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A notion of morphism that is suitable for the sheaf-theoretic approach to contextuality is developed,

resulting in a resource theory for contextuality. The key features involve using an underlying relation

rather than a function between measurement scenarios, and allowing for stochastic mappings of

outcomes to outcomes. This formalizes an intuitive idea of using one empirical model to simulate

another one with the help of pre-shared classical randomness. This allows one to reinterpret concepts

and earlier results in terms of morphisms. Most notably: non-contextual models are precisely those

allowing a morphism from the terminal object; contextual fraction is functorial; Graham-reductions

induce morphisms, reinterpreting Vorob’evs theorem; contextual models cannot be cloned.

1 Introduction

In the Abramsky-Brandenburger approach to contextuality [5] questions of non-locality and contextual-

ity are formulated in the language of sheaf theory. The objects defined and studied in that approach are

called empirical models. In this work, we present two notions of a morphism between empirical models,

allowing us to further advance the use of categorical language in the study of contextuality. Our notion

of a morphism can be seen as a formalization of the intuitive idea that we can use one empirical model to

simulate another one – either deterministically or more generally using classical, pre-shared randomness

to postprocess the measurement results. The key techniques are (i) letting the results of a measurement

depend on a set of other measurements, (ii) incorporating stochastic postprocessing, using the Kleisli

category of the distribution monad. These let us reinterpret various concepts and results from the liter-

ature in terms of the resulting category. For example, in Theorem 4.1 we characterize non-contextual

models as those admitting a morphism from the terminal object.

If one thinks of empirical models as concrete experimental set-ups, one can give a concrete inter-

pretation for the morphisms. A map d → e consists of a method to simulate the data that e would

generate using only d. We will illustrate this idea with the following story: imagine a lab to perform

e : 〈X ,M ,(Ox)x∈X 〉 where for each x ∈ X there is a graduate student responsible for measuring x and a

professor choosing which C ∈ M to execute on a given day. One night the students have a party at the

lab, and all the equipment breaks down. Fearing the consequences, the students decide that experiments

must continue without the professor noticing any abnormalities in the data generated. Luckily, the stu-

dents happen to have friends at a lab containing an experimental set-up for d, and the students make a

plan: when a measurement x is called for, the student responsible for it calls each student responsible for

a measurement in some set π(x) of measurements at the lab for d, and then outputs a result o ∈ O based

on the outcome. If the students manage to fool the professor (who knows what the data should look like)

no matter which run C1, . . . ,Cn ∈ M of experiments she chooses, the protocol defines a map d → e, i.e.

a way of simulating e using d.

However, one gets different notions of a map depending on the powers given to students. In partic-

ular, the fabricated outcome for x might depend on the measurement of π(x) either deterministically or
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stochastically, using classical and pre-shared randomness. There are also other powers student might be

given that we do not study in this work. For example, the students might be allowed to randomize which

measurements they are calling upon based on earlier measurement results, or they might be allowed to

use a fixed quantum resource.

1.1 Related work

Notions of morphisms between empirical models or measurement scenarios have been defined before,

e.g. in [24] and in [18]. The key features we add to obtain more general morphisms are (i) stochasticity

and (ii) morphisms with an underlying simplicial relation rather than just a simplicial function. This

additional generality is needed for the main results.

Somewhat similar ideas are developed in [8], and while not written with the sheaf-theoretic language,

a rough comparison is possible: given a box (more or less corresponding to an empirical model), they

consider the set of boxes one can obtain by pre- and postprocessing with non-contextual boxes. On one

hand, their framework allows for probabilistic preprocessing, which we leave for further work. On the

other hand, the preprocessing step allows only for a single measurement to be called upon, whereas we

allow the simulation of measurement to depend on multiple measurements.

2 Background

In this section, we set up some notation and briefly cover the basics of the sheaf-theoretic approach to

contextuality. We suggest reading [5] for a more detailed introduction. The only major differences to

usual presentations are that we work over a semifield instead of a semiring (to allow for conditional

distributions) and that we recall the definition of the Kleisli category of a monad.

Definition 2.1. A (finite) measurement scenario is a tuple 〈X ,M ,(Ox)x∈X 〉, where X is a finite set of

measurements, and (Ox)x∈X is an X -indexed family of finite nonempty sets of outcomes, Ox being the

outcome set for the measurement x. The remaining item M is a measurement cover, i.e. an antichain

M ⊂ P(X) that covers X . The members of M are called (maximal) measurement contexts.

The intuition is that X encodes the set of possible measurements on some system. However, it might

not be feasible to simultaneously measure any subset A ⊂ X . This is captured by the measurement cover

M – a subset A ⊂ X is jointly measurable precisely when it is contained in some maximal measurement

context, i.e. there is C ∈ M such that A ⊂ C. In other words, the jointly measurable subsets form an

abstract simplicial complex. We routinely think of the pair 〈X ,M 〉 as a simplicial complex rather than

making a distinction between the measurement cover and the simplicial complex generated by it – after

all, a simplicial complex can be given by listing all its faces or only its (inclusion) maximal faces. This

geometric viewpoint turns out to be quite handy, so we will recall some terminology needed.

Definition 2.2. Given two simplicial complexes (given by their antichains of maximal faces) 〈X ,M 〉 and

〈Y,N 〉, a relation π : X →Y is a simplicial relation if it maps faces to faces, i.e. , if for every C ∈M we

have πC ⊂ D for some D ∈ N .

Next, we recall some terminology that uses the outcome sets. The mapping U 7→ ∏x∈U Ox induces

a functor (in fact a sheaf when X is given the discrete topology) P(X)op → Set, that we call the event

sheaf. We will denote it by EX : P(X)op → Set. The action of the functor on an inclusion U ⊂V is given

the obvious projection: a family s = (sx)x∈V is mapped to s|U := (sx)x∈U . Elements of EX(U) are called

U-sections and when U = X , they are called global sections. To keep the empirical picture in mind, one

should think of a U -section as an assignment that gives for each measurement in U its outcome.
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In the sheaf-theoretic framework, an empirical model is formalised as a family of distributions, each

distribution being a distribution over the events in a measurement context. However, one wants some

leeway in defining what a ‘distribution’ means, and hence we define them rather generally. Breaking

from tradition, we are slightly less general than usual – we define distributions over semifields rather than

semirings, because we want to be able to define conditional distributions. This does not exclude examples

of interest that we are aware of, and only Theorem 4.7 uses this restriction. Recall that a semifield is a

commutative semiring (R,+, ·,0,1) in which non-zero elements have multiplicative inverses. Informally,

a semifield is like a field except that subtraction need not be possible, as in the semifield of nonnegative

real numbers.

Definition 2.3. Let (R,+, ·,0,1) be a semifield. A (finite) R-distribution on a set X is a function e : X →R

such that

• suppe := {x ∈ X | e(x) 6= 0} is finite

• ∑x∈X e(x) = 1

For set X , the set of R-distributions on it is denoted by DR(X). The independent product of R-distributions

e ∈ DR(X), and d ∈ DR(Y ) is the distribution e⊗d ∈ DR(X ×Y ) defined by by (e⊗d)(x,y) = e(x)d(y).
When e : X ×Y → R is an R-distribution, we define suppY e := {y ∈Y | ∑x∈X e(x,y) 6= 0}. For y ∈ suppY e

we define the conditional R-distribution e(−|y) by

e(x|y) := e(−|y)(x) = e(x,y)/ ∑
x∈X

e(x,y)

Taking e(y) to be a shorthand for ∑x∈X e(x,y), the usual laws concerning conditional distributions hold,

namely

e(x|y) = e(x,y)/e(y) and e(x,y) = e(x|y)e(y).

One can think of an R-distribution on x as a formal linear combination ∑n
i rixi where the coefficients

ri ∈ R sum to 1. The assignment X 7→ DR(X) extends to a functor DR : Set → Set by sending a function

f : X →Y to the function DR( f ) : DR(X)→ DR(Y ) defined by

DR( f )(e)(y) = ∑
x∈ f−1y

e(x)

written in terms of formal convex combinations, we can equivalently write the action of DR on functions

as

DR( f )(∑
i

rixi) := ∑
i

ri f (xi)

The functor DR is in fact a monad (see [16] and references therein) on Set, with unit η : idSet → DR

defined by

ηX(x)(y) = 1x =

{

1 if x = y

0 otherwise.

and multiplication µ : DR ◦DR → DR defined by “matrix multiplication”, i.e.

µ(
n

∑
i

riei)(x) =
n

∑
i

(riei(x))

We recall (see e.g. [11, Proposition 4.1.6] for more) the definition of a Kleisli category for a monad.
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Definition 2.4. Let (T,µ ,η) be a monad on a category C. The Kleisli-category of T , denoted by CT

has the same objects as C, but a morphism A → B in CT is given by a morphism A → T B in C. The

composite of f : A → T B and of g : B → TC is given by µ ◦ T (g) ◦ f : A → T B → T TC → TC. The

identity morphism A → A in CT is given by ηA : A → TA in C. There is a canonical functor C → CT

given by f 7→ η ◦ f .

For a semifield R, we write SetR instead of SetDR
to avoid double subscripts, and we write FR : Set →

SetR for the canonical functor. We record for future use the fact that taking product distributions behaves

well with the functor DR.

Lemma 2.5. The map (e,d) 7→ e⊗d defines a natural transformation DR(−)×DR(−)→ DR(−×−).

Proof. Given R-distributions e = ∑i rixi and d = ∑ j s jy j, we calculate as follows:

DR( f ×g)(e⊗d) = DR( f ×g)∑
i, j

ris j(xi,y j)

= ∑
i, j

ris j( f xi,gy j) = ∑
i

ri f xi ⊗∑
j

gy j = (DR( f )e)⊗ (DR(g)d)

One routinely composes the functor DR : Set → Set with the event sheaf EX to obtain a presheaf

DR ◦EX : P(X)op → Set, which assigns to each set U of measurements the set of R-distributions over

U -sections. Given an inclusion U ⊂V , we obtain a map DR(EX(V ))→ DR(EX(U)), given by marginal-

ization: e ∈ DR(EX(V )) is mapped to e|U ∈ DR(EX (U)) defined by

e|U s = ∑
t∈EX (V),t|u=s

e(t).

Definition 2.6. For a semifield R, an R-empirical model over the measurement scenario 〈X ,M ,(Ox)x∈X 〉
is given by a compatible family e = (eC)C∈M of R-distributions over C-sections. More precisely, each

eC ∈ DR(E (C)) and the family being compatible means that the distributions agree on overlaps, i.e.

eC|C∩D = eD|C∩D for all C,D ∈M . If U ⊆C for some C ∈M , we write e|U instead of eC|U : after all, e|U
does not depend on the choice of C ∈ M . We denote e being an empirical model over the measurement

scenario 〈X ,M ,(Ox)x∈X 〉 by e : 〈X ,M ,(Ox)x∈X 〉.
An R-empirical model e : 〈X ,M ,(Ox)x∈X 〉 is

• R-non-contextual if there is d ∈ DR(E (X)) such that eC = d|C for all C ∈ M , i.e. if there exists a

distribution on global sections explaining it.

• R-contextual if it is not R-non-contextual.

• strongly R-contextual if there is no global section consistent with it, i.e. if there is no s ∈ E (X)
such that s|C ∈ supp(eC) for all C ∈ M

Given R-empirical models e1, . . . ,en : 〈X ,M ,(Ox)x∈X 〉 over the same measurement scenario and

r1, . . . ,rn ∈ R such that ∑n
i=1 ri = 1, we define the R-empirical model ∑n

i=1 ri ·e
i by (∑n

i=1 ri ·e
i)C = ∑n

i=1 ri ·
ei

C.

The non-contextual fraction of an R+-empirical model e is defined as the maximal λ ∈ [0,1] such that

e decomposes as e = λeNC +(1−λ )e′ where eNC and e′ are empirical models with eNCnon-contextual.

It is denoted by NCF(e), and the contextual fraction of e is defined as CF(e) := 1−NCF(e).

Strictly speaking, the above definition defines so-called no-signalling empirical models, and more

general empirical models are obtained by dropping the compatibility conditions. Since we only work

with no-signalling empirical models, we’ve chosen to just call them empirical models.

In practice, R is usually one of the following semifields:
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• The semifield (R+,+, ·,0,1) of nonnegative reals, giving rise to finitely supported probability

distributions. Usually R+-contextuality is either called probabilistic contextuality or just contex-

tuality.

• The field (R,+, ·,0,1) of real numbers, giving rise to finitely supported signed measures. In [5] it

is shown that being R-non-contextual is equivalent to being no-signalling.

• The semifield (B,∨,∧,0,1) of Booleans. Now finite B-distributions on X correspond to finite

subsets of X , and B-contextuality is known as logical contextuality or possibilistic contextuality.

Since all non-signalling models over R are non-contextual and hence not strongly contextual, the

notion of strong R-contextuality is somewhat uninteresting. Hence one usually cares about strong con-

textuality over the positive reals or the booleans, and these notions are in fact equivalent, i.e. an R+-

empirical model is strongly contextual iff its possibilistic collapse (defined later) is. Thus in the sequel

we only talk about strong contextuality omitting the semifield R.

3 Defining morphisms

Before we give the full formal definitions, let us sketch them using the intuitive story from the intro-

duction as guidance. First of all, any measurement x ∈ X is assumed to be simulated by doing a set of

measurements π(x) ⊂ Y . Because the students are supposed to work independently once the professor

sets them to work, π(x) should only depend on x and not on the set of other measurements performed

with it. Hence we get a relation π : X → Y . For the simulation to be successful, for any C ∈ M chosen,

one must be able to perform the measurement π(C), meaning that π(C) has to be a jointly measurable

subset of Y . In other words, π must be a simplicial relation.

Once π has been fixed, how about the rest of the simulation protocol? For any joint outcome

s ∈ EY (πC) for the measurements in π(C), one must know what outcome in EX(C) to output. Be-

cause different measurements in X are measured by different students, possibly at different locations,

we assume that the students cannot coordinate after each student responsible for measuring x receives

the outcomes for measurements in π(x). Any coordination (including any possible shared & classical

randomness) must be done before various students are instructed to perform their measurements by the

professor. Even worse, each student is just told to perform the measurement x without being revealed the

full context containing x.

Thus the protocol in fact defines, for any U ⊂ X , a map EY (πU) → EX(U) (and if randomness is

allowed, this map lives in the Kleisli category SetR). After all, if an arbitrary, not necessarily possible U

was chosen and for each x ∈U the result for π(x) was given, the students would still know which result

OU to output. Moreover, the students acting independently implies that the family of maps EY (πU) →
EX(U) has to be a natural transformation: it should not matter whether the professor commissions the

experiment V and then throws away some of the results to get a result s ∈ EX(U), or whether the students

are told to perform U (thus ignoring any results in π(V )\π(U)) straight away.

Having been suitably motivated, we proceed to the actual definitions and discuss examples.

Definition 3.1. Let 〈X ,M ,(Ox)x∈X 〉 and 〈Y,N ,(Py)y∈Y 〉 be measurement scenarios. A deterministic

morphism 〈Y,N ,(Py)y∈Y 〉 → 〈X ,M ,(Ox)x∈X 〉 consists of:

• a simplicial relation π : X →Y ;

• a natural transformation σ : EY (π(−))→ EX(−).
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Given an empirical model d : 〈Y,N ,(Py)y∈Y 〉, its pushforward along a deterministic morphism (σ ,π) is

the empirical model σ∗d : 〈X ,M ,(Ox)x∈X 〉 defined by

σ∗dC = DR(σC)(d|π(C))

Let e : 〈X ,M ,(Ox)x∈X 〉 and d : 〈Y,N ,(Py)y∈Y 〉 be empirical models. Then a deterministic simulation

d → e consists of a deterministic morphism 〈Y,N ,(Py)y∈Y 〉 → 〈X ,M ,(Ox)x∈X 〉 such that

e = σ∗d

The category of R-empirical models and deterministic simulations is denoted by EmpDetR.

This definition can be motivated from the mathematical point of view as well, for example, via an

analogy to algebraic geometry1. Roughly speaking, a scheme is a pair (X ,OX), where X is a topological

space and OX is a sheaf of local rings on it, and a morphism of schemes (X ,OX) → (Y,OY ) consists

of a continuous map π : X → Y and of a natural transformation OY → π∗OX subject to some axioms.

Similarly, a measurement scenario comes with an associated simplicial complex and with a presheaf of

outcomes/distributions on the simplices, so it is reasonable to expect that a morphism of measurement

scenarios consists of an underlying map between simplicial complexes and of a transformation between

the two presheaves (suitably composed with the map of simplicial complexes). Moreover, an empirical

model is a compatible family over the presheaf. Hence a morphism of empirical models should be a

morphism between the underlying measurement scenarios taking one compatible family to the other.

Remark 3.2. We did not restrict ourselves to no-signalling models merely because of disinterest: the

definition above would not work as-is without no-signalling: after all, for the pushforward to be well-

defined, d|π(C) should not depend on which maximal context containing π(C) is chosen, as long as there

is one.

Lemma 3.3. [Deterministic morphisms can be glued together] Let 〈X ,M ,(Ox)x∈X 〉 and 〈Y,N ,(Py)y∈Y 〉
be measurement scenarios and π : X →Y a simplicial relation. Let U1, . . .Un be a cover of X and assume

we are given a compatible family of natural transformations σ i : EY (π(−)) → EUi
(−), i.e. each σ i is a

map of presheaves on Ui, and the σ i agree on overlaps, meaning that σ i
Ui∩U j

= σ
j

Ui∩U j
for every i, j. Then

there is a unique morphism (π,σ) of measurement scenarios such that σ restricts to σ i on each P(Ui).

Proof. The presheaf EX is in fact a sheaf, so this is a consequence of the fact that morphisms of sheaves

glue. See e.g. [17, Proposition 2.8.1.]

Example 3.4. Consider the R+-empirical model e : 〈{x,y},{{x,y}},({0,1},{0,1})〉 given by e(x 7→
1,y 7→ 0) = e(x 7→ 0,y 7→ 1) = 1 and e(s) = 0 otherwise, i.e. e consists of two perfectly anticorrelated

flips of a fair coin. Then all the information about the second coin flip is already (deterministically)

present in the first, and this is made precise by the deterministic simulation (π,σ) : e|x → e given by

π(x) = π(y) = x and σ{x,y}(x 7→ a) = (x 7→ a,y 7→ (1−a)).

Example 3.5 (Restriction). If e : 〈X ,M ,(Ox)x∈X 〉 is an empirical model and i : Y →֒ X is a subset of X

with inclusion i : Y → X , one gets a restricted empirical model e|Y : 〈Y,{C∩Y |C ∈M },(Ox)x∈Y 〉 defined

by (e|Y )C∩Y = eC∩Y . One can obviously simulate the restricted empirical model using the larger one, and

this corresponds to the morphism (i, id) : e → e|Y .

1This analogy is not perfect, of course. For one, we define our morphisms to go in the opposite direction compared to the

underlying map between simplicial complexes. This is to guarantee that “points” of e, i.e. maps from the terminal object to

e correspond to distributions on global sections explaining e, but one could have reasonably chosen the opposite convention.

Perhaps a more surprising difference is that instead of the direct image sheaf we use the inverse image sheaf. Since in our set-up

all topological spaces are finite and discrete, using the (in general more complicated) inverse image functor poses no problems.
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Example 3.6 (Coarse-graining). Given family of functions f = ( fx : Ox → PX)P, one can define, for

e : 〈X ,M ,(Ox)x∈X 〉 the coarse-graining of e along f as the empirical model e/ f : 〈X ,M ,P〉, defined via

(e/ f )C(s) := ∑t∈EX (C), f |C(t)=s eC(t). Applying f to the outcome lets one simulate e/ f using e, and this is

made precise by the morphism (id,σ) : e → e/ f , where σ is the natural transformation induced by f .

Example 3.7. We now exhibit a situation where π is not a function but a relation. Consider the mea-

surement scenario 〈{x,y,z},{{x,y,z}},({0,1},{0,1})〉 of three jointly measurable binary variables and

let e be R+-empirical model over it corresponding to the variables x and y being independent flips of

a fair coin and z being the total number of heads modulo 2. Then there is no deterministic simulation

(π,σ) : e|{x,y} → e where π is a function, because one cannot infer the value of z knowing the value

of only one of x,y. Informally, one can clearly simulate e by e|{x,y}: to know the value of z, measure

both x and y and calculate, and the values of x and y are given by themselves. This is made formal by

the deterministic simulation (π,σ) : e|{x,y} → e where π is given by π(z) = {x,y} and π|{x,y} = id and

σ{x,y} = id, σz(x 7→ a,y 7→ b) = z 7→ (a+ b mod 2) (note that by Lemma 3.3 this is enough to specify

σ ).

Example 3.8. In [19] the authors show that in any (2,2, l) or (2,k,2) Bell scenario, the occurrence of

Hardy’s paradox is a necessary and sufficient condition for the model to be possibilistically contextual.

The crucial thing to note is that here “occurrence” means finding a certain partially filled table inside

the empirical model in question. One can make sense of this in our framework by saying that there

are several versions of Hardy’s paradox – one for each of the ways of completing the table – and being

possibilistically contextual is equivalent to being able to (deterministically) simulate one of these.

Definition 3.9. Let 〈X ,M ,(Ox)x∈X 〉 and 〈Y,N ,(Py)y∈Y 〉 be measurement scenarios. A (R-stochastic)

morphism 〈Y,N ,(Py)y∈Y 〉 → 〈X ,M ,(Ox)x∈X 〉 consists of

• a simplicial relation π : X →Y ;

• a natural transformation σ : EY (π(−))→ DR ◦EX(−).

The composite of

(π,σ) : 〈Z,K ,(Qz)z∈Z〉 → 〈Y,N ,(Py)y∈Y 〉 and

(ρ ,τ) : 〈Y,N ,(Py)y∈Y 〉 → 〈X ,M ,(Ox)x∈X 〉

is given by (ρ ◦π,µ ◦DR(ρ)◦τ) i.e. by ordinary composition in the first variable and Kleisli composition

in the second. Given an empirical model d : 〈Y,N ,(Py)y∈Y 〉, its pushforward along a morphism (σ ,π)
is the empirical model σ∗d : 〈X ,M ,(Ox)x∈X 〉 defined by

σ∗dC = µDR(σC)(d|π(C))

Let e : 〈X ,M ,(Ox)x∈X 〉 and d : 〈Y,N ,(Py)y∈Y 〉 be empirical models. Then a simulation d → e consists

of an R-stochastic morphism 〈Y,N ,(Py)y∈Y 〉 → 〈X ,M ,(Ox)x∈X 〉 such that

e = σ∗d

The category of R-empirical models and simulations is denoted by EmpR.

Remark 3.10. In the previous definition, instead of a natural transformation σ : EY (π(−))→DR◦EX (−)
we could have equivalently asked for a natural transformation σ : FR ◦EY (π(−))→ FR ◦EX(−), i.e. for a

natural transformation between two functors P(X)op → SetR. This makes it apparent that composition

is associative.
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Given the terminology, one would expect deterministic morphisms (deterministic simulations) to be

special cases of morphisms (simulations). Indeed, this is the case – one just needs to apply the inclusion

FR : Set → SetR to the Kleisli category. To be more specific, if (π,σ) is a deterministic morphism,

then (π,FRσ) is a morphism. That the same claim holds for simulations boils down to the fact that the

pushforward of an empirical model does not depend on whether one uses (π,σ) or (π,FRσ). We note

that for a simulation (π,σ) : d → e one only needs the parts of d that π maps to.

Lemma 3.11. Any simulation (π,σ) : d → e factors through the restriction d → d|π(X).

Unfortunately Lemma 3.3 fails for R-stochastic simulations. This is precisely because DR ◦EX fails

to be a sheaf. However, one can glue together maps (though not uniquely) along partitions2 . It is

straightforward to extend the following lemma to an n-ary partition (U1, . . .Un).

Lemma 3.12. Let 〈X ,M ,(Ox)x∈X 〉 and 〈Y,N ,(Py)y∈Y 〉 be measurement scenarios and π : X →Y a sim-

plicial relation. If (U1,U2) is a partition of X and σ i : EY (π(−)→ DR ◦EUi
(−) is a natural transforma-

tion between presheaves on Ui for i = 1,2, then there is a natural transformation σ 1 ⊗σ 2 : EY (π(−))→
DR ◦EX(−) that restricts to σi on P(Ui), defined by

(s : π(V )→ P) 7→ (σ 1 ⊗σ 2)V (s) := σ 1
V∩U1

(s|π(V∩U1))⊗σ 2
V∩U2

(s|π(V∩U2))

Proof. The morphism σ 1 ⊗σ 2 factors as a composite of natural transformations

EY (π(−))→ EY (π(−∩U1))×EY (π(−∩U2))→ DREX(−∩U1)×DREX(−∩U2)→

DR(EX (−∩U1)×EX(−∩U2))∼= DREX

where the first natural transformation is the pairing of the restrictions EY (π(−)) → EY (π(−∩Ui)), the

second is the cartesian product of the natural transformations σ i, the third is the independent product

distribution map that is natural by Lemma 2.5, and the final isomorphism stems from the fact that EX(−∩
U1)×EX(−∩U2)∼= EX .

Proposition 3.13. Let (π,σ i) : d → ei be simulations, where each ei is an empirical model over the same

measurement scenario. Then (π,∑n
i=1 riσ

i) defines a map d → ∑n
i=1 riei, where ∑n

i=1 riσ
i is defined by

(
n

∑
i=1

riσ
i)U(s) :=

n

∑
i=1

riσ
i
U(s)

Proof. It is not hard to show that convex combinations are preserved by the restriction maps DREX(V )→
DREX(U) induced by inclusions U → V , i.e. that (∑riei)|U = ∑ri(ei|V ). Since each σi is natural, this

implies that ∑riσi is as well. Hence it remains to see that the pushforward of d along ∑riσi is ∑riei. But

this is not hard either:

(∑ riσ
i)∗d = ∑ri(σ

i
∗d) =∑ riei

Example 3.14. This time we discuss the examples more informally, leaving the formal description of

the morphisms as an exercise. Consider again two jointly measurable variables. The first one is a flip of a

fair coin, whereas the second one depends on the first as follows: if the first coin is heads, the second coin

flip is fair, whereas if the first coin is tails, the second coin is flipped with a bias of 2/3. Clearly knowing

just the value of the first coin flip lets you simulate the experiment stochastically – just flip a coin with the

appropriate bias. This defines a simulation e|x → e. One can go even further and simulate e stochastically

without using e at all —just perform the whole experiment yourself. This ability to simulate e from thin

air corresponds to non-contextuality of e, as will be seen in Theorem 4.1.

2This is because R-distributions form a “gleaf”, see [15].
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4 Reinterpreting contextuality with morphisms

The category EmpR has a terminal object 1 given by the unique R-empirical model on the empty

measurement scenario 〈 /0, /0, /0〉. Admitting a morphism from the terminal object is equivalent to non-

contextuality.

Theorem 4.1. Distributions on global sections explaining e are in one-to-one correspondence with sim-

ulations 1 → e. In particular, an R-empirical model is non-contextual iff there is a simulation 1 → e.

Proof. Given an R-empirical model e : 〈X ,M ,(Ox)x∈X 〉, the data for a simulation 1 → e consists of a

simplicial relation X → /0, of which there is only one, and of a natural transformation from the constant

singleton presheaf to DR ◦ EX . Hence, the data for a simulation 1 → e corresponds to a probability

distribution in DR(EX(X)). This data is in fact a simulation iff it restricts to eC for each C ∈ M .

Let f : R → S be a homomorphism of semifields. Then f induces a natural transformation (in fact, a

monad homomorphism) κ( f ) : DR → DS defined by

e ∈ DR(X) 7→ κ( f )X(e) ∈ DS(X) κ( f )X(e)(s) := f (e(s))

This is known to map R-empirical models to S-empirical models by sending the R-empirical model

e : 〈X ,M ,(Ox)x∈X 〉 to the S-empirical model Ff (e) : 〈X ,M ,(Ox)x∈X 〉 defined by Ff (e)C = κ( f )(eC).

Theorem 4.2. The map e 7→ Ff (e) extends to a functor EmpR → EmpS. Hence S-contextuality of Ff (e)
implies R-contextuality of e. In particular, logical contextuality implies probabilistic contextuality.

Proof. The action of Ff on an R-stochastic simulation (π,σ) is defined by

Ff (π,σ) := (π,κ( f )◦σ)

It is straightforward to check that this defines a functor EmpR → EmpS. By construction it preserves the

terminal object, so that if there is a map 1 → e in EmpR, then there must be one in EmpS.

The possibilistic collapse of an R+-empirical model is defined to be the image of e under the functor

F : EmpR+ → EmpB induced by the unique semiring homomorphism R+ → B. It is known not to be

surjective on objects [1, Proposition 9.1.] and neither is it full – for example, there are probabilistically

contextual models that are not logically contextual, so that there is a map 1 → F(e) in EmpB not arising

as the image of a map 1 → e in EmpR+

While R-contextuality admits a categorical description, we have not been able to obtain a similar one

for strong contextuality. However, morphisms do respect strong contextuality.

Theorem 4.3. Let (π,σ) : d → e be an R-stochastic simulation where R is either R+ or B. If e is strongly

contextual, d is as well.

Proof. We prove the contrapositive, so assume that d : 〈Y,N ,(Py)y∈Y 〉 is not strongly contextual. Then

there exists a global section s ∈ EY (Y ) such that s|D ∈ supp(dD) for all D ∈ N . Then e = σ∗d implies

that any global section p ∈ EX(X) in the support of σX(s) satisfies p|C ∈ supp eC for every C ∈ M , so

that e is not strongly contextual.

Lemma 4.4. Pushforward commutes with convex mixtures: if d1, . . .dn : 〈X ,M ,(Ox)x∈X 〉 are empiri-

cal models, r1 . . . rn ∈ R sum to 1 and (π,σ) : 〈X ,M ,(Ox)x∈X 〉 → 〈Y,N ,(Py)y∈Y 〉 is an R-stochastic

simulation, then

σ∗(∑ridi) = ∑riσ∗(di)
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Proof. This can be established via a straightforward calculation, or via abstract nonsense. We opt for the

latter: objects in the Kleisli category are the free DR-algebras and hence µDR(σ) is a homomorphism of

DR-algebras, which means that the equation to be proved holds.

Theorem 4.5. Non-contextual fraction defines a functor EmpR+ → [0,1], where [0,1] is viewed as a

category via its order relation.

Proof. Let (π,σ) : d → e be a simulation, and consider any decomposition of d as λdNC +(1− λ )d′,

with dNC non-contextual. Then

e = σ∗d = σ∗(λdNC +(1−λ )d′) = λσ∗dNC +(1−λ )σ∗d
′

where the last equation uses Lemma 4.4. Now σ∗dNC is non-contextual and hence the convex decompo-

sition of e obtained implies that NCF(d)≤ NCF(e).

Definition 4.6. Let 〈X ,M 〉 be a simplicial complex. Given a vertex x ∈ X that belongs to exactly one

maximal face, we say that there is a Graham-reduction from 〈X ,M 〉 to the subcomplex 〈X \{x},{C \
{x} |C ∈ M }〉. If there is a Graham-collapse from 〈X ,M 〉 to 〈Y,N 〉, we write 〈X ,M 〉 〈Y,N 〉. We

call a simplicial complex 〈X ,M 〉 acyclic if there is a sequence of Graham collapses from 〈X ,M 〉 to the

empty simplicial complex.

Vorob’evs theorem [23] is already known (see [6, p.13]) to imply that for questions about contextu-

ality one can consider the reduced model. This can be recast and proved in terms of simulations.

Theorem 4.7. Graham-reductions induce morphisms, i.e. if e : 〈X ,M ,(Ox)x∈X 〉 is an empirical model

and 〈X ,M 〉 〈X \{x},{C\{x} |C ∈M }〉 is a Graham-reduction, then there is a simulation e|X\{x} →
e. Hence any empirical model with an acyclic underlying simplicial complex is non-contextual.

Proof. We define a simulation e|X\{x} → e in the appendix using Lemma 3.12.

Next we define a monoidal structure on EmpR. On objects, the monoidal product (defined in [3])

sends the pair

(e : 〈X ,M ,(Ox)x∈X 〉,d : 〈Y,N ,(Py)y∈Y 〉)

to the empirical model

e⊗d : 〈X ⊔Y,M ∗N := {C⊔D |C ∈ M ,D ∈ N },(Ox)x∈X ⊔ (Py)y∈Y 〉.

One should think of this operation as doing experimental set-ups and simulations independently in par-

allel. Formally, the action on is defined by

(e⊗d)C⊔D = eC ⊗dD (π,σ)⊗ (ρ ,τ) = (π ⊔ρ ,σ ⊗ τ),

where σ ⊗ τ is the natural transformation built using Lemma 3.12. It is straightforward but tedious to

check that this results in a symmetric monoidal structure on EmpR with the tensor unit given by the

terminal object 1: 〈 /0, /0, /0〉. One might view this SMCs as a resource theory (in the sense of [12]) for

contextuality. From this point of view Theorem 4.5 amounts to saying that the non-contextual fraction is

a monotone for our resource theory. Next we will prove that this resource-theory is no-cloning, i.e. that

no contextual empirical model can be cloned using only classical correlations.

Theorem 4.8 (No-cloning). There is a simulation e → e⊗ e iff there is a simulation 1 → e, i.e. if e is

non-contextual.
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Proof. The parallel composition of a morphism 1 → e with itself gives rise to the composite

e → 1 ∼= 1⊗1 → e⊗ e,

proving the easier direction.

For the converse, consider an empirical model e : 〈X ,M ,(Ox)x∈X 〉 that can be cloned freely, i.e.

admits a simulation e → e⊗ e. We use induction on |X | to build a simulation 1 → e, the base case X = /0

being clear. Assuming the claim holds for all m < |X | =: n, we proceed. Note that from e → e⊗ e

and monoidal operations we can build a simulation (π,σ) : e → e⊗n. Now π : 〈X⊔n,M ∗n〉 → 〈X ,M 〉.
Define (πi,σ

i) : e → e as the composite e → e⊗n → e⊗n|Xi
∼= e, where the morphism in the middle is the

restriction to ith copy of e in e⊗n. Now π : X⊔n → X being simplicial means that
⋃n

i=1 π(Ci) is a jointly

measurable subset whenever each Ci is. We split into two cases:

If πiX = X for each i, then, enumerating X as x1, . . .xn, we can choose yi such that xi ∈ πi(yi) for each

i. Hence X = ∪{xi} is jointly measurable, so that e is non-contextual.

Otherwise πiX ( X for some i. Then (πi,σ
i) restricts to a morphism e|πi(X) → e using Lemma 3.11.

Now, doing the restriction e → e|πi(X) in parallel results in the composite

e|πi(X) → e → e⊗ e → e|πi(X)⊗ e|πi(X).

Hence by the induction assumption e|πi(X) is non-contextual, so take the composite /0 → e|πi(X) → e.

5 Further questions

Structure of EmpR The main thread going through this work is that the existence of a simulation

d → e implies that e is at most as contextual as d is. Assuming that our definition fully captures the

intuitive idea of “simulation with classical randomness” (see more below), one could argue that the

study of the contextuality hierarchy amounts to studying the category EmpR. This motivates cataloguing

the categorical properties of EmpR. For instance, does the factorization from Lemma 3.11 give rise to a

(co)pure-(co)mixed factorization system in the sense of [13]?

Likewise, Theorem 4.1 guarantees that non-contextual models can be defined in terms of the category

EmpR. Can other interesting classes of empirical models be recognised in terms of the category EmpR?

This question applies most pressingly to strongly contextual models, but can also be asked about models

admitting an AvN-argument [2] or a cohomological obstruction [6], or perhaps more boldly, about mod-

els admitting a quantum realisation. A weaker variant is to ask if we can transport AvN-arguments or

cohomological obstructions along morphisms. Similarly, in [3], several formulas concerning the contex-

tual fraction are proved, and it would be interesting to see if one can explain those formulas as categorical

properties of the functor CF .

Relationship with other approaches to contextuality. There are several alternative approaches con-

textuality, for example, based on operational equivalence [20], hypergraphs [7] or effect-algebras [21]. It

would be interesting to relate these formalisms to each other via categorical isomorphisms, equivalences

or at least adjunctions. Some work in this direction already exists: for example, [24] defines a category

of empirical models and a category suitable for the equivalence-based approach, and proves an isomor-

phism between the two. However, the morphisms on both sides are deterministic3 . Similarly, in [7,

3Stochastic morphisms with preprocessing but without dependence on multiple measurements in the equivalence-based

setting are investigated in [14]. Since we do not have preprocessing but have dependencies on several measurements, hoping

for an isomorphism might be too much.
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Appendix D] a bijection between empirical models in our sense and probabilistic models on hypergraphs

is defined. However, the question whether this extends to morphisms is not investigated. Moreover, the

most obvious definition for morphisms in the combinatorial approach comes from morphisms of hyper-

graphs, and as such is deterministic. The same drawback applies to the effect-algebraic approach [21]:

empirical models are regarded as maps from an effect algebra E to the unit interval. In other words,

the most natural category to work in is the slice category EA/[0,1], but then morphisms of empirical

models seem to boil down to deterministically mapping effects to effects (i.e. outcomes to outcomes) in

a way that preserves the probabilities. Of course, this is not meant as a dismissal of the other approaches:

rather, it is a call to define morphisms in the appropriate generality for each of the approaches and to see

how the resulting categories relate to each other.

Analogy to complexity theory The existence of a simulation d → e seems to be conceptually anal-

ogous to the existence of a reduction from one problem another. How far can one push this analogy

to complexity theory into “contextuality theory”? For example, are there complete problems for a

“contextuality-class”, at least if one fixes the measurement scenario?

Stronger notions of morphisms One might also wonder if stronger notions of a morphism are war-

ranted. For example, if the students are allowed to share quantum resources, one should get a notion of a

“quantum simulation”. The R-stochastic simulations use the Kleisli category of the distribution monad.

Maybe the notion of a quantum reduction uses something like the quantum monad from [4].

Perhaps the most pressing issue is preprocessing: intuitively, when using d : 〈Y,N ,(Py)y∈Y 〉 to sim-

ulate e : 〈X ,M ,(Ox)x∈X 〉, one should, for a given x ∈ X , be able to use convex mixtures of measurements

in Y . This might be needed to fully capture the meaning of “d can be used to simulate e given classical

shared correlations”. Indeed, preprocessing is a fundamental part of the maps in [8], and similarly they

are routinely used in [9] and [10]. In [10] one considers several copies of PR-boxes and the correlations

one can build from them, allowing for simulations where the output of one PR box is fed into another.

These two features – measurement choices depending on classical randomness or on results of other

measurements – result in wider notion of simulation, and we leave formalizing it in the sheaf-theoretic

framework as an open question.

One possibility might be to think of a “simulation d → e with preprocessing” as a ordinary simulation

d′ → e, where d′ is built from d and the randomization needed in the preprocessing – in a sense, d′ is

the sequential composition of d with a non-contextual model. For this approach to work, one probably

needs a good theory of sequential composition of empirical models. The alternative approach is to bite

the bullet and let π : X →Y be stochastic instead of deterministic. The worry of course being that either

the theory does not work or becomes too unwieldy to be useful. In particular, combining both a relation

πX →Y and preprocessing might lead to trouble: for instance, what does it mean to mix a measurement

x1 with a pair of measurements x2 and x3? Incorporating both of these aspects might be difficult, perhaps

for the same reasons combining nondeterministic and probabilistic computing is difficult [22].
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Appendix

Proof of Theorem 4.7. We define a simulation e|X\{x} → e. First of all, let S ∈ M be the only maximal

face containing x. We define a simplicial relation π : 〈X ,M 〉 → 〈X \{x},{C \{x}|C ∈ M }〉 by

π(y) =

{

C \{x} if y = x

{y} otherwise

Next we define a natural transformation in parts using Lemma 3.12. For that purpose, we partition

X into U1 := {x} and U2 := X \ {x}. On U2 the relation π restricts to the identity, so we can define

σ 2 = η , i.e. the identity for the Kleisli composition. For the other half, we just need to define a map

σx : Oπ(x) = OC\{x} → DR(O
x). Fix o ∈ O. Given s : C \X → O, we set

σx(s) =

{

eC(−|s) if s ∈ suppC\{x}(eC)

1 ·o otherwise.

To check that the resulting morphism (π,σ ⊗η) of measurement scenarios defines a simulation, e|X\{x} →
e, consider first a context D ∈ M that does not contain x. Then D ⊂U2 and σ ⊗η restricts to η , which

is the identity for the Kleisli composition.

Consider now the context C containing the deleted point x. Now π(C) =C\{x}, and write e|C\{x} =:

d in the form ∑s∈suppd d(s)s. Then

µDR(σ ⊗η)Cd = µDR(σ ⊗η)C ∑
s∈suppd

d(s)s

= µ ∑
s∈suppd

d(s)(σ ⊗η)C(s)

= µ ∑
s∈suppd

d(s)(σx(s)⊗ηC\{x}(s))

= µ ∑
s∈suppd

d(s)(e|C(−|s)⊗1s)

This being equal to eC boils down to the fact that p(x,y) = p(x|y)p(y) for conditional R-distributions.
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