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Mixing and decoherence are both manifestations of classicality within quantum theory, each of

which admit a very general category-theoretic construction. We show under which conditions these

two ‘roads to classicality’ coincide. This is indeed the case for (finite-dimensional) quantum the-

ory, where each construction yields the category of C*-algebras and completely positive maps. We

present counterexamples where the property fails which includes relational and modal theories. Fi-

nally, we provide a new interpretation for our category-theoretic generalisation of decoherence in

terms of ‘leaking information’.

Physical, computational, and many other theories can very generally be described by (monoidal)

categories. Examples include categorical logic [21], categorical programming language semantics [2],

and more recently, categorical quantum mechanics [1]. More specifically, we think of any (monoidal)

category as a candidate theory of physical systems (objects) and processes (morphisms). When view-

ing morphisms as quantum processes, two universal constructions provide roads to classical physics,

allowing one to build new systems to describe classical data, respectively embodying a generalisation of

mixing and of decoherence.

Firstly, one may represent mixing in a category C by means of sum-enrichment. This is justified

by the fact that, when C is monoidal, endomorphisms of the tensor unit (i.e. scalars) allow one to then

form weighted mixtures of morphisms, generalising the probabilistic mixtures appearing in information

theory. When C is sum-enriched, we may apply a universal construction, the biproduct completion

C⊕ [22] to generate classical set-like systems, with the biproduct playing the role of the set-union.

The second road to classicality, decoherence, is given in the quantum formalism by an idempotent,

causal operation that sets all off-diagonal entries of a density matrix to 0. Causality may be discussed

in any category C coming with suitable ‘discarding’ morphisms, and we generalise decoherence to any

causal idempotent in such a category. Applying our next universal construction, (a variant of) the Karoubi

Envelope Split (C ) (splitting of idempotents or Cauchy completion) [5] generates systems equipped with

such a ‘decoherence’ map which ‘classicise’ their processes.

In this article, we investigate when there is an embedding C⊕ → Split (C ) (Theorem 2.13) and when

it is an equivalence (Corollary 2.15), showing that this is the case for quantum theory (Corollary 3.4). In

this case one recovers not only classical theory, but also intermediate systems described by C*-algebras,

and remarkably C*-algebras only. In its most concrete form, our main result may be stated as follows:

in the category of finite-dimensional C*-algebras, all causal idempotents split.

Correspondences between these different manners of encoding classicality within categorical quan-

tum mechanics were already studied by Heunen, Kissinger and Selinger [20]. Our result strengthens and

greatly generalises theirs by removing the assumption that the idempotents are self-adjoint. Abstractly,

this allows our approach to apply beyond the ‘dagger compact categories’ considered there to arbitrary
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categories without a dagger, or in fact even monoidal structure. Nonetheless, it is a straightforward corol-

lary that our result respects the monoidal structure when present. While the passage from self-adjoint

idempotents to general idempotents might seem minor, it is precisely this relaxation that allows for a

clear interpretation.

There was a third road in [20] sandwiched between the two others, corresponding to the use of ‘dag-

ger Frobenius algebras’ as a generalisation of C*-algebras. This leads to another interesting interpreta-

tion of our result: as already hinted at above, a structure much weaker than the full-blown axiomatization

suffices to capture all finite dimensional C*-algebras. Moreover this weaker structure has a very clear

interpretation as resulting from leakage of information into the environment, see Section 5. Two ex-

tremes are the fully quantum C*-algebras with minimal leakage, and the fully classical C*-algebras with

maximal leakage. Hence, from a physical perspective, the additional structure of C*-algebras is merely

an artefact of the Hilbert space representation.

This work is related to and draws on several earlier works. In particular, Corollary 2.15 draws on a

result of Blume-Kohout et al. [4], and our approach can be seen as a generalisation of that of Selinger

and collaborators [28, 20] as discussed in depth in Section 6.

1 Setup

Physical theories can be described as categories where we think of the objects in a category as (physical)

systems, of the morphisms as processes, and ◦ as sequential composition of these processes1 . We often

call a process an event when we think of it as forming a part of a probabilistic process (e.g. the occurrence

of a particular outcome in a quantum measurement).

The categories we consider here will typically come with a chosen object to represent ‘nothing’,

denoted I. We call morphisms a : I → A states, e : A → I effects, and s : I → I scalars. Admittedly, this

terminology is slightly abusive unless we take I to be the tensor unit in a monoidal category (C ,⊗, I).
In such a case, where we think of the tensor product ⊗ as parallel composition of processes, we can

introduce or remove the ‘nothing’-object at will via the natural isomorphisms λA : I⊗A→ A and ρA : A⊗
I → A. While most of our example categories are monoidal, our results do not require any monoidal

structure, though importantly they are compatible with any which is present (see Remark 2.17.

Example 1.1 (Pure quantum events). These can be described by a category Quantpure where the objects

are finite-dimensional Hilbert spaces H and morphisms are linear maps identified up to a global phase

(i.e. f ∼ g ⇐⇒ f = eiθ g for some θ ). The monoidal product is the standard Hilbert space tensor product

and the monoidal unit is C. States are therefore vectors in H up to a phase, and effects dual-vectors

again up to a phase. Scalars are complex numbers up to a phase, i.e. positive real numbers.

Two important structures are lacking in this theory of pure quantum events, namely our two roads to

classicality: discarding and mixing.

Definition 1.2. A category with discarding (C , ) is a category coming with a chosen object I and

family of morphisms A : A → I, with I = idI . A morphism f : A → B is causal when B ◦ f = A.

The reason why the term causality is justified is that when restricting to causal processes, a (monoidal)

theory is non-signalling [11]. Hence compatibility with relativity theory boils down to the requirement

that all effects are causal and hence equal to the discarding effect; this notion of causality was first in-

troduced in [7]. However, in this form causality has a very lucid interpretation: whether we discard an

object before or after applying some process is irrelevant, either way the result is the same — the object

1 Indeed we will use the terms category/morphism/object and theory/process/system interchangeably throughout.
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ends up discarded [12, 13]. This guarantees that processes outside the direct surroundings of an exper-

iment can be ignored, and hence is vital to even be able to perform any kind of scientific experiment

without, for example, intervention from another galaxy. We now move on to generalised mixing.

Definition 1.3. A category C is semi-additive when it is enriched in the category CMon of commutative

monoids. That is, each homset forms a commutative monoid (C (A,B),+,0), with + and 0 preserved

by composition. In particular, C has a family of zero morphisms 0 = 0A,B : A → B, for all A,B ∈ C ,

satisfying 0◦ f = 0 = 0◦g for all morphisms f ,g. We often write ∑n
i=1 fi for f1 + · · ·+ fn.

Remark 1.4. We use the term mixing here as in quantum theory it is precisely this semi-additive structure

that allows one to discuss probabilistic mixtures of processes. More generally, in any monoidal category

where the scalars s : I → I can be interpreted as probabilities, we may discuss probabilistic weightings

of processes by setting s · f = λB ◦ (s⊗ f )◦λA
−1

: A → B , and hence probabilistic mixtures ∑i si · fi. If

∑i si = 1 then {si} is a interpreted as a normalised probability distribution, and any such mixing of causal

processes will again be causal.

We now consider the role that these two structures play in quantum theory.

Example 1.5 (Quantum events). These can be modelled as a category Quant which has the same

objects and monoidal product as Quantpure. Note that the bounded operators on a Hilbert space H define

an ordered real vector space B(H ) with associated positive cone B(H )+. Morphisms between these

are then defined as linear order-preserving maps f : B(H )→ B(H ′) which moreover are completely

positive, meaning f ⊗ idK preserves positivity of elements, for all objects K . The semi-additive

structure is defined as the usual addition of linear maps. States therefore correspond to ρ ∈B(H )+ (i.e.

are density matrices), effects can be written in terms of states via the trace inner product 〈ρ , 〉 = tr(ρ )
(i.e. are POVM elements) and scalars are positive real numbers. The discarding effect is given by tr(I )
and so causal states have trace 1 and general causal morphisms are trace preserving (i.e. are CPTP maps).

This category can also be defined in terms of Selinger’s CPM construction [27], which we will return to

in Section 6. There is an embedding of Quantpure in Quant sending a process f : H → H ′ to the map

f ◦−◦ f † : B(H )→ B(H ′).

Remark 1.6. The relationship between Quantpure and Quant as described in the above example can

be viewed in two different ways. Firstly note that Quantpure is a subcategory of Quant and then it is a

standard result in quantum information that there are two equivalent ways to write any general quantum

transformation f : A → B in terms of processes in Quantpure, firstly, via the Kraus decomposition, as

a sum of pure transformations, f = ∑k ak, and secondly, via Stinespring dilation, as a pure process

with an extra output which is discarded, f = ρB ◦ (idB ⊗ C) ◦ g where ρB is the monoidal coherence

isomorphism. Therefore all of the processes of Quant can be obtained from those in Quantpure either by

means of the semi-additive or discarding structure.

This is an important feature of quantum theory, for example, in the form of the purification postulate

[7] which has been used as an axiom in reconstructing quantum theory [8]. More generally, the CPM

construction provides a recipe for producing categories with discarding and a form of purification, see

Section 6. Conceptually, this provides both an ‘internal’ and ‘external’ view on the origins of general

quantum transformations, which this paper develops with the two constructions.

Here are some other example theories which serve as useful points of comparison for quantum theory.

Example 1.7 (Probabilistic classical events). These can be modelled in the category Class, objects are

natural numbers n, and morphisms f : n → m are n×m matrices with positive real entries. The monoidal

unit is 1 and the monoidal product is n⊗m = nm. Semi-additive structure is provided by the matrix sum.

States are therefore column vectors with positive real elements, effects are row vectors and scalars are
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positive real numbers. The discarding effects are those of the form (1,1, ...,1) such that causal states

are normalised probability distributions over a finite set and general causal morphisms are stochastic

matrices.

Example 1.8 (Possibilistic classical events). These can be modelled in the symmetric monoidal cate-

gory Rel of sets and relations. Here objects are sets A,B, . . . , morphisms R : A → B are relations from

A to B, i.e. subsets R ⊆ A × B, sequential composition of relations R : A → B and S : B → C is de-

fined by: S◦R = {(a,c) ∈ A×C | R(a,b)∧S(b,c)} and parallel composition is the set-theoretic product

A⊗B = A×B, so that the monoidal unit is given by the singleton set I = {⋆}. In particular, the scalars

s : I → I are the Booleans {0,1}. Rel has discarding, with A : A → I given by the unique relation with

a 7→ ⋆ for all a ∈ A. Hence, causal relations R : A → B are those satisfying ∀a ∃b R(a,b). This theory is

semi-additive under the union of relations R+S := R∨S.

Example 1.9 (Modal quantum events). The events in modal quantum theories [24, 25] can be modelled

in the symmetric monoidal category where the objects are lattices of subspaces of finite dimensional

vector spaces over a particular finite field Zp, where the choice of field defines a particular modal theory

Modalp. Morphisms are ∨ and ⊥ preserving maps between these lattices. The monoidal product is

inherited from the tensor product of the underlying vector spaces. The monoidal unit is the lattice of

subspaces of a 1D vector space which gives two scalars 0 and 1 interpreted as impossible and possible

respectively. This allows us to define zero-morphisms by 0A,B(a) = 0 for all a. The discarding effect

A : A → I can then be defined by: A ◦ a = 0 ⇐⇒ a = 0IA where a : I → A. This is again a semi-

additive category with ( f ∨g)(a) = f (a)∨g(a) for a ∈ A. In fact, Rel can be viewed as Modalp for the

case ‘p = 1’ in a certain precise sense [15].

Example 1.10. Any semi-ring (R,+,0,1) forms a one object, semi-additive discard category, with = 1.

2 The Two Roads

We now introduce the two constructions which adjoin classicality to a theory. The first follows an external

perspective, describing how one may build mixtures of the existing objects. The second follows the

internal perspective, showing how classicality can emerge due to restrictions arising from decoherence.

The biproduct completion The first of these approaches is captured by a standard notion from cat-

egory theory. Recall that, in any semi-additive category, a biproduct of a finite collection {Ai}
n
i=1 of

objects consists of an object A =
⊕n

i=1 Ai and morphisms Ai

⊕n
i=1 Ai A j

κi π j
satisfying:

πi ◦κ j = 0 for i 6= j πi ◦κi = idAi
(1)

n

∑
i=1

πi ◦κi = idA (2)

This makes A both a product and coproduct of the objects {Ai}
n
i=1. An empty biproduct is the same

as a zero object — an object 0 which is both initial and terminal.

Definition 2.1. In a category with discarding a biproduct is causal when its morphisms κi are causal.

In contrast, the structural morphisms πi will usually not be causal. Note that a semi-additive category

has finite (causal) biproducts whenever it has a zero object and (causal) biproducts of pairs of objects.
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Examples 2.2. Class and Rel each have causal biproducts, given by the direct sum of vector spaces and

disjoint union of sets, respectively. Any grounded biproduct category in the sense of Cho, Jacobs and

Westerbaan (×2) [9] is a semi-additive category with discarding and causal biproducts.

Definition 2.3 (Biproduct completion). Any semi-additive category C may be embedded universally

into one with biproducts C⊕, its free biproduct completion (see [22, Exercise VIII.2.6]). The objects of

C⊕ are finite lists 〈A1, . . . ,An〉 of objects from C , with the empty list forming a zero object. Morphisms

M : 〈A1, . . . ,An〉→ 〈B1, . . . ,Bm〉 are matrices of morphisms 〈Mi, j : Ai → B j〉 and composition is the usual

one of matrices. The identity on 〈A1, . . . ,An〉 is the matrix with identities on its diagonal entries and

zeroes elsewhere.

There is a canonical full and faithful embedding of semi-additive categories C →֒ C⊕ given by

A 7→ 〈A〉. Moreover, this is universal in that any semi-additive functor F : C → E from C to a semi-

additive category E with biproducts lifts to one F̂ : C⊕ → E , unique up to natural isomorphism.

Example 2.4. Generalising Example 1.7, the biproduct completion of a semi-ring R, seen as a one-object

category, is the category MatR of R-valued matrices. In particular Class = MatR+ , while the category

MatB of Boolean valued matrices is equivalent to FRel, the full subcategory of Rel on finite sets.

When C is a category with discarding, C⊕ is also with I = 〈I〉 and 〈A1,...,An〉 = 〈 Ai
: Ai → I〉n

i=1.

To state its universal property, we will need the following notions.

Definition 2.5. A functor F : (C , )→ (D , ) between categories with discarding is causal when the

morphism F(I) : F(I)→ I is an isomorphism and F( A) = F(I) ◦F( A) for all objects A. A natural

transformation is causal when all of its components are.

In particular, the embedding C →֒ C⊕ is causal, with the same universal property as before when

restricted to causal biproducts, functors and natural transformations.

Splitting idempotents We now turn to decoherence, capturing it with the following categorical con-

cept. Recall that, in any category, an idempotent on an object A is a morphism p : A → A satisfying

p ◦ p = p. An idempotent splits when it decomposes as p = m ◦ e for a pair of morphisms e : A → B,

m : B → A, with e◦m = idB. We then denote the splitting pair by (m,e). Conversely, for any such pair of

morphisms, m◦ e is always an idempotent on A.

Definition 2.6. In a category with discarding, an idempotent splits causally when it has a splitting (m,e)
with m causal.

Definition 2.7 (Karoubi Envelope). Splittings for idempotents can always be added freely for any cat-

egory C . The Karoubi Envelope Split(C ) of C is the following category ([5], see also [28]). Objects are

pairs (A, p) where p : A → A is an idempotent. Morphisms f : (A, p)→ (B,q) are morphisms f : A → B

in C satisfying f = q◦ f ◦ p In particular, the identity on (A, p) is p.

Split(C ) has discarding whenever C does, given by (A,p) = ◦ p : (A, p)→ (I, id). In this case we

write Split (C ) for the full subcategory on objects (A, p) with p causal. If C is semi-additive then so is

Split( )(C ), with addition lifted from C . The key property of the construction is as follows: there is a full

(causal) embedding C →֒ Split( )(C ) given by A 7→ (A, id), which gives every (causal) idempotent in C

a (causal) splitting in Split( )(C ). As before, Split( )(C ) is universal with this property.

Remark 2.8. We may interpret the Split(C ) construction as introducing new objects by imposing a

fundamental restriction on the allowed morphisms, (i.e. those satisfying f = q◦ f ◦ p) in Section 5 we

discuss how such a restriction can arise due to ‘leaking’ information.
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Comparing the constructions It is now natural to ask what the relationship is between the C⊕ and

Split (C ) constructions, and when they coincide. We now answer this question for both Split (C ) and

the more generally definable Split(C ) simultaneously. We will require the following weakening of the

notion of a biproduct:

Definition 2.9. Let C be a category with zero morphisms. A disjoint embedding of a finite collection

of objects {Ai}
n
i=1 in C is given by an object A and morphisms κi : Ai → A, π j : A → A j satisfying the

first collection of biproduct equations (1). When C is semi-additive, the morphism p = ∑n
i=1 κi ◦πi is

then an idempotent on A. When C also has discarding, a causal disjoint embedding is one for which the

morphisms p and κi are all causal.

In particular, an empty (causal) disjoint embedding is just an object of the form (A,0) in Split( )(C ).
Note that a disjoint embedding is not necessarily a biproduct in C , since it may fail to satisfy (2).

Example 2.10. Any (causal) biproduct is in particular a (causal) disjoint embedding. Hence they are

present in our examples Class, Rel and MatR.

Example 2.11. A motivating example is Quant, which has disjoint embeddings which are not biprod-

ucts. Given a collection of (finite-dimensional) Hilbert spaces {Hi}i, we may form their Hilbert space

direct sum
⊕n

i=1 Hi, which is their biproduct in the category FHilb of (finite-dimensional) Hilbert spaces

and continuous linear maps. However this is no longer a biproduct of the {Hi}i in Quant, where lin-

ear maps from FHilb are identified up to global phase, but only a disjoint embedding. Physically, the

distinction is that the addition in FHilb is given by superposition, while that of Quant refers to mixing.

This example generalises to categories of the form CPM(C ), see Proposition 6.2 later.

Remark 2.12. Disjoint embeddings can be understood as a property of our theory allowing for the

encoding of classical data. Concretely, they provide the ability to store any collection of systems in a

disjoint way in some larger system. In particular, by forming a disjoint embedding C of n copies of I

we may store an n-level classical system in C. However, the choice of C is non-canonical: there can be

many which need not be isomorphic.

Abstractly, the significance of disjoint embeddings is the following.

Theorem 2.13. Let C be semi-additive (with discarding). Then Split( )(C ) has finite (causal) biproducts

iff C has (causal) disjoint embeddings.

Proof. We have already seen that Split( )(C ) is semi-additive, so the statement makes sense. Expanding

the definitions shows that a (causal) disjoint embedding is precisely a (causal) biproduct of the form

(A, p) =
⊕n

i=1(Ai, id) in Split( )(C ). Hence the conditions are clearly necessary. It’s easy to see that

an empty (causal) disjoint embedding (A,0) is a zero object in Split( )(C ), so it suffices to check this

category has binary (causal) biproducts.

Now for any pair of objects (A1, p1), (A2, p2) in Split( )(C ), by assumption the objects A1 A2 have

a (causal) disjoint embedding (A, p), with morphisms κi : Ai → A and π j : A → A j. Then q = ∑2
i=1 κi ◦

pi ◦ πi is a (causal) idempotent on A. Further, it is easy to check that κi ◦ pi : (Ai, pi) → (A,q) and

pi ◦πi : (A,q) → (Ai, pi) are well-defined morphisms in Split( )(C ) making (A,q) a (causal) biproduct

(A1, p1)⊕ (A2, p2).

Observe that the idempotents arising from disjoint embeddings are those with the following property.

Definition 2.14. An idempotent p : A → A has a finite decomposition when it may be written as a finite

sum p=∑n
i=1 mi◦ei of split idempotents pi =mi◦ei for which pi◦ p j = 0 for i 6= j. Such a decomposition

is causal when all of the morphisms mi are causal.
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We can now determine when our two constructions coincide (cf. [28, Corollary 4.7]).

Corollary 2.15. When C has (causal) disjoint embeddings, there is a canonical full, semi-additive

(causal) embedding F : C⊕ → Split( )(C ). Further, the following are equivalent:

1. F is a (causal) equivalence of categories;

2. every (causal) idempotent splits (causally) in C⊕;

3. every (causal) idempotent in C has a (causal) finite decomposition.

When the causal form of these hold we say C has the finite decomposition property.

Proof. To see that F exists, apply the universal property of C⊕ to the (causal) embedding C →Split( )(C ),
using Theorem 2.13. Concretely, F acts on objects by (A1, · · · ,An) 7→

⊕n
i=1(Ai, id).

(1)⇒ (2): Since F is a (causal) equivalence and (causal) idempotents split (causally) in Split( )(C ),
they do in C⊕. (2) ⇒ (3): It’s easy to see that a (causal) idempotent p : A → A splits (causally) over

(Ai)
n
i=1 in C⊕ iff it has a (causal) finite decomposition p = ∑n

i=1 pi with each pi splitting over Ai.

(3) ⇐⇒ (1): By construction, F is (causally) essentially surjective on objects iff every object (A, p)
forms a (causal) biproduct

⊕n
i=1(Ai, idAi

) in Split( )(C ). By definition, this holds iff every p has a (causal)

finite decomposition.

Example 2.16. When C already has biproducts the embedding C →֒ C⊕ is an equivalence, and Corol-

lary 2.15 amounts to the fact that any finitely decomposable idempotent p = p1 + · · ·+ pn in C already

splits over
⊕n

i=1 Ai, where pi splits over Ai, for each i.

Remark 2.17 (Monoidal Structure). These results are compatible with monoidal structure whenever it

is present, in a straightforward way:

• a (symmetric) monoidal category with discarding (C ,⊗, ) is a (symmetric) monoidal category

(C ,⊗, I) which is also a category with discarding (C , , I) with I being the monoidal unit, for

which all coherence isomorphisms are causal and A⊗B = λI ◦ ( A ⊗ B) for all objects A,B, where

λI : I ⊗ I → I is the coherence isomorphism.

• a causal (symmetric) monoidal functor F : (C ,⊗, )→ (D ,⊗, ) is a causal functor which is strong

(symmetric) monoidal, with causal structure isomorphisms I → F(I) and F(A)⊗F(B)→ F(A⊗B).
• A semi-additive monoidal category is a monoidal category which is monoidally enriched in CMon.

Explicitly, it is semi-additive with f ⊗ (g+h) = f ⊗g+ f ⊗h, ( f +g)⊗h = f ⊗h+g⊗h and f ⊗0 =
0 = 0⊗g for all morphisms f ,g,h. for all morphisms f ,g,h.

When C is a semi-additive (symmetric) monoidal category (with discarding) so are each of C⊕ and

Split( )(C ), and they satisfy the same universal properties with respect to such categories and (causal,

symmetric) monoidal semi-additive functors and (causal) monoidal natural transformations between

them. In particular, the functors and equivalences of Corollary 2.15 are now monoidal ones.

Results on Idempotent Splittings Before turning to quantum theory, we briefly consider some abstract

results of use later. Firstly, recall that a category with a distinguished object I is well-pointed when for

all f ,g : A → B with f ◦a = g◦a for all a : I → A, we have f = g. For any morphism f : A → B we set

Im( f ) := { f ◦a | a : I → A}.

Example 2.18. All of the categories with discarding Quant, Class, Rel, MatR are well-pointed over their

usual object I. Real quantum theory provides a physically interesting non-well-pointed category [19].

Lemma 2.19. Let p,q : A → A be (causal) idempotents in a well-pointed category (C , I), with Im(p) =
Im(q). Then p splits (causally) iff q does, and p has a (causal) finite decomposition iff q does.
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Proof. For all a : I → A we have q◦a = p◦b for some b and so p◦q◦a = p◦ p◦b = p◦b = q◦a. Hence

by well-pointedness p◦q = q, and dually q◦ p = p also. This states precisely that (A, p) and (A,q) are

(causally) isomorphic in Split( )(C ). Then p has a (causal) finite decomposition iff it forms a (causal)

biproduct
⊕n

i=1(Ai, id), iff q does. Taking i = 1 shows that p splits (causally) precisely when q does.

Next we observe that for many theories, including quantum theory and our other probabilistic exam-

ples, splittings for causal idempotents in fact suffice to provide splittings of a broader class.

Definition 2.20. In a semi-additive category with discarding, a morphism f : A → B is sub-causal when

there is some x : A → I with ( ◦ f )+ x = .

Examples 2.21. Any causal process is in particular sub-causal. In Quant, a process is sub-causal when it

is trace non-increasing. A sub-causal process in Class is a sub-stochastic matrix, i.e. one whose columns

have sum bounded by 1. In Rel and Modalp every process is sub-causal.

Proposition 2.22. Let C be a semi-additive category with discarding satisfying:

• Cancellativity: f +g = f +h =⇒ g = h;

• For every non-zero f : A → B there exists a : I → A with ◦ f ◦a = idI .

If causal idempotents causally split in C , so do (non-zero) sub-causal idempotents.

Proof. Let p : A → A be a non-zero sub-causal idempotent, with ( ◦ p)+ x = . Note that we have

◦ p = ( ◦ p+ x)◦ p = ( ◦ p)+ (x◦ p) and so by cancellativity x◦ p = 0. By assumption there exists

a : I → A with ◦ p◦a = 1. One may then check that q = p+(p◦a◦x) is a causal idempotent satisfying

p◦q = q and q◦ p = p. These ensure that if q has splitting (m,e) then p has splitting (m,e◦ p).

3 Quantum theory

We now turn to the main result of this paper, that for the example of quantum theory our two constructions

coincide, both leading to the (symmetric monoidal) category of finite dimensional C*-algebras.

Example 3.1 (C*-algebras). In the category CStar objects are finite dimensional C*-algebras and mor-

phisms completely positive linear maps (in the same sense as defined for Quant). The monoidal product

is the standard tensor product of finite-dimensional C*-algebras and the monoidal unit is B(C). Semi-

additive structure is provided by the standard sum of linear maps. Discarding effects are provided by the

trace, and biproducts by the direct sum of C*-algebras.

Note that Quant and Class are each equivalent to full subcategories of CStar, corresponding to C*-

algebras of the form B(H ), and the commutative C*-algebras, respectively. These subcategories can

also be characterised in terms of leaks, see Section 5.

There is a well known classification result [6] stating that any finite dimensional C*-algebra is iso-

morphic to a direct sum of complex matrix algebras. It is therefore unsurprising that our first road, the

biproduct completion, leads to this category: see [20, Example 3.4.] for the details.

Example 3.2. There is a monoidal, causal equivalence of categories CStar ≃ Quant⊕.

The second road, however, requires some more work.

Proposition 3.3. Quant has the finite decomposition property.
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Proof. We saw in Example 2.11 that Quant has causal disjoint embeddings. Now let p∈Quant(H ,H )
be a causal idempotent. Then p is an idempotent, trace-preserving, completely positive linear map on

B(H ). By [4, Theorem 5], there is a decomposition H ≃
⊕

k Ak ⊗Bk and set of positive semidefinite

matrices τK on Bk with:

p(B(H )) = {∑kMAk
⊗ τk : MAk

∈ B(Ak)}

Without loss of generality, assume τk 6= 0 and so Tr(τk) 6= 0, for all k. Then p(B(H )) = q(B(H )) for

the causally finitely decomposable idempotent q = ∑k∈K mk ◦ ek, where mk : B(Ak)→ B(H ) is given

by M 7→ (1/Tr(τk))M ⊗ τk, and ek : B(H )→ B(Ak) is given by M 7→ TrBk
(TrA j⊗B j, j 6=k(M)).

Since states ρ ∈ Quant(C,H ) may be viewed as elements of B(H ), on which p is an idempotent

map, this gives that Im(p) = Im(q) in the well-pointed category (Quant,C). Hence by Lemma 2.19,

since q has a causal finite decomposition, so does p.

By combining Example 3.2, Proposition 3.3 and Corollary 2.15, we reach our main result:

Corollary 3.4. There is a monoidal, causal equivalence:

Split (Quant)≃ CStar ≃ Quant⊕

Hence all causal (trace-preserving) idempotents causally split in CStar. By Proposition 2.22, the

same in fact holds for all idempotents which are sub-causal, i.e. trace-non increasing. However, it

remains an open question whether all idempotents split.

4 Further Examples

Classical probability theory There are (monoidal, causal) equivalences:

Class⊕ ≃ Class ≃ Split(Class)≃ Split (Class)

The left hand equivalence holds since Class already has biproducts. Conversely, it follow from a The-

orem of Flor ([18, Theorem 2], see also [17, Theorem 4]) that any idempotent p in Class has a finite

decomposition p = z1 + · · ·+ zk where the zi satisfy zi ◦ z j = δi, jzi and each are of rank one, hence split-

ting over I. In particular, every idempotent in Class has a finite decomposition and so splits, yielding the

other equivalences. Hence, as in the quantum case, these constructions coincide.

Possibilistic theories In contrast, the constructions will generally fail to coincide in theories of a possi-

bilistic nature, such as Modalp or Rel. By a possibilistic theory we mean one in which the addition + is

idempotent, the scalars s : I → I under (◦,+) are the Booleans {0,1}, and we have ◦ f = 0 =⇒ f = 0

for all morphisms f . We will consider possibilistic theories with a particular physically motivated prop-

erty. Call a pair of states a0,a1 : I → A on A perfectly distinguishable when there exists a pair of effects

ā0, ā1 on A with ā0 + ā1 = and āi ◦a j = δi, j. We say that a theory satisfies perfect distinguishability

when every system not isomorphic to I or a zero object 0 has a pair of perfectly distinguishable states,

and there exists at least one such system. Then we have the following (see App. A for proof):

Proposition 4.1. Any possibilistic theory (C , ) with perfect distinguishability lacks the finite decom-

position property.

Example 4.2. Both Modalp and Rel are possibilistic theories with discarding and perfect distinguisha-

bility, and so for these theories the constructions do not coincide.

For example, in Rel, any set A not isomorphic to I = {⋆} or 0 = /0 has at least two distinct elements,

forming a pair of perfectly distinguishable states. Hence Rel lacks the finite decomposition property.

Concretely, the causal idempotent (5) is the relation on {0,1} given by 0 7→ 0, 1 7→ 0,1, does not split.
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Information units A somewhat contrived example can be motivated by considering the idea of an

information unit for a theory: a particular object U in a theory C such that any process in the theory

can be ‘simulated’ on an n-fold monoidal product of U . The existence of an information unit has been

used as a postulate in reconstructing quantum theory [23] where U is a qubit, and, moreover, underlies

the circuit model of quantum computation. We define the information unit subtheory, C〈U〉, as a full

subcategory restricting to objects of the form U⊗n.

Example 4.3. For the quantum case with U = C2 we find that Quant⊕〈U〉 ( CStar ≃ Split (Quant〈U〉).
To see the equivalence note that we can obtain an arbitrary n-level quantum system by splitting a causal

idempotent, i.e., consider m such that n ≤ M := 2m and consider a sub-causal projector onto an n di-

mensional subspace then Proposition 2.22 shows there is a causal idempotent which splits over the same

system. On the other hand is not possible to construct (for example) a qutrit with direct sums or tensor

products of qubits and hence the biproduct completion does not give the entirety of CStar. In fact, this

result can be seen as a demonstration that the qubit is indeed an information unit for quantum theory as

this provides a way to simulate any other quantum system on some composite of qubits.

5 Idempotents from leaks

Idempotents naturally arise, in symmetric monoidal theories with discarding, from information leakage.

Definition 5.1. A leak on an object A is a morphism l : A → A⊗L which has discarding as a right counit,

that is: ρA ◦ (idA ⊗ L)◦ l = idA. It follows that all leaks are causal processes.

Example 5.2. In Quant all leaks are constant: i.e. of the form (idA⊗σ)◦ρ−1
A for a causal state σ on L.

Example 5.3. A broadcasting map [3, 12] on an object A is a leak l : A → A⊗A, i.e. with L = A, for

which discarding is also a left counit. Both of our classical theories Class and Rel have such a map.

Remark 5.4. In fact, minimal and maximal leakage characterises quantum and classical theory respec-

tively [26]. Specifically, Quant and Class are equivalent to the full subcategories of CStar on objects

with only constant leaks, and on objects with maximal leaks, i.e. broadcasting maps, respectively.

It is natural, given any theory (C , ), and for each system A a chosen process lA : A → A⊗LA to con-

struct a new theory CL in which lA represents the ongoing ‘leakage’ of that system into the environment.

The result of this leakage on A would be the process:

ιA := ρA ◦ (idA ⊗ LA
)◦ lA (3)

Processes A → B in the new theory should then consist of applying the leakage to the inputs and outputs

of every process f : A → B in the original theory, i.e. ιB ◦ f ◦ ιA. Demanding the ιA be idempotent

ensures that CL is a category —the full subcategory of Split (C ) given by the objects (A, ιA). It is again

symmetric monoidal whenever our choice of leaks lA ensures that ιA⊗B = ιA⊗ ιB for all A,B. In this case,

ιA becomes the identity on A, guaranteeing that lA provides a leak in the new theory, [(ιA ⊗ ιLA
)◦ lA ◦ ιA].

Alternately, starting again from C , if we want to obtain a theory which can describe all possible

systems that could arise from some leakage then we must instead take systems to be all possible pairs

(A, lA) with the above property, i.e. such that ιA is idempotent. But this is none other than Split (C ).
Indeed, any causal idempotent p : A → A is of the form (3) for some lA, for example by taking lA :=
ρ−1

A ◦ p : A → A⊗ I. A more insightful manner is by taking lA to be any ‘purification’ of ιA, that is,

any pure process satisfying (3). The existence of such a process is guaranteed in quantum theory by the

Stinespring dilation theorem, and more generally for theories arising from the CPM-construction [14],
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or, those satisfying the purification postulate of [7]. Hence we have generalised the idea that decoherence

results from information-leaking, from the specific case of quantum theory to a much broader class of

theories. There is another important conclusion we can draw from idempotents resulting from leaks.

Example 5.5. A result of Vicary [29] states that finite dimensional C*-algebras are precisely (dagger

special) Frobenius structures in FHilb: comonoids δ : A → A⊗A which additionally satisfy (together

with their ‘daggers’, see Section 6 below) two equations called the dagger Frobenius law: and speciality.

However, we now know that the much weaker concept of a process l : A → A⊗ L in the directly

physically interpretable category Quant, for which ι is a causal idempotent as above, is already sufficient

to guarantee the rest of this comonoid structure. Hence, one is tempted to deduce that the essential

physical structure of C*-algebras is captured by that of a leak.

6 Comparison with dagger categorical approaches

The use of biproducts and idempotent splittings to model hybrid quantum-classical systems has in fact

already been studied by Selinger [28], and Heunen, Kissinger and Selinger [20]. Crucially, however,

these previous works have relied on a feature of quantum theory not present in general physical theories –

the existence of a dagger. Recall that a dagger category (C ,†) is a category C coming with an involutive,

identity on objects functor †: C op →C . A dagger compact category is additionally symmetric monoidal,

in a way compatible with the dagger, with every object having a dagger dual – see [1, 27] for details.

Examples 6.1. Rel, Quantpure, Quant, FHilb, Class and CStar are all dagger compact categories. In

Rel the dagger is given by relational converse, and in the other cases it extends the adjoint of linear maps.

The results of Section 2 can easily be adapted to include daggers, as follows. A dagger idempotent

is one p with p = p†, a dagger splitting p = m◦ e is one with e = m†, and a dagger disjoint embedding

or biproduct is one with πi = κ†
i for all i. Then D⊕ and Split†(D), the full subcategory of Split (D)

on the causal dagger idempotents, satisfy the same universal properties as before with respect to dagger-

respecting functors, and Corollary 2.15 becomes an equivalence of dagger categories D⊕ ≃ Split†(D).

The CPM construction Given a dagger compact category C of ‘pure’ processes, we may construct

a new one, CPM(C ), with the same objects but interpreted as consisting of mixed processes [27]. An

axiomatization of the construction closely resembling our treatment is provided by the following no-

tion [10, 14]. An environment structure (D ,Dpure, ) consists of a dagger compact category D with

discarding respecting the dagger compact structure, along with a chosen dagger compact subcategory

Dpure satisfying an axiom relating and †. It satisfies purification whenever every morphism in D is

of the form λ ◦ ( ⊗ id) ◦ f for some morphism f in Dpure. In this case there is a (dagger monoidal)

isomorphism of categories D ≃ CPM(Dpure). Conversely, every D = CPM(C ) arises in this way.

The key example is that Quant and Quantpure form an environment structure with purification, with

Quant ≃ CPM(Quantpure) ≃ CPM(FHilb). We have seen that, while FHilb has biproducts, Quant

merely has disjoint embeddings. In fact, these suffice to deduce properties of the CPM construction

previously shown using biproducts (cf. [28, Theorem 4.5]) - see App. A for a proof.

Proposition 6.2. If C is a dagger compact category with zero morphisms and dagger (causal) disjoint

embeddings, so is CPM(C ). If C is also dagger semi-additive so is CPM(C ), and then there is a full

embedding CPM(C )⊕ →֒ Split†(CPM(C )).
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The CP∗ construction There is another treatment of hybrid classical-quantum systems applicable to

any dagger compact category C . Dagger special Frobenius structures in C (see Example 5.5) form the

objects of a category CP∗(C ), with the motivating example being that CP∗(FHilb)≃ CStar [29].

An axiomatisation of the CP∗ construction, extending that for CPM, has been given by Cunningham

and Heunen [16]. Given an environment structure, observe that for each Frobenius structure (A,δ ) in

Dpure, the morphism λA ◦ ( ⊗ id) ◦ δ is a causal dagger idempotent. A decoherence structure is a

choice of dagger splitting for each such idempotent, in a way compatible with the monoidal structure.

Immediately, we have the following.

Proposition 6.3. If D has an environment structure, Split†(D) has a canonical decoherence structure.

Under a mild extra assumption known as positive dimensionality, any decoherence structure induces

a faithful (causal, dagger) functor [16]: CP∗(Dpure)→ Split†(D). Moreover, results of Heunen, Kissinger

and Selinger [20] tell us that, whenever purification is satisfied, so that D is of the form CPM(C ) for

some C , this is a full causal embedding, and that when C has dagger biproducts the causal embeddings

from each construction factor as:

CPM(C )⊕ →֒ CP∗(C ) →֒ Split†(CPM(C )) →֒ Split (CPM(C )) (4)

Then using Corollary 2.15 we have the following:

Corollary 6.4. Let C have dagger biproducts, and suppose CPM(C ) has the finite decomposition prop-

erty. Then each of the inclusions (4) are (causal, monoidal) equivalences of categories.

In particular, the case C = FHilb gives equivalences:

Quant⊕ ≃ CStar ≃ Split†(Quant)≃ Split (Quant)

extending the result from [20].

7 Conclusion

We explored two seemingly unrelated categorical representations of classicality, through the Split (C )
and C⊕ constructions, finding clear properties ensuring that they coincide – the existence of disjoint

embeddings and the finite decomposition property. In Corollary 3.4 we showed that these hold for

quantum theory, strengthening the result of Heunen-Kissinger-Selinger [20] by removing all mention of

daggers. This strengthening allows for a clear physical interpretation. In particular, we saw that we may

obtain all of the usual C*-algebraic structure simply from the concept of leaking information (Section 5).

The generality of the approach here leaves many interesting open questions. Firstly, note that the

results of Section 2 do not crucially rely on the discarding structure.Though the restriction to sub-causal

idempotents is well motivated physically, as it is only these that have an interpretation as probabilistic

outcomes, an obvious open question is whether it is needed. Do all idempotents in CStar split? Also,

since these results do not rely on dagger, compact closed or even monoidal structure, they are applica-

ble to the infinite-dimensional case. Do all (sub-causal) idempotents split (causally) in the category of

arbitrary C*-algebras (or von Neumann algebras) and completely positive maps?

Finally, while the existence of disjoint embeddings has a reasonable physical interpretation (see

Remark 2.12), our main result also relied on the finite decomposition property, which is less well un-

derstood. Are there any clear physical principles which allow one to deduce the finite decomposition

property? A positive answer to this would yield a more insightful proof of Corollary 3.4. Conversely,

what other interesting physical consequences does this property have?
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A Proof of Lemma 4.1

In this appendix we prove that any possibilistic theory (C , ) with perfect distinguishability lacks the

finite decomposition property.

Proof. It is easy to see that the biproduct completion C⊕ is again a possibilistic theory satisfying perfect

distinguishability, and hence it suffices to show that causal idempotents do not split in C . Pick a system

A possessing a pair of states {a0,a1} perfectly distinguishable by some effects {ā0, ā1}. Then since

ā1 + = , the following defines a causal idempotent on A:

p = a0 ◦ +a1 ◦ ā1 (5)

Suppose p : A → A has a splitting (m,e) over an object B. Next suppose B has two perfectly distin-

guishable states b0,b1, via the effects {b̄0, b̄1}. We define new states and effects on A by ci = m◦bi and

c̄i = b̄i ◦ e, respectively, for i = 1,2. Then:

0 = c̄0 ◦ c1 = c̄0 ◦ p◦ c1 = (c̄0 ◦a0)◦ ( ◦ c1)+ (c̄0 ◦a1)◦ (ā1 ◦ c1)

Since the scalars are the Booleans, and the bi and hence ci are non-zero, in particular we must have

c̄0 ◦a0 = 0. Dually, c̄1 ◦a0 = 0 holds also. But then ◦ e ◦a0 = (b̄0 + b̄1) ◦ e ◦a0 = (c̄0 + c̄1) ◦a0 = 0.

By positivity, e◦a0 = 0, and hence a0 = p◦a0 = m◦ e◦a0 = 0, contradicting ā0 ◦a0 = 1.

We conclude that no such pair of states exists on B. Since p 6= 0, B cannot be a zero object. Hence

we must have B ≃ I and so p = x ◦ y for some state x and effect y on A, respectively. But then, for

any effect z on A, since the scalars are the Booleans we must have either z ◦ p = 0 or z ◦ p = y. Hence

ā1 = ā1 ◦ p = y = ◦ p = , and so ā1 ◦a0 = 1, a contradiction.

B Proof of Proposition 6.2

Suppose that C is dagger compact with zero arrows and disjoint embeddings. There is always a dagger

functor C → CPM(C ) which preserves zeroes and is surjective on objects, and hence CPM(C ) is also.

When C has disjoint embeddings, CPM(C ) is closed under addition in C – this is proven just as for

biproducts in [27, Lemma 4.7(c)]. Finally, (the dagger version of) Theorem 2.13 gives an embedding

CPM(C )⊕ →֒ Split†(CPM(C )). .
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