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Updating a probability distribution in the light of new evidence is a very basic operation in Bayesian

probability theory. It is also known as state revision or simply as conditioning. This paper recalls how

locally updating a joint state can equivalently be described via inference using the channel extracted

from the state (via disintegration).

This paper also investigates the quantum analogues of conditioning, and in particular the ana-

logues of this equivalence between updating a joint state and inference. The main finding is that in

order to obtain a similar equivalence, we have to distinguish two forms of quantum conditioning,

which we call lower and upper conditioning. They are known from the literature, but the common

framework in which we describe them and the equivalence result are new.

1 Introduction

This paper is about quantum analogues of Bayesian reasoning. It works towards one main result, Theo-

rem 3 below, which gives a relation between locally updating a joint state and Bayesian inference. This

is a fundamental matter, which requires some preparation in order to set the scene.

We use the term ‘classical’ probability for the ordinary, non-quantum form. We often use the word

‘state’ for a probability distribution, both in the classical and the quantum case. Classical Bayesian

probability is based on what is called Bayes’ rule. It describes probabilities of events (evidence) in an

updated state. In fact, there are two closely related rules, sometimes called ‘product rule’ en ‘Bayes rule’

(proper). Making this distinction is not so relevant in the classical case, but, as we shall see, it is very

relevant in the quantum case.

The paper starts with the back-and-forth constructions between a joint state (distribution) on the one

hand, and a channel with an initial state on the other. A channel is a categorical abstraction of a condi-

tional probability. We shall describe this process in terms of pairing and disintegration, following [4].

This process has a logical dimension that relates locally updating a joint state (‘crossover inference’) and

Bayesian inference via the associated channel, in a result called the Bayesian Inference Theorem (see

Theorem 2 below). This result is already described in [4], but is repeated here in more concrete form,

and illustrated with an example.

The second part of the paper is about analogues in the quantum world. The constructions back-

and-forth between a joint state and a channel exist in the literature [20] and are adapted to the current

context. What is new here is the quantum logical analogue of this back-and-forth process. It is shown

that updating a state with new evidence, in the form of a predicate, splits in two operations, which we

call ‘lower’ and ‘upper’ conditioning. Both forms exist already, but not as counterparts. We show that
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the earlier mentioned product rule holds for lower conditioning, but Bayes’ rule itself holds for upper

conditioning. In classical probability, the ‘lower’ and ‘upper’ versions coincide.

In a next step, the main result of the paper (Theorem 3) shows how ‘lower’ updating a joint state

can equivalently be done via Bayesian inference with ‘upper’ conditioning, using the channel that is

extracted from the joint state. This puts lower and upper conditioning into perspective and unveils some

fundamental aspects of a quantum Bayesian theory.

Finally, there are two separate points worth emphasising. First, several constructions in this paper

are illustrated with concrete calculations, via the Python-based tool EfProb [5]; it works both for clas-

sical and quantum probability and uses a common language for both. Next, along the way we find a

novel result about how disintegration introduces ‘semi’ higher order structure in discrete probability, see

Subsection 3.2.

2 Basics of discrete classical probability

This section recalls the basics of (classical, finite) discrete probability and fixes notation. For more

information we refer to [14]. A distribution, also called a state, on a set X is a function ω : X → [0,1]
with finite support supp(ω) = {x ∈ X | ω(x) 6= 0} and with ∑x ω(x) = 1. Such a distribution can also

be written as formal convex sum ω = ∑x ω(x)|x〉. We write D(X) for the set of such distributions. The

mapping X 7→D(X) is a monad on the category of sets, called the distribution monad.

A joint state is a state on an n-ary product set. A binary state is thus a distribution τ ∈ D(X1×X2).
It has first and second marginals, written here as M1(τ) ∈ D(X1) and M2(τ) ∈ D(X2). These marginal

states are defined in the standard way as M1(τ)(x1) = ∑x2
τ(x1,x2) and M2(τ)(x2) = ∑x1

τ(x1,x2). In

the other direction, two states ωi ∈ D(Xi) can be combined to product state ω1⊗ω2 ∈ D(X1×X2) via

(ω1⊗ω2)(x1,x2) = ω1(x1) ·ω2(x2). Obviously, Mi(ω1⊗ω2) = ωi.

A channel is a function of the form c : X→D(Y ), that is, a map X→Y in the Kleisli category K ℓ(D)
of the distribution monad D . Such a channel c has a Kleisli extension function, or state transformer, c≫
(−) : D(X)→D(Y ) given by (c≫ ω)(y) = ∑x ω(x) · c(x)(y). For another channel d : Y →D(Z) there

is a composite channel d • c : X →D(Z) given by (d • c)(x) = d≫ c(x). Channels ci : Xi→D(Yi) can

be combined to a product channel c1⊗ c2 : X1×X2→D(Y1×Y2) by (c1⊗ c2)(x1,x2) = c1(x1)⊗ c2(x2).
A (fuzzy) predicate on a set X is a function p : X → [0,1]. For another predicate q ∈ [0,1]X there

is a (sequential) conjunction predicate p & q on X via (p & q)(x) = p(x) · q(x). For two predicates

pi ∈ [0,1]Xi on different sets Xi we can form a parallel conjunction predicate p1⊗ p2 ∈ [0,1]X1×X2 , given

by (p1⊗ p2)(x1,x2) = p1(x1) · p2(x2). There is always a truth channel 1 ∈ [0,1]X given by 1(x) = 1.

For a state ω ∈D(X) and a predicate p ∈ [0,1]X on the same set X the validity ω |= p in [0,1] is the

expected value ∑x ω(x) · p(x). If this validity is non-zero, one can form a conditioned state ω |p on X ,

given by ω |p(x) = ω(x)·p(x)
ω |=p

. This updated state ω |p is called ‘ω given p’, and is commonly written as

ω(−|p). It is easy to check to see that conditioning with truth does nothing: ω |1 = ω .

Proposition 1. Assuming the conditionings of the states below exist, we have the ‘product’ rule on the

left, and the ‘Bayesian’ rule on the right:

ω |p |= q =
ω |= p & q

ω |= p
ω |p |= q =

(ω |q |= p) · (ω |= q)

ω |= p
. (1)

Moreover, successive conditioning can be reduced to a single conditioning, as on the left below, so that

conditioning becomes commutative, as on the right:

(ω |p)|q = ω |p&q (ω |p)|q = (ω |q)|p. (2)
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Proof The first equation in (1) follows simply by unravelling the definitions. The second equation

directly follows from the first one, using that conjunction & is commutative. Similarly one obtains the

equations in (2). �

Each channel c : X → D(Y ) also gives rise to a predicate transformer function c≪ (−) : [0,1]Y →
[0,1]X , given by (c≪ q)(x) = ∑y c(x)(y) ·q(y). We can now relate validity |= and state/predicate trans-

formation (≫ and≪) via the following fundamental equality of validities:

(c≫ ω) |= q = ω |= (c≪ q). (3)

3 Classical Bayesian nets and disintegration

A major rationale for using Bayesian networks [23, 3, 2, 19] is efficiency of representation: a joint

probability distribution (state) on multiple sample spaces (domains) quickly becomes very large. Rep-

resenting the same distribution in graphical form, as a ‘Bayesian network’ is often much more efficient.

The directed graph structure is determined by conditional independence. Semantically, the directed arcs

are given by channels, that is by stochastic matrices, or more abstractly by Kleisli morphisms for the

distribution monad [9, 16, 17].

The essence of this semantical view on Bayesian network theory consists of two parts.

(I) The ability to move back-and-forth between a joint state and a graph (network) of channels. The

difficult direction is extracting the various channels of the graph from a joint state. This is often

called disintegration [4].

(II) Equivalence of inference via joint states and inference via associated channels. In general, infer-

ence (or, Bayesian learning) happens via conditioning (updating, revising) of states, in the light

of evidence given by predicates. Inference involves the propagation of such conditioning via joint

states and/or via channels, via the bank-and-forth connections in (I), both in a forward and back-

ward direction (as in [16, 18]).

Point (I) is well-known, but point (II) is usually left implicit; it is however a crucial part of why efficient

representation of (big) joint states as Bayesian network graphs can be used for Bayesian reasoning. In

this section we briefly elaborate both points below, and illustrate them with an example.

Note that we do not claim that with these two points (I) and (II) we capture all essentials of Bayesian

network theory: e.g., we do not address the matter of how to turn a joint state into a graph, via conditional

independence or via causality. This question has also be studied in a quantum setting, see e.g. [24].

3.1 Disintegration

pair(ω ,c) :=
ω

c

(4)

Abstractly, point (I) involves the correspondence between a joint state on

the one hand, and a channel and a (single) state on the other hand. In one

direction this is easy: given a state ω on X and a channel c : X → Y we

can form a joint state on X ×Y , namely as: pair(ω ,c) :=
(
(id⊗ c) • ∆

)
≫

ω , where ∆ : X → X ×X is the copier channel with ∆(x) = 1|x,x〉. This

construction is drawn as a picture on the right (4), using the graphical language associated with monoidal

categories. It will be used here only as illustration, hopefully in an intuitive self-explanatory manner. We

refer to [25, 7, 4] for details.
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τ =

τ

c

(5)

Going in the other direction, from a joint state to a channel is less

trivial. It is called disintegration e.g. in [4]. It involves a joint state

τ on X ,Y from which a channel c : X →Y is extracted, in such a way

that τ itself can be reconstructed from its first marginal M1(τ) and

the channel c. Pictorially this marginal is represented by blocking

its second wire via the ground symbol . We write extr(τ) for this

extracted channel c. Then we can write Equation (5) as τ = pair
(
M1(τ),extr(τ)

)
.

Lemma 2. Extracted channels extr(τ) exist and are unique in classical discrete probability, for joint

states τ whose first marginal has full support.

Proof First, a state ω ∈ D(X) and a channel c : X → D(Y ) yield a joint state pair(ω ,c) ∈ D(X ×Y ),
namely, as described in (4) above:

pair(ω ,c)(x,y) =
(
((id⊗ c) • ∆)≫ ω

)
(x,y) = ω(x) · c(x)(y).

In the other direction, let τ ∈ D(X ×Y ) be a joint state whose first marginal M1(τ) ∈ D(X) has full

support. The latter means that its support is the whole of X , so that: M1(τ)(x) 6= 0 for each x, or,

equivalently, ∀x.∃y.τ(x,y) 6= 0. We can now define a channel extr(τ) : X →D(Y ) by:

extr(τ)(x)(y) =
τ(x,y)

M1(τ)(x)
=

τ(x,y)

∑z τ(x,z)
. �

For a more systematic, diagrammatic description of disintegration, also for continuous probability,

we refer to [4]. Here we only need it for discrete probability, as a preparation for the quantum case.

3.2 Excursion on disintegration and semi-exponentials

We conclude this part on disintegration with a novel observation. It is interesting in itself, but it does

not play a role in the sequel. It shows that disintegration gives rise to higher order ‘semi-exponential’

structure, originally introduced in [11]. Recall that a categorical description of a (proper) exponential in

a cartesian closed category involves exponent objects Y X with an evaluation map ev : Y X ×X → Y such

that for each map f : Z×X → Y there is an abstraction map Λ( f ) : Z → Y X . These ev and Λ should

satisfy:

ev ◦ (Λ( f )× id) = f Λ( f ◦ (g× id)) = Λ( f ) ◦ g Λ(ev) = id. (6)

The last two equations ensure that Λ( f ) is the unique map h with ev ◦ (h× id) = f , since: h = id ◦ h =
Λ(ev) ◦ h = Λ(ev ◦ (h× id)) = Λ( f ).

For a semi-exponential, the last equation in (6) need not hold. A semi-exponential is thus more than

a ‘weak’ exponential (only the first equation) since it also satisfies naturality (the second equation). In

the language of the λ -calculus, having ‘semi-exponentials’ means that one has a β -equation, but not an

η-equation, see [11] or [12] for more details.

Theorem 1. Let K ℓf(D) be the subcategory of the Kleisli category K ℓ(D) of the distribution monad

on Sets with only finite sets as objects. This category K ℓf(D) is symmetric monoidal ‘semi’ closed: it

has semi-exponentials, which are semi-right adjoint to the (standard) tensor product.
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Proof It is well-known that cartesian products × on sets and parallel product ⊗ on Kleisli maps (chan-

nels) makes the category K ℓ(D), and also K ℓf(D), symmetric monoidal closed. We sketch how semi-

exponentials ⊸ are obtained via joint states whose first marginal has full support:

X ⊸Y := {τ ∈D(X ×Y ) | supp
(
M1(τ)

)
= X}.

This definition assumes that X is not the empty set. In that case we can set /0 ⊸ Y = 1, the singleton

set, since Z× /0 ∼= /0 so that there is a trivial correspondence between maps Z× /0→ D(Y ) and maps

Z→D(1) = 1.

We define an evaluation channel ev: (X ⊸Y )×X →D(Y ) via disintegration:

ev(τ ,x)(y) := extr(τ)(x)(y) =
τ(x,y)

∑z τ(x,z)
.

For abstraction, let f : Z×X →D(Y ) be given. We define Λ( f ) : Z→D(X ⊸Y ) as:

Λ( f )(z) := 1
∣∣τ

〉
where τ(x,y) =

f (z,x)(y)

#X
,

and where #X is the number of elements in X . Here we construct a joint state τ = pair( , f (z,−)) as in the

beginning of this section, from the uniform distribution on X and the channel f (z,−) : X →D(Y ). We

need to check that Λ( f ) is well-defined, in particular that each first marginal of Λ( f )(z)(∗) ∈D(X ×Y )
has full support:

M1(Λ( f )(z)(∗))(x) = ∑y Λ( f )(z)(∗)(x,y) = ∑y
f (z,x)(y)

#X
= 1

#X
6= 0.

It is easy to check that the first two equations from (6) hold. �

3.3 Bayesian inference and disintegration

We now turn to the second point (II) from the very beginning of this section, about Bayesian inference,

especially in relation to the passage back-and-forth between joint states and channels via pairing and

extraction, as just described.

It may happen that a joint state τ ∈ D(X ×Y ) is equal to the product of its two marginals, i.e. τ =
M1(τ)⊗M2(τ). The state τ is then called non-entwined. The more common case is that a joint state is

entwinted, and its marginal components are correlated. If we then update in one component, we see a

change in the other component. This is called crossover influence in [17, 18].

The essence of the point (II), in the beginning of this section, about inference and disintegration is

that for a joint state τ , this crossover influence can be propagated through the channel c that is extracted

from the state τ via disintegration. This is expressed in the next result, called the Bayesian Inference

Theorem.

Theorem 2. Let τ ∈ D(X ×Y ) be a joint state, and c = extr(τ) : X → D(Y ) the extracted channel

obtained via disintegration — as described in Subsection 3.1. For predicates p ∈ [0,1]X and q ∈ [0,1]Y

we then have:

M2

(
τ |p⊗1

)
= c≫

(
M1(τ)

∣∣
p

)
and M1

(
τ |1⊗q

)
= M1(τ)

∣∣
c≪q

. (7)

The first equation describes crossover inference on the left-hand-side as forward inference on the

right: first update and then do state transformation ≫. The second equation in (7) describes crossover

inference in the other component as backward inference: first do predicate transformation ≪ and then

update. The terminology of ‘forward’ and ‘backward’ inference comes from [16], see also [18]. An

abstract graphical proof of the equations (7) is given in [4]. But it is not hard to prove these equations

concretely, by unwrapping the definitions.
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3.4 An illustration of inference in a classical Bayesian network

We consider the relation between smoking and the presence of ashtrays and (lung) cancer, in the follow-

ing simple Bayesian network.

smoking P(ashtray)

t 0.95

f 0.25

✞

✝

☎

✆
ashtray

✞

✝

☎

✆
cancer

smoking P(cancer)

t 0.4

f 0.05

✞

✝

☎

✆
smoking

P(smoking)

0.3

a

^^❂❂❂❂❂❂❂❂❂

c

@@✂✂✂✂✂✂✂✂✂

Thus, 95% of people who smoke have an ashtray in their home, and 25% of the non-smokers too. On the

right we see that in this situation a smoker has 40% chance of developing cancer, whereas a non-smoker

only has 5% chance.

The question we want to address is: what is the influence of the presence or absence of an ashtray

on the probability of developing cancer? Here the presence/absence of the ashtray is the ‘evidence’,

whose influence is propagated through the network. We shall describe the outcome using the EfProb

tool [5], concentrating on evidence propagation, and not so much on the precise representation of the

above network, using channels a and c associated with the conditional probability tables.

We first consider the prior probabilities of smoking, ashtray, and cancer:

>>> smoking

0.3|t> + 0.7|f>

>>> a >> smoking

0.46|t> + 0.54|f>

>>> c >> smoking

0.155|t> + 0.845|f>

The network gives rise to a joint state, by tupling the ashtray, identity and cancer channels, and applying

them to the smoking state. We can then obtain the above three prior probabilities alternatively via three

marginalisations of this joint state, namely as first, second, third marginals, by using in EfProb the

corresponding masks [1,0,0], [0,1,0], [0,0,1] after the marginalisation sign %.

>>> joint = (a @ idn(bnd) @ c) * copy(bnd ,3) >> smoking

>>> joint

0.114|t,t,t> + 0.171|t,t,f> + 0.00875|t,f,t> + 0.166|t,f,f>

+ 0.006|f,t,t> + 0.009|f,t,f> + 0.0263|f,f,t> + 0.499|f,f,f>

>>> joint % [1,0,0]

0.46|t> + 0.54|f>

>>> joint % [0,1,0]

0.3|t> + 0.7|f>

>>> joint % [0,0,1]

0.155|t> + 0.845|f>

We now wish to infer the (adapted) cancer probability when we have evidence of ashtrays. We shall do

this in two ways, first via crossover inference using the above joint state. The ashtray evidence tt needs

to be extended (weakened) to a predicate with the same domain as the joint state. In the Equations (7)

this is written as: p⊗1, but in EfProb it is: tt @ truth(bnd) @ truth(bnd). We first use this predicate
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for updating the joint state, written as / in EfProb, and then we marginalise to obtain the third ‘cancer’

component that we are interested in:

>>> (joint / (tt @ truth(bnd) @ truth(bnd))) % [0,0,1]

0.267|t> + 0.733|f>

Alternatively we can compute this posterior cancer probability by following the graph structure. The

ashtray evidence tt is now first turned into predicate a << tt on the state smoking. After updating

this state, we transform it to an updated cancer probability, via state transformation >>. We can do this

down-and-up propagation in one go:

>>> c >> (smoking / (a << tt))

0.267|t> + 0.733|f>

The fact that we get the same distribution is an instance of the equations (7). As expected, in presence of

ashtrays the probability of cancer is higher.

Aside: clearly, ashtrays influence (the probability of) cancer, but they are not the cause; in the graph

this influence happens via a common ancestor, namely smoking, working statistically as ‘confounder’,

and as the actual cause of cancer.

4 Towards quantum Bayesian theory

The main aim of this paper is to investigate quantum analogues of the Bayesian Inference Theorem 2,

from the conviction that any adequate quantum Bayesian network theory should address these points (I)

and (II) from the beginning of Section 3 in a satisfactory manner. Point (I) has received ample attention

in quantum theory, see for instance [20, 8, 21, 1]. But Point (II) involving quantum conditioning has not

really been studied this explicitly. Our main result is that one can also describe quantum conditioning

consistently, both on joint states and via channels, as in Equations (7), but this requires in the quantum

case that one distinguishes two forms of conditioning, which we shall call lower and upper conditioning,

written as σ |p and σ |p respectively1 . Classically these two forms of conditioning coincide, but the

quantum world is more subtle — as usual. Lower conditioning has appeared in effectus theory [6] and

upper conditioning in the approach of [20]. Here they are clearly distinguished for the first time, and

used jointly to capture quantum inference and propagation of evidence. Interestingly, what is commonly

called Bayes’ rule holds for upper conditioning, but not for lower conditioning, for which we “only”

have the product rule.

First we introduce the basics about states and predicates in the quantum world. We shall do so for

finite-dimensional quantum theory, using the formalism of Hilbert spaces.

4.1 Basics of quantum probability

Let H be a finite-dimensional complex Hilbert space. A state σ of H is a positive operator on H with

trace one. That is, σ is linear function σ : H →H satisfying σ ≥ 0 and tr(σ) = 1. A state is often

called a density matrix. The canonical way to define a state is to start from a vector |v〉 ∈H with norm

1, and consider the operator |v〉〈v | : H →H . It sends any element |w〉 ∈H to the vector 〈v|w〉 · |v〉.
An arbitrary state is a convex combination of such vector states |v〉〈v |. A joint state τ on two Hilbert

space H and K is a state on the tensor product H ⊗K .

1The terminology ‘lower’ and ‘upper’ is simply determined by the position of the predicate p, low in σ |p and up in σ |p.
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A predicate, also called an effect, is a positive operator p on H below the identity: 0≤ p≤ id. The

identity id is given by the identity/unit matrix, and corresponds to the truth predicate, often written as

1. For each predicate p there is an orthosupplement, written as p⊥, playing the role of negation. It is

defined by p⊥ = id− p, and satisfies: p⊥⊥ = p and p+ p⊥ = 1.

The most interesting logical operation on quantum predicates is sequential conjunction &. It is

defined via the square root operation on predicates, as:

p & q =
√

pq
√

p. (8)

We pronounce & as ‘and-then’, and read it as: after p with its side-effect, the predicate q holds. This

operation & has been studied in [10], and re-emerged in effectus theory [13, 6]. The square root of

the matrix p exists since p is positive. It is computed via diagonalisation
√

p = U
√

DU−1, where p =

UDU−1, in which
√

D is obtained from the diagonal matrix D by taking the square roots of the (positive)

eigenvalues on the diagonal.

States σ and predicates p of the same Hilbert space H can be combined in validity, defined as:

σ |= p := tr(σ p) ∈ [0,1]. (9)

This standard definition is also known as the Born rule.

Remark 1. There is a standard way to embed classical probability into quantum probability. Suppose

we have classical state ω and predicate p on a finite set X = {x1, . . . ,xn} with n elements. Then we

consider the Hilbert space C
n with standard basis given by vectors | i〉 with an 1 on the i-th position and

zeros elsewhere. We write ω̂ = ∑i ω(xi)| i〉〈 i | for the ‘diagonal’ quantum state on C
n. By construction it

is positive and has trace ∑i ω(xi) = 1.

Similarly, a classical predicate p ∈ [0,1]X gives a quantum predicate p̂ on C
n via p̂ = ∑i p(xi)| i〉〈 i |.

By construction, 0≤ p≤ id. It is easy to see that the classical and quantum validities coincide:

ω |= p = ∑i ω(i) · p(i) = tr
(
ω̂ p̂

)
= ω̂ |= p̂.

The mapping (̂ · ) preserves the logical structure on predicates, including sequential conjunction &.

Remark 2. In both classical and quantum probability, as described here, a state is also a predicate. This

is peculiar. When one moves to a higher level of abstraction, this is no longer the case — for instance by

using von Neumann algebras instead of Hilbert spaces, or by using continuous probability distributions

on measurable spaces instead of discrete distributions on sets. In the next section we sometimes ‘convert’

a state into a predicate, but we shall make explicit when we do so. A more abstract approach is possible,

using the duality between states and effects, see also Remark 4.

4.2 Two forms of quantum conditioning

This subsection introduces two forms of quantum conditioning of a state by a predicate, called ‘lower’

and ‘upper’ conditioning, and describes their basic properties.

Definition 1. Let σ be a state, and p a predicate, on the same Hilbert space, for which the validity

σ |= p is non-zero. We shall use the following terminology, notation and definition for two forms of

conditioning:

lower: σ |p :=

√
pσ
√

p

σ |= p
upper: σ |p :=

√
σ p
√

σ

σ |= p
.
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It is easy to see that both σ |p and σ |p are states again — using the familiar ‘rotation’ property of

traces: tr(AB) = tr(BA). Lower conditioning σ |p arises in effectus theory, whereas upper conditioning

σ |p comes from [20]. We first observe that this difference between ‘lower’ and ‘upper’ does not exist

classically.

Lemma 3. For classical (non-quantum) states and predicates, lower and upper conditioning coincide

with classical conditioning. To express this more precisely we use the notation (̂ · ) from Remark 1 to

translate from classical to quantum: for a classical state ω and predicate p,

ω̂|p̂ = ω |p = ω̂ |p̂.

Proof Diagonal matrices commute, so that
√

p̂ ω̂
√

p̂ = ω̂ p̂ =
√

ω̂ p̂
√

ω̂ . �

A second observation is about truth 1 and sequential conjunction &. Both lower and upper condition-

ing with truth 1 does nothing, like in the classical case, but successive conditioning cannot be reduced to

single conditioning, like in the first equation in (2), in Proposition 1. In addition, the order in quantum

conditioning matters, just like the order of priming in psychology matters [15].

Remark 3. We have σ |1 = σ and σ |1 = σ , but in general successive quantum conditionings cannot be

reduced to a single conditioning via sequential conjunction:

(σ |p)|q 6= σ |p&q and also (σ |p)|q 6= σ |p&q.

Similarly, in general, quantum conditionings do not commute:

(σ |p)|q 6= (σ |q)|p and (σ |p)|q 6= (σ |q)|p.

Interestingly, the two classical equations (1) in Proposition 1 hold separately for the two kinds of

quantum conditioning.

Proposition 4. The ‘product’ rule holds for lower conditioning and Bayes’ rule holds for upper condi-

tioning:

σ |p |= q =
σ |= p & q

σ |= p
σ |p |= q =

(σ |q |= p) · (σ |= q)

σ |= p
. (10)

Proof We simply go through the computations:

σ |p |= q = tr
(
σ |p q

)
= tr

(√pσ
√

p

σ |=p
q
)
= 1

σ |=p
· tr

(
σ
√

pq
√

p
)
= σ |=p&q

σ |=p

σ |p |= q = tr
(
σ |p q

)
= tr

(√σ p
√

σ
σ |=p

q
)
= σ |=q

σ |=p
· tr

(
p
√

σ q
√

σ
σ |=q

)
= (σ |q|=p)·(σ |=q)

σ |=p
. �

5 Quantum channels

In order to express the quantum analogues of the equations in Theorem 2 we need the notion of ‘channel’

in a quantum setting. It exists, and is alternatively often called a quantum operation, see e.g. [22]. There

are several variations possible in the requirements, such as just positive or complete positive, unitary or

subunitary, normal or not. These variations are not essential for what follows.

For a finite-dimensional Hilbert space H be write B(H ) for the set of linear maps A : H →H .

Because H has finite dimension, such A are automatically bounded, or equivalently, continuous. The
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set of operators B(H ) is in fact a Hilbert space itself, with Hilbert-Schmidt inner product 〈A|B〉HS =
tr(A†B), where A† is the conjugate transpose of A, as matrix. Moreover, there are canonical isomorphisms

B(H ⊗K )∼= B(H )⊗B(K ) and B(C)∼= C.

If K is another finite-dimensional Hilbert space, then a CP-map H →K is a completely positive

linear map c : B(K )→B(H ). Notice the change of direction. This CP-map c is called a channel if it

preserves the unit/identity matrix: c(id) = id. It may be called subchannel if c(id) ≤ id. Each CP-map

c : B(K )→B(H ) has a ‘dagger’, written as c# : B(H )→B(K ), so that 〈c(A)|B〉HS = 〈A|c#(B)〉HS,

that is, tr(c(A)†B) = tr(A†c#(B)).

For a channel c : H →K and a predicate (effect) q on K we define predicate transformation via

function application c≪ q := c(q). Similarly, for a state σ on H we define state transformation via the

dagger of the channel, as: c≫ σ := c#(σ). Then, using that positive operators are self-adjoint, we get

the same relation (3) between validity and state/predicate transformation as in the classical case:

c≫ σ |= q = tr
(
c#(s)q

)
= tr

(
c#(s)q†

)

= tr
(
sc(q)†

)
= tr

(
sc(q)

)
= s |= c≪ q.

(11)

Definition 2. Let p be a (quantum) predicate on Hilbert space H . It gives rise to a subchannel asrtp : H →
H defined by:

asrtp(A) :=
√

pA
√

p.

This assert map asrtp plays a fundamental role in effectus theory, see [13, 6], for instance because it

allows us to define sequential conjunction (8) via predicate transformation as p & q = asrtp≪ q.

Remark 4. States/predicates on H are special instances of CP-maps C→H , resp. H → C. If we

consider them as such channels, we can take their dagger (−)#. Then we can relate upper and lower

conditioning via an exchange, namely as: σ |p = p#|σ# . This re-formulation may be useful in a more

general setting.

5.1 Representation of quantum channels

As mentioned, a channel c : H →K is a (completely positive) linear function B(K )→B(H ) be-

tween spaces of operators. Let’s assume H ,K have dimensions n,m, respectively. The space of oper-

ators B(K ) then has dimension m×m, so that the channel c is determined by its values on the m×m

base vectors | i〉〈 j | of B(K ). Thus, the channel c is determined by m×m matrices of size n×n, as in:




(
n×n

)
· · ·

(
n×n

)

...
...(

n×n

)
· · ·

(
n×n

)




↑
m
↓

←m→

(12)

The matrix entries of the channel c will be written via double indexing, as ckℓ,i j for 1 ≤ k, ℓ ≤ m and

1≤ i, j ≤ n.

This matrix representation of a quantum channel is used in EfProb. It is convenient, for instance

because parallel composition ⊗ of channels can simply be done by Kronecker multiplication of their

(outer) matrices (12). We briefly describe how predicate and state transformation works.
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Let q be a predicate on K , represented as a m×m matrix. Predicate transformation c≪ q is done

simply by linear extension. It yields an n×n matrix, forming a predicate on H , via:

c≪ q := ∑k,ℓ qkℓ · ckℓ. (13)

In the other direction we do state transformation essentially via the dagger c# of the channel c. Explicitly,

it works as follows. Let σ be a state of H , represented by a n×n matrix. Then we obtain the transformed

state c≫ σ as an m×m matrix given by computing traces:

(
c≫ σ

)
kℓ

:= tr(cℓk σ). (14)

Notice the change of order of indices: at position (k, ℓ) of c≫ σ we use the inner matrix cℓk from (12).

The reason is the implicit use of the Hilbert-Schmidt inner product, given by 〈A|B〉HS = tr(A† ·B), where

the dagger involves a conjugate transpose.

5.2 Quantum pairing and extraction

The pairing of a classical state and a channel in (4) involves a copier . It does not exist in general in

a quantum setting because of the ‘no-cloning’ theorem. But we do have ‘cup’ states ∪ with maximal

entanglement. They are basis dependent: given a finite-dimensional Hilbert space H with orthonormal

basis
(
| i〉

)
of size n, we can for a state ∪ of H ⊗H as ∪ = 1

n ∑i, j | ii〉〈 j j |. Similarly, there is ‘cap’

predicate ∩. The quantum pairing and extraction operations that we describe in this subsection are

due to [20]. But the more abstract description in terms of cups and caps does not occur there. These

operations depend on a choice of basis.

Given a state σ of H and a channel c : H →K we can thus form a joint state of H ⊗K via the

‘cup’ state ∪ of H ⊗H . Then we can define a pair state of H ⊗K via state transformation≫ as in:

pair(σ ,c) :=
(
asrtσT ⊗ c

)
≫∪ that is 〈 ik |pair(σ ,c)| jℓ〉 =

(√
σckℓ

√
σ
)

i j
. (15)

In the other direction, given a joint state τ of H ⊗K we write proj(τ) for the transpose of its first

marginal, so:

proj(τ) := M1(τ)
T where 〈 i |M1(τ)| j 〉 := ∑k〈 ik |τ | jk 〉. (16)

We extract a channel extr(τ) : H →K from τ in the manner defined in [20]:

extr(τ)kℓ := ∑i, j 〈 ik |τ | jℓ〉 ·
(√

proj(τ)−1| i〉〈 j |
√

proj(τ)−1
)
. (17)

The next result is the analogue of Lemma 2 about disintegration for classical discrete probability.

Proposition 5 (After [20]). A quandum state σ and channel c, with matching types, can be recovered

from their pair, defined in (15), via projection (16) and extraction 17

proj(pair(σ ,c)) = σ and extr
(
pair(σ ,c)

)
= c.

Similarly, a joint state τ for which the transpose of its first marginal proj(τ), as defined above, is invert-

ible can be recovered as a pair, as on the left below. In addition, τ’s second marginal can be obtained

via state transformation, as on the right:

τ = pair(proj(τ),extr(τ)) M2(τ) = extr(τ)≫ proj(τ).
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Proof We shall do the first equation and leave the others to the interested reader.

(
proj(pair(σ ,c))

)
i j

= ∑k〈 jk |pair(σ ,c)| ik 〉
(15)
= ∑k

(√
σckk

√
σ
)

ji

=
(√

σ
(

∑k ckk

)√
σ
)

ji

= σ ji since c is unital, i.e. c≪ 1 = 1

=
(
σ †

)
i j

= σi j.

The latter equation holds since a state is positive and thus self-adjoint. �

As an aside, for readers who are comfortable with diagrammatic notation (see e.g. [25, 7]) one can

write:

pair(σ ,c) = asrtσ T c proj(τ) =
τ

extr(t) =
τasrtproj(τ)−1

6 A quantum Bayesian Inference Theorem

This section contains the main result of this paper, namely the quantum analogue of Theorem 2. It

describes how conditioning of a joint state can also be performed via the extracted channel. The novelty

in our quantum description is that we need both lower and upper conditioning to capture what is going

on.

Theorem 3. Let τ be a state of H ⊗K and let p,q be predicates, on H and on K respectively. Then:

M2

(
τ |p⊗1

)
= extr(τ)≫ (proj(τ)|pT

) and M1

(
τ |1⊗q

)
=

(
proj(τ)|extr(τ)≪q

)T
. �

The proof is ommitted since it involves rather long and boring matrix calculations. Instead we include

a random test: the quantum versions of pairing / projection / extraction and lower / upper conditioning

have been implemented in EfProb. They can be used to test Theorem 3 as below, by generating an

arbitrary state t, in this case of type C
3⊗C

5, together with arbitrary (suitably typed) predicates. The

EfProb notation for lower and upper conditioning is / and ^.

>>> t = random_state([3 ,5])

>>> t1 = (t % [1 ,0]).transpose()

>>> e = extract(t)

>>> p = random_pred([3])

>>> q = random_pred([5])

>>> t / (p @ truth ([5])) % [0,1] == e >> (t1 ^ p.transpose())

True

>>> t / (truth ([3]) @ q) % [1,0] == (t1 ^ (e << q)).transpose()

True

The two equality tests == involve 5×5 and 3×3 matrices of complex numbers.

In the equations in Theorem 3 we perform lower conditioning on the joint state. One may ask if there

are also ‘dual’ equations where upper conditioning on the joint state is re-described via state/predicate

transformation. We have not found them.
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