delta functions, plane waves and position/momentum cut-offs

We present here the proof that the position eigenstates |δx〉 defined in Section 3 are the classical states8 for
the group algebra of ?Zn

2ω+1, exactly when x ∈ 1
2ω+1

?Zn
2ω+1:

◦
(
|δx〉
)
= ∑

n
∑
k
|χk〉⊗ |χn	k〉 〈χn|δx〉= ∑

n
∑
k
|χk〉⊗ |χn	k〉 χn(x)∗

= ∑
n

∑
k
|χk〉⊗ |χn	k〉 χk(x)∗χn	k(x)∗ei2π(2ω+1)s·x

=
[
∑
n′

χn′(x)∗|χn′〉
]
⊗
[
∑
k

χk(x)∗|χk〉
]
= |δx〉⊗ |δx〉. (B.1)

In the third line, the extra phase ei2π(2ω+1)s·x appears because χk is a character of Zn, not of ?Zn
2ω+1: the

value of s ∈ {−1,0,+1}n keeps track of whether some modular reductions were necessary to go from
k⊕ (n	 k) to n. It is cancelled out if and only if we require x to be in the form x = j 1

2ω+1 , for some
j ∈ ?Zn

2ω+1. Hence the duality between the large-scale cut-off for momenta and the small-scale cut-off
for positions, a well-understood phenomenon in quantum mechanics, arises as a consequence of a purely
algebraic requirement in our non-standard framework. Similar phases appear for the setups of Section
4 and Section 5, with similar large/small-scale dualities following from the algebraic requirement of
copiability for classical states.

8Here we only give the proof for the copy condition of -classical states, but the proofs for the delete and transpose conditions
defining -classical states follow similar lines.
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