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A convex sequential effect algebra (COSEA) is an algebraic system with three physically motivated

operations, an orthogonal sum, a scalar product and a sequential product. The elements of a COSEA

correspond to yes-no measurements and are called effects. In this work we stress the importance of

contexts in a COSEA. A context is a finest sharp measurement and an effect will act differently ac-

cording to the underlying context with which it is measured. Under a change of context, the possible

values of an effect do not change but the way these values are obtained may be different. In this paper

we discuss direct sums and the center of a COSEA. We also consider conditional probabilities and

the spectra of effects. Finally, we characterize COSEA’s that are isomorphic to COSEA’s of positive

operators on a complex Hilbert space. These result in the traditional quantum formalism. All of this

work depends heavily on the concept of a context.

1 Introduction

We present an axiomatic framework for quantum mechanics in which the basic entities and operations

have physical significance. In this framework, the principle concepts are states and effects. The states

represent initial preparations that describe the condition of the system, while the effects represent yes–

no measurements that probe the system. The effects may be unsharp or fuzzy [5, 6, 9, 18]. A state

applied to an effect produces the probability that the effect gives a yes value when the system is in

that state. The resulting mathematical structure is called a convex sequential effect algebra (COSEA)

E [10, 15, 11, 21, 22]. The three mathematical operations in E are an orthogonal sum a⊕ b, a scalar

product λa,λ ∈ [0,1]⊆ R and a sequential product a◦b. These operations have physical interpretations

that we now discuss.

Although this framework is much more general, we can employ the model of an optical bench to

visualize what is happening here. A beam of particles (photons, electrons, etc.) is emitted from a source

and propagates through a channel on the bench until the beam arrives at a detector at the end of the

channel. The particles are initially prepared in a certain state and the effects describe various filters that

can be placed in the channel. The beam travels through one or more filters which interact with the beam

and can change its properties in certain ways. The detector may count particles or measure different

characteristics of the beam. The sum a⊕b is performed by first splitting the beam into two equal parts,

which are directed toward the two filters placed in parallel after which both beams are reunited before

being collected at the detector. The scalar product λa corresponds to an attenuation of filter a by the

factor λ . This can be accomplished by placing a gray filter with a certain darkness in front of filter a.

The gray filter blocks some of the particles but does not otherwise disturb the beam. The sequential

product a◦b is performed by placing the filters in series so that a is first and b is second. In this way,

filter a can interfere with the operation of filter b while b cannot interfere with the operation of a. We

will find this useful for describing quantum interference.

http://dx.doi.org/10.4204/EPTCS.??.11
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In this work, an important role will be played by the context under which an effect is observed.

A context is a finest sharp measurement and an effect will act differently according to the underlying

context with which it is measured. For example, in the optical bench scenario, changing contexts may

result from altering the detectors or varying the size, shape or location of the bench. Under a change

of context, the possible values of an effect do not change but the way these values are obtained may be

different. As far as contexts are concerned, there is a great difference between classical and quantum

systems. We shall show that classical systems have exactly one context, while quantum systems have

infinitely many.

In Section 2 we define the concepts of COSEA’s and contexts. Section 3 discusses direct sums and

the center of a COSEA. Section 4 considers conditional probabilities and spectra of effects. Finally,

Section 5 characterizes COSEA’s that are isomorphic to COSEA’s of positive operators on a complex

Hilbert space. Of course, these result in the traditional quantum formalism. There is some overlap of this

paper and the work in [21, 22]. However, our stress on contexts provides a different approach.

2 Convex Sequential Effect Algebras

Let E be the set of effects and S the set of states for a physical system. The connection between E

and S is given by a probability function F : E ×S → [0,1] ⊆ R where F(a,s) is interpreted as the

probability that effect a has a yes value when the system is in state s. An effect-state space is a triple

(E ,S ,F) where E and S are nonempty sets and F : E ×S → [0,1] satisfies:

(ES1) There exist elements 0,1 ∈ E such that F(0,s) = 0, F(1,s) = 1 for every s ∈ S .

(ES2) If F(a,s) ≤ F(b,s) for every s ∈ S , then there exists a unique c ∈ E such that F(a,s)+
F(c,s) = F(b,s) for all s ∈ S .

(ES3) If a ∈ E and λ ∈ [0,1], then there exists an element λa ∈ E such that F(λa,s) = λF(a,s)
for all s ∈ S .

The elements 0,1 in (ES1) correspond to the null effect that never occurs and the unit effect that

always occurs, respectively. It is shown in [10, 15] that if F(a,s)+F(b,s) ≤ 1 for every s ∈ S , then

there exists a unique c ∈ E such that

F(c,s) = F(a,s)+F(b,s)

for all s ∈ S . We then write a ⊥ b and define a⊕b = c. In this way, ⊕ is a partial binary operation on

E .

The structure (E ,0,1,⊕) is called an effect algebra and satisfies the following axioms:

(EA1) If a ⊥ b, then b ⊥ a and b⊕a = a⊕b,

(EA2) If a ⊥ b and (a⊕b)⊥ c, then b ⊥ c, a ⊥ (b⊕ c) and a⊕ (b⊕ c) = (a⊕b)⊕ c,

(EA3) For every a ∈ E there exists a unique a′ ∈ E such that a ⊥ a′ and a⊕a′ = 1,

(EA4) If a ⊥ 1, then a = 0.

We define a ≤ b if there is a c ∈ E such that a⊕ c = b. The element c is unique and we write

c = b⊖ a. It can be shown that (E ,0,1,≤) is a bounded poset and a ⊥ b if and only if a ≤ b′ [5, 6].

Moreover, a′′ = a and a ≤ b implies b′ ≤ a′ for all a,b ∈ E . If we incorporate the scalar product λa of

(ES3) we obtain the following structure. An effect algebra E is convex [10, 15, 11] if for every a ∈ E

and λ ∈ [0,1] ⊆ R there exists an element λa ∈ E such that
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(CO1) If α ,β ∈ [0,1] and a ∈ E , then α(βa) = (αβ )a.

(CO2) If α ,β ∈ [0,1] with α +β ≤ 1 and a ∈ E , then αa ⊥ βb and (α +β )a = αa⊕βa.

(CO3) If a,b ∈ E with a ⊥ b and λ ∈ [0,1], then λa ⊥ λb and λ (a⊕b) = λa⊕λb.

(CO4) If a ∈ E , then 1a = a.

We call an effect algebra an EA and a convex effect algebra a COEA, for short. In E and F are EA’s,

a map φ : E → F is additive if a ⊥ b implies that φ(a) ⊥ φ(b) and

φ(a⊕b) = φ(a)⊕φ(b)

An additive map φ that satisfies φ(1) = 1 is called a morphism. A morphism φ : E → F for which

φ(a) ⊥ φ(b) implies a ⊥ b is a monomorphism and a surjective monomorphism is an isomorphism. If E

and F are COEA’s, a morphism φ : E → F is affine if φ(λa) = λφ(a) for all λ ∈ [0,1], a ∈ E . If there

exists an affine isomorphism φ : E → F we say that E and F are COEA isomorphic.

The simplest example of a COEA is the unit interval [0,1]⊆R with the usual addition (when a+b ≤
1) and scalar multiplication. A state on an EA E is a morphism ω : E → [0,1]. Notice that in an effect-

state space, the function a 7→ F(a,s) is a state on E . We denote the set of states on E by Ω(E ). We say

that S ⊆ Ω(E ) is order-determining if ω(a)≤ ω(b) for all ω ∈ S implies that a ≤ b. It is shown in [15]

that every state on a COEA is affine. It is also shown in [15] that an effect-state space is equivalent to a

COEA with an order-determining set of states.

We now introduce the sequential product a◦b on a COEA. Because of the series order for a◦b, a

may interfere with the b measurement but b will never interfere with the a measurement. If a◦b = b◦a

we write a | b and say that a and b do not interfere. We now present our general definition.

A convex sequential effect algebra (COSEA) [11] is an algebraic system (E ,0,1,⊕,◦) where

(E ,0,1,⊕) is a COEA and ◦ : E ×E → E is a binary operation satisfying:

(S1) b 7→ a◦b is additive for all a ∈ E ,

(S2) 1◦a = a for all a ∈ E ,

(S3) If a◦b = 0, then a | b,

(S4) If a | b, then a | b′ and a◦ (b◦ c) = (a◦b)◦ c for all c ∈ E ,

(S5) If c | a and c | b then c | a◦b and c | (a⊕b) whenever a ⊥ b,

(S6) For all λ ∈ [0,1] ⊆R, a,b ∈ E , we have that

(λa)◦b = a◦ (λb) = λ (a◦b)

It is shown in [21] that if E satisfies an additional continuity property that makes E a σ -COSEA then

(S6) is automatically satisfied.

In quantum mechanics, a ◦ b is useful for describing quantum interference. It is also needed for

defining the important concept of conditional probability. An element a in a COSEA is sharp if the

greatest lower bound a∧ a′ = 0. Sharp effects are thought of as effects that are precise or unfuzzy. We

denote the set of sharp effects in E by S(E ).

Theorem 2.1. [12] The sequential product in a COSEA E has the following properties. (i) a ◦ b ≤ a

for all a,b ∈ E . (ii) If a ≤ b, then c ◦ a ≤ c ◦ b for all c ∈ E . (iii) a ∈ S(E ) if and only if a ◦ a = a.

(iv) For a ∈ E , b ∈ S(E ), a◦b = 0 if and only if a ⊥ b. (v) For a ∈ E , b ∈ S(E ), a ≤ b if and only if

a◦b = b◦a = a and b ≤ a if and and only if a◦b = b◦a = b.
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For a COSEA E , we call a ∈ S(E ) one-dimensional if a 6= 0 and if b ∈ E with b ≤ a, then b = λa for

some λ ∈ [0,1]. We denote the set of one–dimensional elements of E by S1(E ). It is shown in [11] that

if a ∈ S1(E ) then there exists an â ∈ Ω(E ) such that â(a) = 1. A COSEA is state-unique if â is unique.

Although it is not known whether an arbitrary COEA is state-unique, it is shown in [21, 22] that every

COSEA is state-unique.

A finite context in a COEA E is a finite set {a1, . . . ,an} ⊆ S1(E ) such that

a1 ⊕a2 ⊕·· ·⊕an = 1

It follows that âi(a j) = δi j. We denote the set of finite contexts in E by C (E ). We interpret a finite

context as a finest sharp measurement. We say that E is finite-dimensional if there does not exist an

infinite sequence ai ∈ S1(E ) such that a1 ⊕ ·· · ⊕ an is defined for all n. Thus, there are no infinite

contexts. For simplicity, we assume that the COEA’s (and (COSEA’s) we consider in this paper are

finite-dimensional. If E is state-unique and a,b ∈ S1(E ), we call â(b) the transition probability from a

to b. We say that E is symmetric if â(b) = b̂(a) for all a,b ∈ S1(E ). It is shown in [21, 22] that every

COSEA is symmetric.

Lemma 2.2. If E is state-unique and symmetric, then all contexts in E have the same cardinality.

Proof. Let A ,B ∈ C (E ) with A = {a1, . . . ,an}, B = {b1, . . . ,bm}. Then

n = ∑
i, j

âi(b j) =∑
i, j

b̂ j(ai) = m

We say that a COEA E is spectral if E is state-unique and for every b ∈ E there exists a context

A = {a1, . . . ,an} such that

b = λ1a1 ⊕·· ·⊕λnan

λi ∈ [0,1], i = i, . . . ,n. We denote the set of such b ∈ E corresponding to a fixed context A by E (A ). It

can be shown that every COSEA is spectral [22]. A subset F of a COEA E is a sub-COEA if 0,1 ∈ F ,

a ∈ F implies a′λa ∈ F for all λ ∈ [0,1] and if a,b ∈ F with a ⊥ b, then a⊕b ∈ F . A subset F of a

COSEA E is a sub-COSEA if F is a sub-COEA and if a,b ∈ F implies a◦b ∈ F . It is clear that if E

is a COEA (COSEA) then E (A ) is a sub-COEA (sub-COSEA) for every a ∈ C (E ).

We close this section with some examples of COEA’s and COSEA’s. The first example comes from

the quantum formalism. Let H be a complex Hilbert space and let E (H) be the set of operators on H

satisfying 0 ≤ A ≤ I where we are using the usual operator order. For A,B ∈ E (H) we write A ⊥ B

if A+B ≤ I and in this case we define A⊕B = A+B. For λ ∈ [0,1] and A ∈ E (H), λA ∈ E (H) is

the usual scalar multiplication for operators. It is easy to check that (E (H),0, I,⊕) is a COEA which

we call a Hilbertian COEA. The sharp elements of E (H) are the projections on H . For φ ∈ H with

φ 6= 0, we denote the projection onto the one-dimensional subspace generated by φ as P(φ). Of course,

P(φ) = P(ψ) if and only φ = αψ for some α ∈ C, α 6= 0. The elements of S1 (E (H)) are precisely the

P(φ), φ ∈ H , φ 6= 0 and E (H) is finite-dimensional if and only if H finite-dimensional. In this case,

the contexts of E (H) correspond to the orthonormal bases of H so C (E (H)) is infinite if dimH ≥ 2. If

A ∈ S1 (E (H)) with A = P(φ) where ||φ ||= 1, then Â is the unique state given by Â(B) = 〈φ ,Bφ〉 for all

B ∈ E (H). Hence, E (H) is state-unique. It follows from the spectral theorem that E (H) is state-unique.

Moreover, if B = P(ψ), ||ψ ||= 1, then the transition probability becomes

Â(B) = B̂(A) = |〈φ ,ψ〉|2
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so E (H) is symmetric. If F is a sub-COEA of E (H) for some H , we call F a sub-Hilbertian COEA.

An example of a sub-Hilbertian COEA is a von Neumann algebra of operators on H . These are also

spectral and symmetric. For A,B ∈ E (H) define the product A◦B = A1/2BA1/2 where A1/2 is the unique

positive square root of A. It is shown in [12, 13] that with the product A ◦B, E (H) becomes a COSEA.

We also have that A ◦B = B ◦A if and only if AB = BA [14]; that is, A and B commute. We then call

E (H) a Hilbertian COSEA, and any sub-COSEA of E (H) is a sub-Hilbertian COSEA. As before, a

von Neumann algebra on H is an example of a sub-Hilbertian COSEA.

Our next example comes from fuzzy probability theory [2, 8]. Let Ω,(A ) be a measurable space in

which singleton sets are measurable and let E (Ω,A ) be the set of measurable functions on Ω with values

in [0,1] ⊆ R. If we define the operations ⊕,λ f and f ◦g = f g analogously as in the previous example,

E (Ω,A ) becomes a COSEA. The elements of E (Ω,A ) are called fuzzy events and we call E (Ω,A ) a

classical COSEA. The elements of S(E (Ω,A )) are the characteristic functions (or equivalently, the sets

in A ) and S1 (E (Ω,A )) consists of the characteristic functions of the singleton sets (or equivalently, the

elements of Ω). Notice that E (Ω,A ) is finite-dimensional if and only if Ω is finite and in this case there

is only one context. Also, E (Ω,A ) is symmetric and spectral. Conversely, it is shown in [11] that if

a finite-dimensional COEA (COSEA) E has only one context, then E is isomorphic to classical COEA

(COSEA). We have seen that a classical COEA contains only one context while a quantum (Hilbertian)

COEA possesses an infinite number of different contexts. Is there anything between? That is, can a

finite-dimensional spectral COEA E have a finite number, greater than one, of disjoint contexts [11]?

The answer to this question is negative. In fact, if E has more than one context, then it has uncountably

many [17].

3 Commutants

In this section, E will denote a finite-dimensional COSEA. For F ⊆ E , the commutant of F is defined

as

F
′ = {b ∈ E : b | a for all a ∈ F}

Notice that F ′ is a sub-COSEA of E . If F ⊆ G ⊆ E then G ′ ⊆ F ′. We also have that F ⊆ F ′′,

F ′ = F ′′′, F ′ ∩G ′ ⊆ (F ∩G )′ and (F ∪G )′ ⊆ F ′ ∪G ′ for all F ,G ⊆ E . We say that F ⊆ E is

commutative if a ◦ b = b ◦ a for all a,b ∈ F . Clearly, F is commutative if and only if F ⊆ F ′. It is

shown in [11] that E is commutative if and only if E has only one context and hence is isomorphic to a

classical COSEA. We call E ′ the center of E . Thus, E = E ′ if and only if E is isomorphic to a classical

COSEA and E ′ is a commutative sub-COSEA of E . It is clear that {λ1: λ ∈ [0,1]} ⊆ E ′. We say that

E is a factor if E ′ = {λ1: λ ∈ [0,1]}.

We now define the direct sum E = E1 ⊕E2 of two COSEA’s (E1,01,11,⊕), (E2,02,12,⊕). We define

(E ,0,1,⊕) by

E = E1 ×E2 = {(a1,a2) : a1 ∈ E1,a2 ∈ E2}

with 0 = (01,02), 1 = (11,12). If a = (a1,a2), then a′ = (a′1,a
′
2). If a = (a1,a2), b = (b1,b2) then a ⊥ b

if a1 ⊥ b1, a2 ⊥ b2 and

a⊕b = (a1 ⊕b1,a2 ⊕b2)

For λ = [0,1] define λ (a1,a2) = (λa1,λa2) and we define

(a1,a2)◦ (b1,b2) = (a1 ◦b1,a2 ◦b2)
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It is easy to check that E is a COSEA. We have that (a1,a2)≤ (b1,b2) if and only if a1 ≤ b1, a2 ≤ b2 and

E
′ =

{
(a1,a2) : a1 ∈ E

′
1,a2 ∈ E

′
2

}

Clearly, (a1,a2) ∈ S(E ) if and only if a1 ∈ S(E1) and a2 ∈ S(E2).

Lemma 3.1. Let E = E1 ⊕E2. (i) (a1,a2) ∈ S1(E ) if and only if a1 = 01 and a2 ∈ S1(E2) or a2 = 02 and

a1 ∈ S1(E1). (ii) A ∈ C (E ) if and only if

A =
{
(ai,02),(01,b j)

}

where {a1} ∈ C (E1) and
{

b j

}
∈ C (E2)

Proof. (i) Necessity is clear. For sufficiency, suppose that (a1,a2) ∈ S1(E ) and a1 6= 01, a2 6= 02. Then

(a1,02)≤ (a1,a2) but for λ ∈ [0,1] we have that

(a1,02) 6= (λa1,λa2) = λ (a1,a2)

which is a contradiction. Hence, a1 = 01 or a2 = 02. Clearly, if a1 6= 0, then a1 ∈ S1(E1) and if a2 6= 0,

then a2 ∈ S1(E2). (ii) This follows from (i).

We shall need the following lemma to prove Theorem 3.3.

Lemma 3.2. (i) If a | c and a | (c⊕ d) then a | d. (ii) If c ≤ b and a | c, a | b then a | (b⊖ c). (iii) If

c ≤ b then b⊖ c = (c⊕b′)′. (iv) If F is a sub-COSEA of E and b,c ∈ F with c ≤ b, then b⊖ c ∈ F .

Proof. (i) Let b = c⊕ d so that a | c and a | b. Now c⊕ d ⊕ b′ = 1 so d = (c⊕ b′)′. Since a | b, a | b′

and since a | c we have that a | c⊕b′. Hence, a | d. (ii) Since c ≤ b we have that b = c⊕ (b⊖ c). Since

a | c and a | b, by (i) a | (b⊖ c). (iii) This follows from (i). (iv) Since b,c ∈ F we have that b′ and

c⊕b′ ∈ F . Hence, by (iii).

b⊖ c = (c⊕b′)′ ∈ F

Theorem 3.3. A COSEA E is isomorphic to a direct sum of two COSEA’s if and only if there exists an

a ∈ S(E )∩E ′ with a 6= 0,1.

Proof. If E is isomorphic to a direct sum of two COSEA’s, we can just as well assume that E = E1⊕E2.

We then have that (11,02)∈ S(E )∩E ′ and (11,02) 6= (11,12) = 1 and (11,02) 6= (01,02) = 0. Conversely,

suppose a ∈ S(E )∩E ′ with a 6= 0,1. Let

E1 = {a◦b : b ∈ E }

and define 01 = a◦0 = 0 and 11 = a◦1 = a. For a◦b ∈ E1 define

(a◦b)′ = a◦b′ ∈ E1

Define a◦b1 ⊥1 a◦b2 if b1 ⊥ b2 and in this case

a◦b1 ⊕1 a◦b2 = a◦ (b1 ⊕b2) = a◦b1 ⊕a◦b2 ∈ E1

It is easy to check that (E1,01,11,⊕1) is an effect algebra. Letting λ (a◦b) = a◦ (λb) makes E1 into a

COSEA. Defining

(a◦b)◦1 (a◦b) = (a◦b)◦ (a◦ c) = a◦ (b◦ c) ∈ E1
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we see that a◦b |1 a◦ c. We now show that (E1,01,11,⊕1◦1) is a COSEA. It is easy to verify that (S1)

and (S2) hold. To verify (S3) suppose that (a◦b)◦1 (a◦ c) = 0. Then

a◦ (b◦ c) = (a◦b)◦ (a◦ c) = 0

Hence, a ◦ b | a ◦ c so a ◦ b |1 a ◦ c. To verify (S4) suppose that a ◦ b |1 a ◦ c. Then a ◦ b | a ◦ c. Since

a = a◦ c⊕a◦ c′ and a◦b | a, a◦b | a◦ c it follows from Lemma 3.2(i) that a◦b | a◦ c′ so a◦b | (a◦ c)′.
Moreover, for all d ∈ E we have

(a◦b)◦ [(a◦ c)◦ (a◦d)] = [(a◦b)◦ (a◦ c)] ◦ (a◦d)

The verification of (S5) and (S6) are straightforward. We conclude that E1 is a COSEA. Now a′ ∈ S(E )
with a′ 6= 0,1 so letting E1 = {a′ ◦b : b ∈ E } with similar definitions we have that (E2,02,12,⊕2,◦2) is

a COSEA. Every element of E has the unique representation b = a ◦ b⊕ a′ ◦ b, a ◦ b ∈ E1, a′ ◦ b ∈ E2.

Defining the map J : E → E1 ⊕ E2 by J(b) = (a ◦ b,a′ ◦ b) it is straightforward to show that J is an

isomorphism.

Since E is spectral, every b ∈ E has a representation b = λ1a1 ⊕·· ·⊕λaan for some {ai} ∈ C (E ),
λi ∈ [0,1]. We denote the set of effects that have such a representation relative to a context A ∈ C (E )
by E (A ). It is clear that E (A ) is a commutative sub-COSEA of E . In fact, if b is as above and

c = µa1 ⊕·· ·⊕µnan, µ1 ∈ [0,1], then b ⊥ c if and only if λi +µi ≤ 1, i = 1, . . . ,n and in this case

b⊕ c = (λ1 +µ1)a1 ⊕·· ·⊕ (λn +µn)an

In general, we have

b◦ c = (λ1µ1)a1 ⊕·· ·⊕ (λnµn)an

In the representation for b ∈ E , the λi need not be distinct but since the sum of sharp elements is sharp,

we can write

b = λ ′
1c1 ⊕·· ·⊕λ ′

mcm (3.1)

where ci ∈ S(E ), λ ′
i 6= λ ′

j, i 6=. The next result follows from Theorem 4.3 in [11].

Theorem 3.4. Any b ∈ E has a unique representation (3.1) where λ ′
i ∈ [0,1], λ ′

i 6= λ ′
j, i 6= j, ci ∈ S(E ),

c1 ⊕·· ·⊕ cm = 1 and ci ∈ {b}′′.

Theorem 3.5. In a COSEA E , a | b if and only if a,b ∈ E (A ) for some A ∈ C (E ).

Proof. If a,b ∈ E (A ), then clearly a | b. Conversely, suppose that a | b. By Theorem 3.4, we have a =
⊕λiai, b =⊕µibi, λi 6= λ j, µi 6= µ j, i 6= j, ai,bi ∈ S(E ) and ⊕ai =⊕bi = 1. Moreover, by Theorem 3.4,

ai | b j for all i, j. Then ai ◦b j ∈ S(E ) and ⊕ai ◦b j = 1. Letting ek be the nonzero ai ◦b j we have that

ek ∈ S(E ) and ⊕ek = 1. Then ai = ⊕{ek : ek ≤ ai} and similarly for the bi. Reordering the λi and µi if

necessary we can write a = ⊕λiei, b = ⊕µiei. Finally, we can construct a context A = {ck} such that

ei =⊕cki
for all i. Then a =⊕λici, b =⊕µici so that a,b ∈ E (A ).

Lemma 3.6. If a ∈ S1(E ), b ∈ S(E ), then a | b if and only if a◦b = 0 or a ≤ b.

Proof. If a ◦ b = 0 or a ≤ b, then by Theorem 2.1, a | b. If a | b, then since a ◦ b ≤ a we have that

a ◦ b = λa for some λ ∈ [0,1]. Since a ◦ b ∈ S(E ), λ 2a = λa so λ 2 = λ . Hence, λ = 0 or λ = 1. If

λ = 0, then a◦b = 0. If λ = 1, then

a = a◦b = b◦a ≤ b
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Theorem 3.7. If a ∈ S1(E ), then

{a}′ =
{

b : b = λa⊕
⊕

λiai,{a,a1, . . . ,an} ∈ C (E ),λ ,λi ∈ [0,1]
}

(3.2)

Proof. If b = λa⊕
⊕

λiai as in (3.2), then clearly b | a. Conversely suppose b | a. By Theorem 3.4 we

can write b = ⊕µici, ci ∈ S(E ), µi 6= µ j, µi 6= 0, ci ◦ c j = 0, i 6= j. Also by Theorem 3.4 we have that

a | ci for all i so by Lemma 3.6 a◦ci = 0 or a ≤ c. If a◦ci = 0 for all i, then form a context {a,a1, . . . ,an}
such that b = 0a⊕

⊕
λiai. Otherwise, there is a j such that a ≤ c j and a◦ ci = 0 for all i 6= j. We again

form a context {a,a1, . . . ,an} such that b = λa⊕
⊕

λiai.

Theorem 3.8. A COSEA E is a factor if and only if E is not isomorphic to the direct sum of two COSEA’s.

Proof. Suppose E is a factor. If E is isomorphic to a direct sum of COSEA’s E1,E2, then by Theorem 3.3

there is an a ∈ S(E )∩E ′ with a 6= 0,1. But then a = λ1 for some λ ∈ (0,1). Since a2 = a we have that

λ 2 = λ so λ = 0 or λ = 1 which is a contradiction. Conversely, suppose E is not a factor so that

E ′ 6= {λ1: λ ∈ [0,1]}. Then there is a b ∈ E ′ with b 6= λ1 for any λ ∈ [0,1]. By Theorem 3.4, there

exists an a ∈ S(E )∩{b}′′ with a 6= 0,1. Since {b}′ = E we have that a ∈ {b}′′ = E ′. By Theorem 3.3,

E is isomorphic to the direct sum of two COSEA’s.

For F ⊆ E , if a ∈ F ∩S(E ) with a 6= 0, we say that a is minimal sharp in F if b ∈ F ∩S(E ) and

b ≤ a, then b = a.

Theorem 3.9. F is a commutative sub-COSEA of E if and only if there exist minimal sharp elements

a1, . . . ,an in F such that a1 ⊕·· ·⊕an = 1 and

F = {λ1a1 ⊕·· ·⊕λnan : λi ∈ [0,1]} (3.3)

Proof. If F has the form (3.3), since ai | a j, F ⊆ F ′ and it is easy to show that F is a sub-COSEA.

Conversely, suppose F is a commutative sub-COSEA of E . If b ∈ F ∩S(E ) with b 6= 0 we show there

exists a minimal sharp a in F such that a ≤ b. If b is minimal sharp in F we are finished. Otherwise,

there exists an a1 ∈ F ∩ S(E ) with an 6= 0 and a1 < b. If a1 is minimal sharp in F we are finished.

Otherwise, there exists an a2 ∈ F ∩S(E ) with a2 6= 0 and a2 < a1 < b. This process must end because if

a1 > a2 > a2 > · · · with, ai ∈F ∩S(E ), ai 6= 0, then letting bi = ai⊖ai+1, i = 1,2, . . ., we have bi ∈ S(E )
and bi ⊥ b j, i 6= j. Since E is spectral, there exist ci ∈ S1(E ) such that ci ≤ bi, i = 1,2, . . ., but this

contradicts the finite-dimensionality of E . We conclude that for b ∈ F ∩ S(E ) with b 6= 0, there is a

minimal sharp a in F such that a ≤ b. Let a1,a2, . . . ,an be the minimal sharp elements of F . Again,

because of finite dimensionality there is a finite number of these. Moreover, we have a1 ⊕·· ·an = 1. If

d ∈ F , then Theorem 3.4 there exist d j ∈ F ∩S(E ) such that

d = λ1d1 ⊕·· ·⊕λmdm

where λ j ∈ [0,1] and d1 ⊕·· ·⊕dm = 1. By our previous work d j = ⊕ai j
so that d = µ1a1 ⊕·· ·⊕µnan,

µi ∈ [0,1].

Corollary 3.10. There exist minimal sharp elements a1, . . . ,an in E ′ such that a1 ⊕·· ·⊕an = 1 and

E
′ = {λ1a1 ⊕·· ·⊕λnan : λi ∈ [0,1]}

Lemma 3.11. If a is a minimal sharp element of E ′ and F = {a◦b : b ∈ E }, then F is a COSEA with

unit a and F is a factor.
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Proof. We have shown in the proof of Theorem 3.3 that F is a COSEA with unit a. To show that F is

a factor, we must show that F ′ ∩F = {λa : λ ∈ [0,1]}. If a◦b ∈ F ′ ∩F ∩ S(E ), then a◦b | a◦ c for

all c ∈ E . We also have that (a◦b)◦ (a′ ◦ c) = 0 so a◦b | a′ ◦ c for all c ∈ E . Since c = a◦ c⊕a′ ◦ c we

have a◦b | c so a◦b ∈ E ′. Since a◦b ≤ a and a is minimal sharp in E we conclude that if b 6= 0 then

a◦b = a. Hence, the only sharp elements of F ′∩F are 0 and a. Since every c ∈ F ′∩F has the form

c = λ1c1 ⊕·· ·⊕λncn, λi ∈ [0,1], ci ∈ S(F ) we have that c = λa, λ ∈ [0,1]. Therefore, F is a factor.

We can extend the definition of direct sum to more than two summands. We define

E1 ⊕E2 ⊕E3 = (E1 ⊕E2)⊕E3

and of course, the placement of the parenthesis is immaterial. In a similar way, we define E = E1 ⊕E ⊕
·· · ⊕ En. For convenience, write (a1, . . . ,an) ∈ E as a1 ⊕ ·· · ⊕ an, ai ∈ Ei, i = 1, . . . ,n. We then have

ai ◦a j = 0, i 6= j, and 11 ⊕·· ·⊕1n = 1. Also,

E
′ =

{
a1 ⊕·· ·⊕an : ai ∈ E

′
i

}

Theorem 3.12. Any finite-dimensional COSEA E is isomorphic to the direct sum of a finite number of

factors.

Proof. By Corollary 3.10 there exist minimal sharp elements a1, . . . ,an in E ′ with a1 ⊕·· ·⊕an = 1. By

Lemma 3.11, Ei = {ai ◦b : b ∈ E } is a factor with unit ai. Since every b ∈ E has the form

b = a1 ◦b⊕·· ·⊕an ◦b

it follows that E is isomorphic to E1 ⊕·· ·⊕En.

We close this section with a result about the state space of the direct sum. If V is a real vector space

and A1, . . . ,An ⊆V we define the convex hull of a1, . . . ,An by

CH(A1, . . . ,An)

=
{

λ1v1 + · · ·+λnvn : λi ≤ 0, ∑λi = 1, vi ∈ Ai, i = 1, . . . ,n
}

Theorem 3.13. Ω(E1 ⊕·· ·⊕En) =CH (Ω(E1), . . . ,Ω(En))

Proof. We shall show that Ω(E1 ⊕ E2) = CH (Ω(E1),Ω(E2)) and the general result easily follows. If

ω1 ∈ Ω(E1), ω2 ∈ Ω(E2), λ ∈ [0,1], (a,b) ∈ E = E1 ⊕E2, define

ω(a,b) = λω1(a)+ (1−λ )ω2(b)

To show that ω ∈ Ω(E ) we have that

ω(11,12) = λω1(11)+ (1−λ )ω2(12) = 1

and

ω [(a1,a2)⊕ (b1,b2)] = ω [(a1 ⊕b1,a2 ⊕b2)]

= λω1(a1 ⊕b1)+ (1−λ )ω2(a2 ⊕b2)

= λ [ω1(a1)+ω1(b1)]+ (1−λ ) [ω2(a2)+ω2(b2)]
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= [λω1(a1)+ (1−λ )ω2(a2)]+ [λω1(b1)+ (1−λ )ω2(b2)]

= ω(a1,a2)+ω(b1,b2)

Hence, CH (Ω(E1),Ω(E2)) ⊆ Ω(E1 ⊕ E2). To show that Ω(E1 ⊕ E2) ⊆ CH (Ω(E1),Ω(E2)), let ω ∈
Ω(E1 ⊕E2). If ω(11,0) = 0 then for b ∈ E2 define ω2(b) = ω(01,b). Since ω(01,12) = 1, ω2 ∈ Ω(E2)
and we have that

ω(a,b) = ω ((a,02)⊕ (01,b)) = ω(01,b) = ω2(b)

Similarly, if ω(01,12) = 0, then letting ω1(a) = ω(a,02) we have that ω(a,b) = ω1(a). If ω(11,02),
ω(01,12) 6= 0, define ω1 ∈ Ω(E1), ω2 ∈ Ω(E2) by

ω1(a) =
1

ω(11,02)
ω(a,02), ω2(b) =

1

ω(01,12)
ω(01,b)

Then ω(11,02)+ω(01,12) = ω(1) = 1 and

ω(a,b) = ω(a,02)+ω(01,b) = ω(11,02)ω1(a)+ω(01,12)ω2(b)

4 Conditioning and Spectra

As before E will denote a finite-dimensional COSEA and if a ∈ S1(E ) then â is the unique state on E

such that â(a) = 1. If b ∈ E and ω ∈ Ω(E ) with ω(b) 6= 0 we define the conditional probability for ω

given b as ω(c | b) = ω(b◦ c)/ω(b) for every c ∈ E . Notice that ω(·| b) is indeed a state on E .

Theorem 4.1. Let a ∈ S1(E ). (i) â is the unique state on E such that a◦b = â(b)a for all b ∈ E . (ii) â

is the unique state on E such that â(b) = â(a◦b) for all b ∈ E . (iii) If ω ∈ Ω(E ) with ω(a) 6= 0, then

ω(b | a) = â(b) for all b ∈ E .

Proof. (i) Since a◦b ≤ a, there exists λa(b) ∈ [0,1] such that a◦b = λa(b)a. Applying â to both sides

gives λa(b) = â(a◦b). It is clear that λa ∈ Ω(E ) and λa(a) = 1. Hence, λa = â so that a◦b = â(b)a for

all b ∈ E . If ω ∈ Ω(E ) satisfies a◦b = ω(b)a for all b ∈ E , letting b = a gives

a = a◦a = ω(a)a

Hence, ω(a) = 1 so ω = â. Thus, â is unique. (ii) By (i) we have that

â(a◦b) = â(b)â(a) = â(b)

for all b ∈ E . If ω ∈ Ω(E ) satisfies ω(b) = ω(a◦b) for all b ∈ E , letting b = 1 gives ω(a) = ω(1) = 1

so that ω = â. (iii) If ω(a) 6= 0, applying (i) gives

ω(b | a) =
ω(a◦b)

ω(a)
=

ω (â(b)a)

ω(a)
= â(b)

From Theorem 4.1(iii) we have that â(b) = ω(b | a) for all ω ∈ Ω(E ) with ω(a) 6= 0. We conclude

that â is the universal conditional probability given a.

Let Ω̂(E ) = Ω(E )∪ {0} where 0(b) = 0 for all b ∈ E . For all a ∈ E we define the conditional

probability map γa : Ω̂(E )→ Ω̂(E ) by γa(0) = 0 and for ω 6= 0

γa(ω) =

{
ω(·| a) if ω(a) 6= 0

0 if ω(a) = 0

It is clear that γ0(ω) = 0 and γ1(ω) = ω for all ω ∈ Ω̂(E ). The next result summarizes properties of γ .
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Lemma 4.2. (i) If a ∈ S1(E ), the â is the unique nonzero fixed point of γa; that is, γaω = ω , ω 6= 0

implies that ω = â. (ii) If a ⊥ b, c | a, c | b then for all ω ∈ Ω(E ) we have that

ω(a⊕b)γa⊕b(ω)(c) = ω(a)γa(ω)(c)+ω(b)γb(ω)(c) (4.1)

(iii) If a | b, then for all ω ∈ Ω̂(E ) we have that

ω(a′)γa′(ω)(b) = ω(b)−ω(a)γa(ω)(b) (4.2)

(iv) For all ω ∈ Ω̂(E ) and c ∈ E we have that

ω(a◦b)γa◦b(ω)(c) = ω [(a◦b)◦ c] (4.3)

and

ω(a◦b) [γbγa(ω)](c) = ω [a◦ (b◦ c)] (4.4)

Proof. Conditions (4.1)–(4.4) clearly hold if ω = 0. We thus assume that ω ∈ Ω(E ). (i) We have from

Theorem 4.1(ii) that

γa(â)(b) = â(b | a) = â(a◦b) = â(b)

Hence, γa(â) = â. Now if γaω = ω , then ω(a) 6= 0 and for every b ∈ E we have that

ω(b) = γa(ω)(b) =
ω(a◦b)

ω(a)

We conclude that ω(a) = 1 so that ω = â. (ii) If ω(a⊕b) = 0, then ω(a) = ω(b) = 0 so both sides of

(4.1) are 0. If ω(a⊕b) 6= 0, then (4.1) is equivalent to

ω [(a⊕b)◦ c] = ω [c◦ (a⊕b)] = ω(c◦a⊕ c◦b)

= ω(c◦a)+ω(c◦b) = ω(a◦ c)+ω(b◦ c)

(iii) If ω(a′) = 0, then the left side of (4.2) is 0 and the right side is ω(b) =ω(a◦b). But b= b◦a⊕b◦a′

and since b◦a′ = a′ ◦b ≤ a′ we have that ω(b◦a′) = 0. Hence, ω(b) = ω(a◦b) so the right side is also

0. If ω(a′) 6= 0, then (4.2) is equivalent to

ω(a′ ◦b) = ω(b◦a′) = ω(b)−ω(b◦a) = ω(b)−ω(a◦b)

= ω(b) = ω(a)γa(ω)(b)

(iv) If ω(a ◦ b) = 0, then both sides of (4.3) are 0. If ω(a ◦ b) 6= 0, then (4.3) follows directly. Since

b ◦ c ≤ b, we have that a ◦ (b ◦ c) ≤ a ◦ b. Thus, if ω(a ◦ b) = 0 then both sides of (4.4) are 0. If

ω(a◦b) 6= 0, then

ω(a◦b) [γbγa(ω)] (c) =
ω(a◦b)γa(ω)(b◦ c)

γa(ω)(b)
= ω [a◦ (b◦ c)]

If ω(a⊕b) 6= 0, then (4.1) shows that on {a,b}′ we have that γa⊕b is a convex combination

γa⊕b =
ω(a)

ω(a)+ω(b)
γa +

ω(b)

ω(a)+ω(b)
γb
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If ω(a′) 6= 0, then (4.2) implies that on {a}′ we have that

γa′ =
ω −ω(a)γa(ω)

1− γ(a)

If a | b, then (4.3) and (4.4) imply that

γbγa = γaγb = γa◦b

We know that for a ∈ S1(E ) there exists a unique ω ∈ Ω(E ) such that ω(a) = 1. We now consider

whether there are other effects with this property.

Theorem 4.3. There exists a unique ω ∈ Ω(E ) for which ω(a) = 1 if and only if there is a context {ai}
such that

a = a1 ⊕λ2a2 ⊕·· ·⊕λnan (4.5)

where λi ∈ [0,1).

Proof. If a has the form (4.5), then â1(a) = 1. If ω ∈ Ω(E ) with ω(a) = 1, then

ω(a1)+
n

∑
i=2

λiω(ai) = 1

If ω(a j) 6= 0 for some j = 2, . . . ,n then

1 = ω(a1)+
n

∑
i=2

λiω(ai)< ω(a1)+
n

∑
i=2

ω(ai) = 1

which is a contradiction. Hence, ω(a j) = 0, j = 2, . . . ,n. We conclude that ω(a1) = 1 so ω = â1 and â1

is the unique state such that â1(a) = 1. Conversely, suppose there exists a unique ω ∈ Ω(E ) such that

ω(a) = 1. Let a =⊕λiai for some {ai} ∈ C (E ), λi ∈ [0,1]. Since ω(a) = 1 we have that

∑λiω(ai) = ω(a) = 1

If ω(a j) 6= 0 and λ j < 1, then

1 = ∑λiω(ai)< ∑ω(ai) = 1

which is a contradiction. Since ω(a j) 6= 0 for some j we have λ j = 1 for some j. We can assume that

j = 1 and write a in the form (4.5). We have that λi < 1, i = 2, . . . ,n because if λi = 1 then â1(a) =
âi(a) = 1 which contradicts the uniqueness of ω .

Corollary 4.4. If a ∈ S(E ) , then there exists a unique ω ∈ Ω(E ) such that ω(a) = 1 if and only if

a ∈ S1(E ).

We say that b ∈ E is dispersion-free relative to ω ∈ Ω(E ) if ω(b2) = ω(b)2. Notice that if b ∈ S(E ),
then ω(b2) = ω(b)2 if and only if ω(b) = 0 or ω(b) = 1. This terminology is due to the definition of

dispersion as

ω
[
(b−ω(b)1)2

]
= ω(b2)−ω(b)2 ≥ 0

We say that b is constant almost everywhere ω [a.e.(ω)] if b = λa ⊕ c, λ ∈ [0,1], where a ∈ S(E ),
a◦ c = 0, ω(a) = 1.
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Theorem 4.5. An effect b is dispersion-free relative to ω ∈ Ω(E ) if and only if b is constant a.e.(ω).

Proof. If b is constant a.e.(ω), then b = λa⊕ c, a ∈ S(E ), a◦ c = 0, ω(a) = 1. Then a | c and we have

that b2 = λ 2a⊕ c2. Since

a = a◦ c⊕a◦ c′ = a◦ c′ = c′ ◦a ≤ c′

we have that 1 = ω(a) ≤ ω(c′). Hence, ω(c′) = 1 so that ω(c) = 0. Since c2 ≤ c and ω(c) = 0 we

conclude that ω(c2) = 0. Hence,

ω(b2) = λ 2ω(a) = λ 2 = ω(b)2

Conversely, suppose ω(b2) = ω(b)2. Let b = λ1a1 ⊕ ·· · ⊕ λnan, λi ∈ [0,1], {ai} ∈ C (E ). Define the

random variable f (ai) = λi with distribution ω(ai). Then the expectation of f becomes

Eω( f ) = ∑λiω(ai) = ω(b)

and

Eω( f 2) = ∑λ 2
i ω(ai) = ω(b2) = ω(b)2 = Eω( f )2

Hence,

Eω

[
( f −Eω( f ))2

]
= Eω( f 2)−E( f )2 = 0

Since ( f −Eω( f ))2 ≥ 0, f = Eω( f )a.e.(ω). Therefore,

f (ai) = Eω( f ) = ω(b)a.e.(ω)

We can assume that

f (a1) = · · ·= f (am) = ω(b)

and ω(am+1) = · · ·= ω(an) = 0. Letting a = a1 ⊕·· ·⊕an and

c = λm+1am+1 ⊕·· ·⊕λnan

we have that b = ω(b)a⊕ c where a ∈ S(E ), a◦ c = 0, ω(a) = 1.

It follows from the proof of Theorem 4.5 that if a is constant a.e.(ω) then the constant is ω(a).

We say that b ∈ E has eigeneffect a ∈ S1(E ) if b | a. Notice that b | a if and only if b◦a = â(b)a. We

call â(b) the eigenvalue corresponding to eigeneffect a. The set of eigeneffects for b is the eigenspace

S1(b) and the set of eigenvalues for b is the spectrum σ(b). Since E is spectral, every b ∈ E can be

written as b = λ1a1 ⊕·· ·⊕λnan, λi ∈ [0,1], {ai} ∈ C (E ). Since b | ai, it follows that ai ∈ S1(b) and λi =
âi(b) ∈ σ(b), i= 1, . . . ,n. The different eigenvalues of b are unique but there may be various eigeneffects

corresponding to the same eigenvalues. For example, if λ1 = λ2, then a1,a2 ∈ S1(E ) correspond to λ1.

More generally, in this case if c ∈ S1(E ) and c ≤ a1 ⊕ a2 then c corresponds to λ1. It is also clear that

if a,b ∈ S1(b) correspond to different eigenvalues, then a ◦ b = 0. Moreover, b ∈ S(E ) if and only if

σ(b)⊆ {0,1} and b ∈ S1(E ) if and only if 1 ∈ σ(b) and S1(b) = {b}.

We define m(b) = min{λ : λ ∈ σ(b)} and M(b) = max{λ : λ ∈ σ(b)}. Of course, 0 ≤ m(b) ≤
M(b)≤ 1. We define the numerical range r(b) = [m(b),M(b)] and the norm ||b||= M(b). It is clear that

σ(λb) = λσ(b), r(λb) = λ r(b) and ||λb||= λ ||b|| for all b ∈ E , λ ∈ [0,1].
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Lemma 4.6. r(b) = {ω(b) : ω ∈ Ω(E )}

Proof. Let a1,a2 ∈ S1(b) with b◦a1 = m(b)a1 and b◦a2 = M(b)a2. For λ ∈ [0,1] we define ωλ ∈ Ω(E )
by ωλ = λ â1 +(1−λ )â2. We then have

r(b) = [m(b),M(b)] = {λm(b)+ (1−λ )M(b) : λ ∈ [0,1]}

= {λ â1(b)+ (1−λ )â2(b) : λ ∈ [0,1]} = {ωλ (b) : λ ∈ [0,1]}

⊆ {ω(b) : ω ∈ Ω(E )}

Conversely, if b = λ1a1 ⊕ ·· · ⊕ λnan, {ai} ∈ C (E ) then σ(b) = {λi}. If ω ∈ Ω(E ), then ω(b) =

∑λiω(ai). Since ∑ω(ai) = 1 we have that

m(b) = ∑m(b)ω(ai)≤ ∑λiω(ai)≤ ∑M(b)ω(ai) = M(b)

Hence m(b)≤ ω(b)≤ M(b) and we conclude that

{ω(b) : ω ∈ Ω(E )} ⊆ r(b)

Theorem 4.7. (i) ||b||= max{ω(b) : ω ∈ Ω(E )}. (ii) If b1 ⊥ b2 then

||b1 ⊕b2|| ≤ ||b1||+ ||b2||

(iii) ||b||= 0 if and only if b= 0 (iv) If a≤ b then ||a|| ≤ ||b|| and for all a∈ E , a≤ ||a||1. (v) ||a◦b|| ≤
||a|| ||b||.

Proof. (i) follows from Lemma 4.6. (ii) By (i) we have that

||b1 ⊕b2||= max{ω(b1 ⊕b2) : ω ∈ Ω(E )}= max{ω(b1)+ω(b2) : ω ∈ Ω(E )}

≤ max{ω(b1) : ω ∈ Ω(E )}+max{ω(b2) : ω ∈ Ω(E )}

= ||b1||+ ||b2||

(iii) We have that b = 0 if and only if σ(b) = {0} which is equivalent to ||b|| = 0. (iv) If a ≤ b, then

there exists a c ∈ E such that b = a⊕ c. Hence, for all ω ∈ Ω(E ) we have that

ω(a)≤ ω(a)+ω(c) = ω(b)

It follows from (i) that ||a|| ≤ ||b||. Since a = λ1a1 ⊕·· ·⊕λnan, {ai} ∈ C (E ), σ(a) = {λi} we have that

a = λ1a2 ⊕·· ·⊕λnan ≤ M(a)(a1 ⊕·· ·⊕an) = M(a)1 = ||a||1

(v) By (iv) we have b ≤ ||b||1 and hence, a◦b ≤ ||b||a. Again by (iv) we conclude that

||a◦b|| ≤ || ||b||a||= ||a|| ||b||



S. Gudder 205

5 Representation Theorems

Let E be a finite-dimensional spectral COSEA. For A = {ai} ∈ C (E ) define the complex linear space

H (A ) =
{
∑αiâi : αi ∈C

}

For x,y ∈ H (A ) with x = ∑αiâi, y = ∑β1âi define the inner product 〈x,y〉 = ∑α iβi. Thus, H (A ) is

a complex Hilbert space that we call the state space for context A . Of course, H (A ) has orthonormal

basis Â = {âi : i = 1, . . . ,n} and dimH (A ) = n. The elements of Â can be thought of as states in

Ω(E ) or as unit vectors in H (A ) which again correspond to Hilbert space pure states. We now show

that this dual role is consistent. For b ∈ E define the linear operator Lb on H (A ) by Lb = ∑ â j(b)P(â j).
Notice that Lb is a positive operator, L0 = 0, L1 = I, Lb′ = I −Lb and if b ⊥ c then Lb⊕c = Lb +Lc. We

then have that

〈âi,Lbâi〉=
〈
âi,∑ â j(b)P(â j)âi

〉
= 〈âi, âi(b)âi〉= âi(b)

so the dual roles are consistent. It is easy to see that L : E → E (H (A )) need not be injective or

surjective and does not preserve sharpness. Moreover, all the Lb, b ∈ E , commute so they do not convey

quantum interference. One can say that L gives a distorted partial view of E . The reason for this is that

we are only employing a single context A . Each context gives a partial view and in order to obtain a

total view, they must all be considered.

In order to consider several contexts together, we introduce a method to compare them. We say that

E is comparable if for every A ,B ∈ C (E ) there exists a unitary operator UA B : H (A ) → H (B)
such that ∣∣∣

〈
UA Bâ, b̂

〉∣∣∣
2

= â(b) (5.1)

for all a ∈ A , b ∈ B and

UBCUA B =UA C (5.2)

for all C ∈ C (E ). Notice that if E is comparable, then any two contexts in E have the same cardinality.

We now justify why we assume that H (A ) is a complex Hilbert space instead of a real space which

may seem to be more natural. In many situations, there is an underlying symmetry group that we would

like to represent on E . This is most accurately accomplished by employing a unitary representation of

the group on H (A ) for some A ∈ C (E ). For a unitary representation, we need H (A ) to be complex.

Moreover, it is desirable for the representation to be context independent. This motivates requiring that

E is comparable because in this case the representations for different contexts are unitarily equivalent.

Lemma 5.1. If E is comparable, then (i) UA A = I, (ii) UA B =U∗
BA

,

(iii) |〈UA Bâ,UC B ĉ〉|2 = â(c).

Proof. (i) Applying (5.2) gives UA A UA A =UA A Multiplying by U∗
A A

gives UA A = I. (ii) By (5.2)

we have that

UBA UA B =UA A = I

Hence, UA B =U∗
BA

. (iii) Applying (5.1), (5.2) and (ii) gives

|〈UA Bâ,UCB ĉ 〉|2 = |〈U∗
CBUA B â, ĉ 〉|2 = |〈UBCUA Bâ, ĉ 〉|2

= |〈UA C â, ĉ〉|2 = â(c)
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For b ∈ E (B) with b = λ1b1 ⊕·· ·⊕λnbn, define b̃ ∈ H (B) by b̃ = ∑λiP( b̂i). For comparable E

define ŨBA : E (H (B))→ E (H (A )) by

ŨBA =UBA BUA B =UBA BU∗
BA

We say that E is strongly comparable if E is comparable and if b1 ⊥ b2 with b1 ∈ E (A ), b2 ∈ E (B),
b1 ⊕b2 ∈ E (C ), then

(b1 ⊕b2)
∼ = ŨA C b̃1 ⊕ŨBC b̃2 (5.3)

We see that (5.3) is a reasonable requirement which postulates that ⊕ is independent of its Hilbert space

representation.

Theorem 5.2. A finite-dimensional COEA E is isomorphic to a finite-dimensional Hilbertian sub-COEA

if and only if E is spectral and strongly comparable.

Proof. Suppose E is isomorphic to a Hilbertian sub-COEA F . For simplicity we can assume that

E = F . It is clear that F is state-unique. By the spectral theorem, if b ∈ F , then b = ∑λiai where

ai ∈ S1 (E (H)) are polynomial functions of b. Hence, ai ∈ F so E is spectral. To show that E is

comparable, let A = {ai}, B = {bi} be contexts in E . Then {âi},
{

b̂i

}
are orthonormal bases of H .

Define UA B : H (A )→ H (B) by

UA Bâi = ∑
j

〈
b̂ j, âi

〉
b̂ j

and extend by linearity. It is clear that UA B is unitary. Also, (5.1) holds because

∣∣∣
〈

UA Bâi, b̂ j

〉∣∣∣
2

=
∣∣∣
〈

b̂ j, âi

〉∣∣∣
2

= âi(b j)

If C = {ci} is another context, we have that

UBCUA Bâi = ∑
j

〈
b̂ j, âi

〉
UBC b̂ j = ∑

j,k

〈
b̂ j, âi

〉〈
ĉk, b̂ j

〉
ĉk

= ∑
k

〈ĉk, âi〉ĉk =UA C âi

Hence, (5.2) holds so E is comparable. In this case, if a ∈ E then a = ã and ŨA C = ŨBC = I so clearly

E is strongly comparable.

Conversely, suppose E is spectral and strongly comparable. Fix A ∈ C (E ) and let

J : E → E (H (A )) be defined by

J(b) = ŨBA (b̃)

where b ∈ E (B), B ∈ C (E ). We first show that J(b) is well-defined. That is, we need to show J(b) is

independent of the context B containing b. Suppose b ∈ E (B)∩E (C ). Letting b1 = 0, b2 = b, we have

that b1 ∈ E (B), b2 ∈ E (B) and b1 ⊕b2 = b ∈ E (C ). By (5.3) we have that

b̃ = (b1 ⊕b2)
∼ = ŨBC (b̃1)⊕ŨBC (b̃2) = ŨBC (b̃)

Therefore

ŨC A (b̃) = ŨC A ŨBC (b̃) = ŨBA (b̃)
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Hence, J(b) is well-defined. We now show that J is injective. Let b ∈ E (B) with b = λ1b1 ⊕ ·· · ⊕
λnbn, c ∈ E (C ) with c = µ1c1 ⊕·· ·⊕ µncn and suppose that J(b) = J(c). Then ŨBA (b̃) = ŨCA (c̃) or

equivalently

UBA b̃UA B =UCA c̃UA C

This implies that

b̃ =UA BUCA c̃UA CUBA =UCB c̃UBC

which gives UBC b̃ = c̃UBC . We conclude that

c̃(UBC b̂i) = (UBC b̃)b̂i = λiUBC b̂i

Hence, UBC b̂i an eigeneffect of c̃ with corresponding eigenvalue λi. But the eigenvalues of c̃ are µ j with

corresponding eigeneffects ĉ j. Therefore, λi = µ j for some j and UBC b̂i = ĉ j. Since

b̂i(ck) =
∣∣∣
〈

UBC b̂i, ĉk

〉∣∣∣
2

=
∣∣〈ĉ j, ĉk

〉∣∣2 = δi j

we have that b̂i(c j) = 1. We conclude that b j = ci for all i so b = c. We now show that J(b1 ⊕ b2) =
J(b1)⊕ J(b2). Suppose that b1 ⊥ b2 with b1 ∈ E (B), b2 ∈ E (D), b1 ⊕b2 ∈ E (C ). By strong compara-

bility we have that

(b1 ⊕b2)
∼ = ŨBC (b̃1)⊕ŨDC (b̃2)

Hence,

J(b1 ⊕b2) = ŨCA [(b1 ⊕b2)
∼] = ŨCA

[
ŨBC (b̃1)⊕ŨDC (b̃2)

]

= ŨCA ŨBC (b̃2)⊕ŨCA ŨDC (b̃2) = ŨBA (b̃1)⊕ŨDA (b̃2)

= J(b1)⊕ J(b2)

If λ ∈ [0,1], b ∈ E (B), then

J(λb) = ŨBA ((λb)∼) = ŨBA (λ b̃) = λŨBA (b̃) = λJ(b)

It is easy to check that the range of J is a sub-COEA of E (H (A )).

We now consider representations of a finite-dimensional COSEA E . We first need some preliminary

lemmas. We saw in Theorem 3.4 that any a ∈ E with a 6= 0 has a unique representation a = λ1c1 ⊕·· ·⊕
λncn, λi 6= 0, λi 6= λ j, i 6= j, and ci ∈ S(E ). We denote by ⌈a⌉ the smallest sharp element that dominates

a.

Lemma 5.3. ⌈a⌉ exists and ⌈a⌉= c1 ⊕·· ·⊕ cn.

Proof. Let c= c1⊕·· ·⊕cn. Then c∈ S(E ) and a≤ c. Suppose b∈ S(E ) and a≤ b. Then a◦b= b◦a= a.

Hence, b | ci and

λ1c1 ⊕·· ·⊕λncn = a = a◦b = λ1c1 ◦b⊕·· ·⊕λncn ◦b (5.4)

Now ci ◦b ≤ ci and if ci ◦b < ci we would contradict (5.4). Hence, ci ◦b = ci so that

c◦b =⊕(ci ◦b) =⊕ci = c

It follows that c ≤ b so that c = ⌈a⌉.
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We say that a ∈ E is pseudo-invertible if there exists a b ∈ E such that ⌈b⌉= ⌈a⌉, ||b||= 1 and

a◦b = b◦a = λ⌈a⌉

for some λ ∈ [0,1]. We then call b a pseudo-inverse for a. (A slightly different definition as well as a

version of the next lemma are given in [21].) We denote the smallest nonzero eigenvalue of a by λ (a).

Lemma 5.4. If a 6= 0, then a has a unique pseudo-inverse and λ = λ (a).

Proof. If a 6= 0, as before a has the unique representation a = λ1c1 ⊕·· ·⊕λncn, λi 6= 0, λi 6= λ j, i 6= j,

ci ∈ S(E ). Letting

b = λ (a)

(
1

λ1

c1 ⊕·· ·⊕
1

λn

cn

)

we have from Lemma 5.3 that

a◦b = b◦a = λ (a)(c1 ⊕·· ·⊕ cn) = λ (a)⌈a⌉

Moreover, ||b||= 1, ⌈b⌉= ⌈a⌉= c1 ⊕·· ·⊕ cn. For uniqueness, suppose ⌈d⌉= ⌈a⌉, ||d||= 1 and a◦d =
d ◦a = λ⌈a⌉. Then d = µ1c1 ⊕·· ·⊕µncn and

µ1λ1c1 ⊕·· ·⊕µnλncn = a◦d = λ⌈a⌉

This implies that µ1λi = λ for all i. Hence, µi = λ/λi. Since ||d||= 1 we have M(d) = 1 which implies

that
λ

λ (a)
=

λ

min(λi

= max

(
λ

λi

)
= max(µi) = ||d||= 1

Therefore, λ (a) = λ and µi = λ (a)/λi so d = b.

We denote the unique pseudo-inverse of a by a−1. If a 6= 0, µ > 0 and µa ∈ E , then it is easy to

show that (µa)−1 = a−1. It follows that (a−1)−1 = a/ ||a|| and
(
(a−1)−1

)−1
= a−1. We can interpret

a−1 operationally as the effect that reverses a without interference but with a reduction of intensity by a

factor λ (a). If ⌈a⌉ = 1, we say that a is invertible and a−1 is the inverse of a. We say that E is inverse-

preserving if whenever a and b are invertible, then a◦b is as well and (a◦b)−1 = a−1 ◦b−1. Notice that

the order of a−1 and b−1 on the right is a bit unexpected but this is the correct order for a sequential

product a◦b in which a is measured first. It is clear that a classical COSEA is inverse-preserving. That

a Hilbertian sub-COSEA is also will be shown in Theorem 5.6.

Lemma 5.5. (i) a ∈ E is invertible if and only if a does not have a zero eigenvalue. (ii) If a ⊥ b and a

is invertible then a⊕b is invertible.

Proof. (i) If 0 ∈ σ(a), then ⌈a⌉ 6= 1 so a is not invertible. If 0 /∈ σ(a), then ⌈a⌉ = 1 so a is invertible.

(ii) If a is invertible, the ⌈a⌉ = 1. Suppose a⊕ b is not invertible. Then ⌈a⊕b⌉ 6= 1 so there exists a

c ∈ S1(E such that

c◦a⊕ c◦b = c◦ (a⊕b) = (a⊕b)◦ c = 0

Hence, c◦a = 0 which contradicts ⌈a⌉= 1.

When we consider a sub-Hilbertian COSEA F ⊆ E (H) we are assuming the standard sequential

product A◦B = A1/2BA1/2 on F .
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Theorem 5.6. A finite-dimensional COSEA E is isomorphic to a finite-dimensional sub-Hilbertian

COSEA F ⊆ E (H) if and only if E is strongly comparable and inverse-preserving.

Proof. Suppose E is COSEA isomorphic to F ⊆ E (H). For simplicity, we can assume that E = F .

We have shown in Theorem 5.2 that E is strongly comparable. To show that E is inverse-preserving,

suppose that A,B ∈ E are invertible. It follows from Lemma 5.5(i)) that A and B are invertible in the

usual operator sense. To avoid confusion, denote the usual operator inverse of A by Â. We then have that

(A◦B)∧ = (A1/2BA1/2)∧ = Â1/2B̂Â1/2 = Â◦ B̂ (5.5)

Writing A−1 as we previously define it we have that

A◦A−1 = A−1 ◦A = λ (A)I

Therefore, A−1 = λ (A)Â. Hence, λ (A)Â ∈ E although Â /∈ E in general. Similarly, B−1 = λ (B)B̂ ∈ E

and we can rewrite (5.5) as

A−1 ◦B−1 = λ (A)λ (B)Â◦ B̂ = λ (A)λ (B)(A◦B)∧ = (A◦B)−1

Hence, (A◦B)−1 exists and equals λ (A)λ (B)(A◦B)∧.

Conversely, suppose E is strongly comparable and inverse-preserving. We have previously observed

that E is automatically spectral. Applying Theorem 5.2 there exists a COSEA isomorphism J from E

onto a Hilbertian sub-COSEA F of E (H). Define the product J(a) · J(b) = J(a◦b) on F . It is shown

in [11] that F becomes a COSEA under this product. If a ∈ E is invertible, then J(a) is invertible with

J(a)−1 = J(a−1). Indeed,
∣∣∣∣J(a−1)

∣∣∣∣= 1, J(a−1) | J(a) and

J(a) · J(a−1) = J(a◦a−1) = J(λ (a)1) = λ (a)I

If E is inverse preserving, then · is also inverse preserving because if J(a) and J(b) are invertible, then a

and b are invertible and

[J(a) · J(b)]−1 = [J(a◦b)]−1 = J
[
(a◦b)−1

]
= J(a−1 ◦b−1)

= J(a−1) · J(b−1) = J(a)−1 · J(b)−1

We conclude that F ⊆ E (H) is an inverse preserving COSEA with sequence product. But F is also

an inverse preserving COSEA under the standard sequential product ◦. It follows from Theorem 5.19 in

[21] that J(a) · J(b) = J(a)◦ J(b). Hence, J : E → F is a COSEA isomorphism.

6 Closing Comments

A natural question the reader may ask is: “What is the relationship between contexts as discussed here

and the concept of contextuality considered in the literature [1, 19, 20]?” We shall devote a few sentences

to this question and leave a more complete investigation to a future work. The notion of contextuality is

based on an ontological model for a quantum system. Such a model is described by a measurable space

(Λ,Σ) where Λ is the set of pure states for the system. Preparation procedures, state transformations

and measurements are defined by stochastic maps on Λ that satisfy certain conditions. One of the main

assumptions is that these maps combine to reproduce the experimental statistics of the system in terms

of conditional probabilities. We define preparation, transformation and measurement non-contextuality
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when these stochastic maps satisfy injectiveness properties. Our point is that the concept of contexts can

be employed to construct such ontological models by defining the stochastic maps on contexts. Con-

versely, the stochastic maps for an ontological model will have their supports precisely on the contexts

that we have defined in this paper.

Finally, we should mention that other approaches to the mathematical foundations of quantum me-

chanics have been recently explored. In particular, there have been recent efforts to provide a new

foundation for the Hilbert space framework of quantum theory [3, 4, 16]. The main difference is that

these works emphasize the role of composite systems and general transformations, while the COSEA

formalism focuses on individual systems and on transformations induced by conditioning with sharp

effects.
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