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The notion of effectus from categorical logic is relevant in the emerging field of categorical probabil-

ity theory. In this context, stochastic maps are represented by maps in the Kleisli category of some

probability monad. Quantum homomorphisms from combinatorics and quantum information theory

are the Kleisli maps of certain sort of quantum monad. We show that the Kleisli category of this

quantum monad is an effectus. This gives rise to notions of quantum validity and conditioning.

1 Introduction

A graph G consists of a set of vertices V (G) and a set of edges E(G) ⊆ V (G)×V (G). By definition

E(G) is a binary relation on the vertex set V (G). We write v ∼ v′ to denote a pair of adjacent vertices

v,v′ ∈V (G), i.e. a pair (v,v′)∈V (G)×V (G) in the edge relation (v,v′)∈ E(G). A graph homomorphism

G→ H is given by a function f : V (G)→V (H) between vertices preserving edges:

v∼ v′ in G ⇒ f (v)∼ f (v′) in H

Consider the following game involving a given pair of graphs G and H , played by Alice and Bob

playing against a Verifier. Their goal is to establish the existence of a graph homomorphism from G to

H . The game is ‘non-local’ which means that Alice and Bob are not allowed to communicate during

the game, however they are allowed to agree on a strategy before the game has started. In each round

Verifier sends to Alice and Bob vertices v1,v2 ∈ V (G), respectively; in response they produce outputs

w1,w2 ∈V (H). They win the round if the following conditions hold:

v1 = v2⇒ w1 = w2 and v1 ∼ v2⇒ w1 ∼ w2

If there is indeed a graph homomorphism G→H , then Alice and Bob can win any round of the game

described above by using such homomorphism as strategy for responding accordingly. Conversely, they

can win any round with certainty only when there is a graph homomorphism G→ H . A strategy for

Alice and Bob in which they win with probability 1 is called a perfect strategy. Hence, the existence of

a perfect strategy is equivalent to the existence of a graph homomorphism.

In cases where no classical homomorphism exists, one can use quantum resources in the form of a

maximally entangled bipartite state, where Alice and Bob can each perform measurements on their part,

to construct perfect strategies. These strategies are called quantum because they use quantum resources.

We write Md(C) for the set of all d×d matrices with complex entries (d ≥ 1), and 1∈Md(C) for the

d×d identity matrix. Let E ∈Mn(C) and F ∈Mm(C) be two complex square matrices, n,m ≥ 1. Their

tensor product is the matrix defined as E⊗F := (ei jF) ∈Mnm(C) if E = (ei j) with i, j = 1, . . . ,n.

Definition 1.1. A quantum perfect strategy for the homomorphism game from G to H consists of a com-

plex unitary vector ψ ∈ C
dA⊗C

dB for some dA,dB ≥ 1 finite, and families (Evw)w∈V (H) and (Fvw)w∈V (H)

of dA×dA and dB×dB complex matrices for all v ∈V (G), satisfying:
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(1) ∑w∈V (H) Evw = 1 ∈MdA
(C) and ∑w∈V (H) Fvw = 1 ∈MdB

(C);

(2) w 6= w′ ⇒ ψ∗(Evw⊗Fvw′)ψ = 0;

(3) v∼ v′∧w 6∼ w′ ⇒ ψ∗(Evw⊗Fv′w′)ψ = 0.

Observe that the definition of quantum perfect strategies forgets the two-person aspect of the game

and shared state, leaving a matrix-valued relation as the witness for existence of a quantum perfect

strategy. Recall perfect strategies are in bijection with graph homomorphisms. This gives rise to the

notion of quantum graph homomorphism. This concept was introduced in [13], as a generalisation of the

notion of quantum chromatic number from [3]. Analogous results for constraint systems are proved in

[6, 11, 1, 2].

Definition 1.2. A quantum graph homomorphism from G to H is an indexed family (Evw)v∈V (G),w∈V (H)

of d×d complex matrices, Evw ∈Md(C), for some d ≥ 1, such that:

(1) E∗vw = E2
vw = Evw for all v ∈V (G) and w ∈V (H);

(2) ∑w∈V (H) Evw = 1 ∈Md(C) for all v ∈V (G);

(3) (v = v′∧w 6= w′)∨ (v∼ v′∧w 6∼ w′) ⇒ EvwEv′w′ = 0.

An important further step is taken in [13]: a construction G 7→ MG on graphs is introduced, such

that the existence of a quantum graph homomorphism from G to H is equivalent to the existence of a

graph homomorphism of type G→MH . This construction is called the measurement graph, and it turns

out to be a graded monad on the category of graphs. The Kleisli morphisms of this monad are exactly

the quantum homorphism between graphs of [13, 11, 2]. One can show equivalence between these three

different notions: quantum homomorphisms, quantum perfect strategies, and certain kind of (classical)

homomorphisms between graphs [1].

Monads are used in formal semantics of functional and probabilistic programming languages. Build-

ing on the work of Giry [7], and inspired by algebraic methods in program semantics, the study of various

‘probability’ monads has evolved and became part of a new branch of categorical logic called effectus

theory. The main goal of effectus theory is to describe the salient aspects of quantum computation and

logic using the language of category theory. This description includes probabilistic and classical logic

and computation as special cases [5, 10]. Quantum perfect strategies form a category. In this paper

we shall see that the category of quantum perfect strategies, or quantum graph homomorphisms, is an

effectus (see Theorem 4.1). However, specialisation of Theorem 4.1 to the case where the underlying

category is the category simple undirected graphs (which is the context used in [13, 11]) is impossible

as this category does not have a terminal object. This is why we introduce the quantum monad in the

context of the more general notion of relational structures rather than that of simple graphs.

2 Preliminaries

Disjoint union is the coproduct in the category Set of sets and functions. The disjoint union of two sets

X ,Y is the defined to be the set

X +Y := {(x,1) : x ∈ X}∪{(y,2) : y ∈Y}.

One can define two functions X
κ1→ X +Y

κ2←Y , as κ1(x) := (x,1) and κ2 := (y,2), for all x ∈ X and y ∈Y ,

respectively. The functions κ1,κ2 are called coprojections. For any pair of functions X
p
→ Z

q
← Y , the
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function [p,q] : X +Y → Z called cotupling is given by:

[p,q](v) :=

{

p(v) v ∈ X

q(v) v ∈Y
(v ∈ X +Y)

If f : A→ B, g : X →Y are functions, then the function f +g : A+X → B+Y is defined as

f +g := [κ1 ◦ f , κ2 ◦g].

The empty set 0 := /0 is the initial object of Set, and any choice of a singleton set 1 := {∗} is terminal

in Set. The unique function !X : X → 1 is given by x 7→ ∗ for each x ∈ X . Hence, the category Set has

finite coproducts (+,0) and a terminal object 1.

Definition 2.1. An effectus is category B with finite coproducts (+,0) and a terminal object 1, such that

for all X ,Y objects of B, the following commutative squares are pullbacks:

X +Y
!X+idY //

idX+!Y
��

1+Y

id1+!Y
��

X
!X //

κ1

��

1

κ1

��
X +1

!X+id1

// 1+1 X +Y
!X+!Y

// 1+1

and the following maps in B are jointly monic:

(1+1)+1

γ1:=[[κ1 ,κ2],κ2]
--

γ2:=[[κ2 ,κ1],κ2]

11 1+1

Joint monicity of γ1,γ2 means that given maps f ,g : X → (1+1)+1, we have:

γ1 ◦ f = γ1 ◦g ∧ γ2 ◦ f = γ2 ◦g ⇒ f = g

.

The category Set is the effectus used for modelling classical (deterministic, Boolean) computations.

The following result is well-known (see, e.g. [10, Example 4.7]).

Theorem 2.1. The category Set is an effectus.

Proof. We know how pullbacks are constructed in Set. For the first pullback condition from Defini-

tion 2.1, let P be the set of pairs (x,y) ∈ (X + 1)× (1+Y) such that (!X + id1)(x) = (id1+!Y )(y). Note

that we have:

(X +1)× (1+Y)∼= (X ×1)+ (1×1)+ (X×Y )+ (1×Y)

Let X +1 = X +{1} and 1+Y = {0}+Y . By cases:

(1) (x,y) ∈ X ×{0} implies (x,y) = (x,0), and so (!X + id1)(x) = 0 = (id1+!Y )(0) for all x ∈ X , thus

X×1⊆ P;

(2) (x,y) ∈ {1}×{0} implies (!X + id1)(1) = 1 6= 0 = (id1+!Y )(0), so 1×1 6⊆ P;

(3) (x,y) ∈ X ×Y implies (!X + id1)(x) 6= (id1+!Y )(y), so X×Y 6⊆ P;

(4) (x,y) ∈ {1}×Y implies (x,y) = (1,y), and so (!X + id1)(1) = 1 = (id1+!Y )(y) for all y ∈ Y , thus

1×Y ⊆ P.
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Hence, the pullback P is indeed given by (X ×1)+ (1×Y)∼= X +Y .

For the second pullback condition from Definition 2.1, take 1 = {0} and consider the set of pairs

(w,0) ∈ (X +Y )×1 such that (!X+!Y )(w) = κ1(0). Note that (X +Y )×1∼= (X×1)+(Y ×1). By cases:

(1) if (w,0) ∈ X ×1 then (!X+!Y )(w) = 0 = κ1(0) for all w ∈ X ;

(2) if (w,0) ∈ Y ×1 then (!X+!Y )(w) = 1 6= 0 = κ1(0) for all w ∈ Y .

Thus the pullback is indeed given by X×1∼= X .

For the joint monicity requirement from Definition 2.1, we consider sets 1+ 1+ 1 ∼= {a,b,c} and

1+1∼= {0,1}, and functions γ1,γ2 : 1+1+1 ⇒ 1+1 defined as:

γ1(a) = 0 γ1(b) = γ1(c) = 1 γ2(a) = γ2(c) = 1 γ2(b) = 0

Further assume we have functions f ,g : X ⇒ 1+1+1 such that:

γ1 ◦ f = γ1 ◦g γ2 ◦ f = γ2 ◦g

We need to show that f = g. Suppose that f 6= g. Then f (x) 6= g(x) for some x ∈ X . Assuming the

existence of such x, we arrive to the following contradictions:

• f (x) = a⇒ g(x) ∈ {b,c} ⇒ γ1( f (x)) 6= γ1(g(x))

• f (x) = b⇒ g(x) ∈ {a,c} ⇒ γ2( f (x)) 6= γ2(g(x))

• f (x) = c⇒ g(x) ∈ {a,b} ⇒ γ1( f (x)) 6= γ1(g(x)) if g(x) = a, or γ2( f (x)) 6= γ2(g(x)) if g(x) = b

Hence it must be the case that f = g, and so γ1, γ2 are jointly monic.

There are many examples of categories that are effectuses (for more, see [5]):

• Topological spaces with continuous maps between them.

• Rings (with multiplicative identity) and ring homomorphisms.

• Measurable spaces with measurable functions.

• C∗-algebras with completely positive unital maps.

• Extensive categories: B is extensive if it has finite coproducts and

B/X ×B/Y ≃ B/(X +Y )

for all X ,Y objects of B. (Every topos is extensive.)

3 Effectus of discrete probability measures

For any set X and any point x ∈ X , let 1x : X →{0,1} denote the indicator function at x:

1x(x
′) :=

{

1 x = x′

0 x 6= x
(x′ ∈ X)

A convex combination of elements of the set X is an expression:

λ11x1
+ · · ·+λn1xn
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with n ≥ 1, xi ∈ X , λi ∈ [0,1], and λ1 + · · ·+ λn = 1. Let D(X) be the set of all convex combinations

of elements of X . The elements of the set D(X) are called states or distributions on X . The indicator

function is a distribution 1x ∈ D(X), for every x ∈ X . A distribution ∑i pi1xi
∈ D(X) can be represented

by a function p : X → [0,1] with finitely many non-zero values, satisfying:

∑
x∈X

p(x) = 1

Functions like this are called discrete probability measures. If range(p) = {x1, . . . ,xn}, n ≥ 1, then the

assignment p(xi) 7→ pi gives the bijective correspondence between these two equivalent representations

of distributions, i.e. as convex combinations or as discrete probability measures.

Distributions on X can be pushforwarded along a function f : X →Y to get distributions on Y :

∑
x∈X

px1x 7→ ∑
x∈X

px1 f (x)

That is, we have a function D( f ) : D(X)→ D(Y ) defined for any p ∈D(X) as:

D( f )(p)(y) := ∑
x∈ f−1(y)

p(x) (y ∈ Y )

For every set X , the function ηX : X → D(X) is defined as:

ηX(x) := 1x (x ∈ X)

The function µX : D2(X)→ D(X) is given by the expectation-value of evaluation functions p 7→ p(x)
with respect to some distribution of distributions P ∈ D2(X), i.e.

µX(P)(x) := ∑
p∈D(X)

P(p) · p(x) (x ∈ X)

The usual naturality and commutativity requirements are satisfied by these functions, so there is a [0,1]-
valued discrete distributions monad D = (D,η ,µ) on Set.

The Kleisli category K (D) of the distribution monad D has sets as objects, and functions of type

X → D(Y ) as morphisms of type X → Y in K (D). The identity morphism X → X in K (D) is given

by ηX . We define the Kleisli extension c∗ : D(X)→ D(Y ) of any Kleisli morphism c : X → D(Y ) as

c∗ := µY ◦D(c). That is, for all p ∈D(X):

c∗(p)(y) = ∑
x∈X

p(x) · c(x)(y) (y ∈ Y )

Composition of Kleisli maps c : X→D(Y ) and d : Y →D(Z), is given using Klesli extension (to simplify

notation) as:

X
d∗◦ c

= µZ◦D(d)◦c
// D(Z)

For any set function f : X →Y , one can define a Kleisli map:

X
f̂ := ηY ◦ f

= D( f )◦ηX

// D(Y )

given by naturality of η .
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The category K (D) has finite coproducts (0,+) given by the empty set 0 := /0, and disjoint union

X1 +X2 with coprojections:

Xi

κ̂i := η(X1+X2)
◦κi

= D(κi)◦ηXi

// D(X1 +X2) (i = 1,2)

The following result is well-known, see e.g. [9, Proposition 6.4].

Lemma 3.1. The distribution monad D is affine, i.e. D(1)∼= 1. Moreover, D(1+1)∼= [0,1].

Proof. An element p ∈D(1) can be regarded as a function p : 1→ [0,1] such that ∑x∈1 p(x) = 1. There-

fore, it must be the case that p is the constant function 1. Thus D(1) = {1} ∼= 1. Now, a [0,1]-valued

distribution over a 2-element set consists of a choice of p ∈ [0,1] for one element and 1− p for the other

element. Hence D(1+1)∼= [0,1].

Proposition 3.1. K (D) has a terminal object.

Proof. By Lemma 3.1, any choice of a singleton set 1 in Set is a terminal object in K (D). We have

unique arrows:

X
!̂X := η1◦!X

= D(!X )◦ηX

// D(1)

for any X in Set. Since 1 ∼= D(1), the unit η1 : 1→ D(1) and the identity function id1 : 1→ 1 are equal

η1 = id1. Therefore, we have !̂X =!X for all X in Set.

Proposition 3.2. K (D) has pullbacks.

Proof. Assume we have the following commutative diagram:

A d

%%

c

..

u

''
P

i //

h
��

Y

g
��

X
f

// Z

where all the arrows live in K (D), and the dashed arrow means that u is uniquely defined. That is, we

have a function u : A→ D(P) which is determined in a unique way by Kleisli maps:

c : A→ D(X) f : X → D(Z) h : P→ D(X)

d : A→ D(Y ) g : Y → D(Z) i : P→ D(Y )

satisfying the following four equations:

h∗ ◦u = c (1)

i∗ ◦u = d (2)

f∗ ◦ c = g∗ ◦d (3)

f∗ ◦h = g∗ ◦ i (4)

In that case, we have that P is the pullback of g along f in K (D).
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The following and last result is well-known, see e.g. [10, Example 4.7].

Theorem 3.1. The Kleisli category K (D) of the distribution monad D on sets is an effectus.

Proof. We need to check two pullback conditions and one joint monicity requirement for the Kleisli

category K (D). We start with the first pullback from Definition 2.1. We assume to have the following

Kleisli maps:

c : A→ D(X +1) f : X +1→ D(1+1) h : X +Y → D(X +1)

d : A→ D(1+Y ) g : 1+Y → D(1+1) i : X +Y → D(1+Y)

where:

f := D(!X + id1)◦ηX+1 h := D(idX+!Y )◦ηX+Y

g := D(id1+!Y )◦η1+Y i := D(!X + idY )◦ηX+Y

By definition of Kleisli extension we have:

f∗ = µ1+1 ◦D( f )

= µ1+1 ◦D(D(!X + id1)◦ηX+1)
⋆
= µ1+1 ◦D(η1+1 ◦ (!X + id1))

= µ1+1 ◦D(η1+1)◦D(!X + id1)

= D(!X + id1)

where the marked equality
⋆
= follows from naturality of η , and the last one from the axioms of monads.

Similarly, we have:

g∗ = D(id1+!Y )

h∗ = D(idX+!Y )

i∗ = D(!X + idY )

Therefore, equation (4) above holds:

f∗ ◦h = D(!X + id1)◦h

= D(!X + id1)◦D(idX+!Y )◦ηX+Y

= D((!X + id1)◦ (idX+!Y ))◦ηX+Y

⋆
= D((id1+!Y )◦ (!X + idY ))◦ηX+Y

= D(id1+!Y )◦D(!X + idY )◦ηX+Y

= g∗ ◦ i

where the marked equality
⋆
= follows from the fact that both squares in the definition of effectus (see

Definition 2.1) commute in every category with finite coproducts and a terminal object.

Let X +1 = X +{1} and 1+Y = {0}+Y . Further suppose the Kleisli maps c : A→D(X +{1}) and

d : A→ D({0}+Y ) satisfy equation (3) above. More concretely, suppose:

D(!X + idY )(c(a)) = D(idX+!Y )(d(a)) ∈ D({0}+{1}) (5)
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for all a ∈ A. Specifically, this equation (5) expanded and evaluated says that:

D(!X + idY )(c(a))(0)
(5)
= D(idX+!Y )(d(a))(0)

= ∑
y∈(idX+!Y )−1(0)

d(a)(y)

= d(a)(0) ∈ [0,1]

(6)

D(!X + idY )(c(a))(1) = ∑
x∈(!X+idY )−1(1)

c(a)(x)

= c(a)(1) ∈ [0,1]

(7)

Thus:

d(a)(0)+ c(a)(1) = 1 (8)

We have:

∑
x∈X

u(a)(x)+ ∑
y∈Y

u(a)(y)
def
= ∑

x∈X

c(a)(x)+ ∑
y∈Y

d(a)(y)

= ∑
!X (x)=0

c(a)(x)+ ∑
!Y (y)=1

d(a)(y)

= D(!X + idY )(c(a))(0)+D(!X + idY )(c(a))(1)
⋆
= d(a)(0)+ c(a)(1)

=1

where the marked equality
⋆
= follows from (6) and (7), and the last equality from (8). Hence u is well-

defined. We still need to check (1) and (2) above, which in this case amounts to show that:

D(idX+!Y )◦u = c

D(!X + idY )◦u = d

For all a ∈ A, we have indeed:

D(idX+!Y )(u(a))(x) = ∑
x′∈(idX+!Y )−1(x)

u(a)(x′)

= u(a)(x)

def
= c(a)(x)

D(idX+!Y )(u(a))(1) = ∑
y∈(idX+!Y )−1(1)

u(a)(y)

= ∑
y∈Y

u(a)(y)

def
= ∑

y∈Y

d(a)(y)

= c(a)(1)
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D(!X + idY )(u(a))(y) = ∑
y′∈(!X+idY )−1(y)

u(a)(y′)

= u(a)(y)

def
= d(a)(y)

D(!X + idY )(u(a))(0) = ∑
x∈(!X+idY )−1(0)

u(a)(x)

= ∑
x∈X

u(a)(x)

def
= ∑

x∈X

c(a)(x)

= d(a)(0).

By definition, u : A→ D(X +Y ) is the unique Kleisli map satisfying the needed requirements. This

completes the proof of the first pullback condition for K (D).
For the second pullback from Definition 2.1, let 1 := {0} and 1 := {1} be two distinct (choices of)

singleton sets, and let D(1) ∼= {10}. Consider Kleisli maps !A : A→ {10} and c : A→ D(X +Y ) such

that:

D(!X+!Y )◦ c = D(κ1)◦ !A (9)

Since c(a) = ∑x px1x+∑y py1y ∈D(X +Y ) with ∑x px+∑y py = 1 ∈ [0,1] for all a ∈ A, we have that the

left-hand side of equation (9) expands to:

D(!X+!Y )(c(a)) = ∑
x

px10 +∑
y

py11

The right-hand side of equation (9)expands to:

D(κ1)(!A(a)) = D(κ1)(10)

= 1κ1(0)

= 10

Hence ∑x px = 1, and so c(a) ∈D(X). Let u : A→D(X) be defined as u(a)(x) := c(a)(x). By definition,

the Kleisli map u : A→ D(X) is the unique arrow satisfying the needed requirements.

Now we prove that the maps γ1,γ2 : (1+ 1)+ 1 ⇒ 1+ 1 in are jointly monic in K (D). This part is

taken exactly from [10, Example 4.7]. Let σ ,τ ∈ D(1+1+1) be distributions such that

D(γ1)(σ) = D(γ1)(τ)

D(γ2)(σ) = D(γ2)(τ)
(10)

in D(1+1). Assume 1+1+1= {a,b,c} and 1+1= {0,1}. We have the following convex combinations

for σ in D(1+1):

D(γ1)(σ) = σ(a)10 +(σ(b)+σ(c))11

D(γ2)(σ) = σ(b)10 +(σ(a)+σ(b))11

Similarly for τ :

D(γ1)(τ) = τ(a)10 +(τ(b)+ τ(c))11

D(γ2)(τ) = τ(b)10 +(τ(a)+ τ(b))11
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Hence, by the first equation in (10), we have σ(a) = τ(a). Similarly, by the second equation in (10),

we have σ(b) = τ(b). We still need to show that σ(c) = τ(c). Since σ(a)+σ(b)+σ(c) = 1 = τ(a)+
τ(b)+ τ(c), then:

σ(c) = 1− (σ(a)+σ(b))

= 1− (τ(a)+ τ(b))

= τ(c)

4 Effectus of projection-valued measures

A simple undirected graph G is a relational structure with a single, binary irreflexive and symmetric

relation E(G) that we have been written as ∼ in infix notation. Relational structures are more general.

A relational structure A = (A,R(A )) consists of a set A together with an indexed family R(A ) =
(RA

i )i∈I of relations RA
i ⊆ Aki with I a set of indices, and ki ≥ 1 for all i ∈ I. A homomorphism of

relational structures A →B is a function f : A→B between the underlying sets, preserving all relations:

(x1, . . . ,xk)∈ RA ⇒ ( f (x1), . . . , f (xk))∈RB for all (x1, . . . ,xk)∈ Ak and all RA ∈R(A ) with arity k≥ 1.

There is a category RStr of relational structures and homomorphisms between them.

We write Proj(d) ⊆ Md(C) for the set of all d× d complex matrices that are both self-adjoint and

idempotent, i.e. Proj(d) = {a ∈Md(C) : a∗ = a2 = a} for all d ≥ 1. The elements of Proj(d) are called

d-dimensional projections. For every d ≥ 1, the identity matrix is a projection 1 ∈ Proj(d).
For every relational structure A = (A,R(A )) and every positive integer d ≥ 1, define a relational

structure Qd(A ) = (Qd(A),R(Qd(A )), where

Qd(A) := {∑
x∈A

px1x : px ∈ Proj(d), ∑
x∈A

px = 1}

and every k-ary relation RQd(A ) ⊆ Qd(A)
k in R(Qd(A )) is defined as the set of k-tuples (p1, . . . , pk) of

projection-valued distributions p1, . . . , pk ∈ Qd(A) satisfying:

(1) pi(x) and p j(x
′) commute for all x,x′ ∈ A

(2) (x1, . . . ,xk) /∈ RA implies ∏k
i=1 pi(xi) = 0 for all (x1, . . . ,xk) ∈ Ak

There cannot be infinitely many projections resolving the d-dimensional identity. Therefore, every

projection-valued distribution p ∈ Qd(A), p : A→ Proj(d), has finitely manny non-zero values. These

distributions are projection-valued measures (PVMs) from functional analysis and quantum theory [8, 4].

For any homomorphism f : A →B, we define the homomorphism Qd( f ) : Qd(A )→ Qd(B) as

Qd( f )(p)(y) := ∑
x∈ f−1(y)

p(x) (y ∈ B)

or, equivalently, as Qd( f )(p) :=∑x px1 f (x) ∈Qd(B). This definition preserves composites and identities,

so there is a functor Qd : RStr→ RStr for every d ∈ N= {1,2, . . .} (see [1] for more details).

Note that Proj(1) ∼= {0,1} ∼= 1+ 1. We define ηA : A → Q1(A ) to be the indicator function 1x at

x ∈ A: ηA (x)(x′) = 1 if x = x′ and ηA (x)(x′) = 0 if x 6= x′. Next we use the tensor product of matrices.

For all d,d′ ≥ 1, let µd,d′

A
: QdQd′(A )→ Qdd′(A ) be defined for any P : Qd′(A)→ Proj(d) as:

µ
d,d′

A
(P)(x) := ∑

p∈Qd′ (A)

P(p)⊗ p(x) (x ∈ A)
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These maps ηA , µd,d′

A
are components of natural transformations η : 1⇒ Q1, µd,d′ : QdQd′ ⇒ Qdd′

satisfying the axioms of graded monads [12]:

µd,1
A
◦Qd(ηA ) = idQd(A ) = µ1,d

A
◦ηQd(A ) and µd,d′d′′

A
◦Qd(µ

d′,d′′

A
) = µdd′ ,d′′

A
◦µd,d′

Qd′′ (A )

Given A ,B relational structures, A +B is the relational structure over the set A+B where the

k-ary relation RA +B is defined as all the tuples (x1, . . . ,xk) ∈ (A+B)k satisfying either (x1, . . . ,xk) ∈ RA

or (x1, . . . ,xk) ∈ RB. Also, we have the structure 0 over the empty set /0 = 0 with no relations. Further

we have a structure 1 over some singleton set 1 = {∗} with the universal relation of arity k, i.e. one has

R1 := 1k = 1×·· ·× 1. Like the distribution monad D, the quantum monad Qd is also an affine monad

since Qd(1)∼= 1. The following result is immediate:

Proposition 4.1. K (Qd) has a terminal object and finite coproducts.

Recall that semirings are rings without all additive inverses. That is, a semiring consists of a set

S and two binary operations +, · : S× S→ S called addition and multiplication, such that (S,+) is a

commutative monoid, (S, ·) is a monoid, and there is a distributive law of multiplication over addition.

A partial semiring is a semiring where at least one binary operation is partially defined, i.e. the binary

operation is a partial function. The real unit interval [0,1] is a partial semiring with addition x+y defined

only when x+ y ≤ 1. For any d ≥ 1, the set of d-dimensional projections Proj(d) is a partial semiring

with addition p+q defined only when p ·q = 0.

Theorem 4.1. The Kleisli category K (Qd) of the quantum monad Qd is an effectus.

Proof. The proof of Theorem 3.1 works for any S-valued distributions monad with S partial semiring

since we did not use any fact about the unit interval [0,1] that do not hold for any other partial semiring.

There we saw the details for S = [0,1], and here we leave those for S = Proj(d) to the reader. Similarly,

the two pullback conditions and one joint monicity requirement from Definition 2.1 hold for the Kleisli

category K (Qd) forgetting the homomorphism part (i.e. preserving relations). Thus, all that carries the

same at the level of sets. Now we mention the parts about homomorphism. Let u : P→Qd(A +B) be

the Kleisli map defined (in the first pullback condition) for each a ∈ P as u(a)(x) := c(a)(x) ∈ Proj(d)
for all x ∈ A, and u(a)(y) := d(a)(y) ∈ Proj(d) for all y ∈ B, where c : P → Qd(A + 1) and d : P →
Qd(1+B) are given homomorphisms. This Kleisli map u is homomorphism by definition, since both c

and d are homomorphisms by assumption. For the second pullback condition, now we suppose to have

a homomorphism c : P → Qd(A +B) and define u : P → Qd(A ) as u(a)(x) := c(a)(x) for all a ∈ P

and x ∈ A. Once again, here we have that u is homomorphism by definition since c is homomorphism by

assumption.

5 Quantum probabilistic reasoning

States in K (D) are discrete probability measures. In K (Qd), states are quantum measurments (PVMs)

also known as sharp observables [8]. We shall start describing what is the situation with respect to states

and predicates in general for an arbitrary effectus B. Formally, a state on X is a morphism in B with type

1→ X . A predicate on X is a morphism in B with type X → 1+1. There is an adjunction:

Pred(B)op

Stat
,,

⊤ Stat(B)

Pred

mm

B

99sssssssss

ff▼▼▼▼▼▼▼▼▼▼
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where B→ Stat(B) and B→ Pred(B)op are the functors defined on objects as Stat(X) := B(1,X) and

Pred(X) :=B(X ,1+1), for any X object of B; the action of these functors on a given morphism f : X→Y

in B produce morphisms Stat( f ) : Stat(X)→ Stat(Y ) and Pred( f ) : Pred(Y )→ Pred(X) called state and

predicate transformer defined by compositon in B as Stat( f )(p) := f ◦ p and Pred( f )(q) := q ◦ f , for

any p ∈ Stat(X) and q ∈ Pred(Y ).

Morphisms in Pred(1) = Stat(1+1) = B(1,1+1) are called scalars. For probability theory, scalars

are probabilities K (D)(1,1+1) ∼= [0,1]. Given a state p ∈ Stat(X) and a predicate q ∈ Pred(X) on the

same object X of B, we have by definition Stat(q)(p) = Pred(p)(q) = q◦ p. At the level of sets, scalars

for the quantum case are projections K (Qd)(1,1+ 1) ∼= Proj(d). Thus, predicates are assignments of

projections. Now, let’s consider Proj(d) as relational structure of projections with a k-ary relation RProj(d)

given by (p1, . . . , pk)∈ RProj(d) if and only if the projections p1, . . . , pk pairwise commute: pi · p j = p j · pi

for all i, j = 1, . . . ,k.

Proposition 5.1. Let A = (A,RA ) be a relational structure. Then:

• a state on A is a PVM p ∈ Qd(A ) on the underlying set A;

• a predicate q : A → Proj(d) is an assignment of projections q : A→ Proj(d) such that points

appearing in some tuple in the relation RA get assigned commuting projections, i.e. projections

q(xi),q(x j) ∈ Proj(d) commute if there exists x ∈ Ak such that:

x = (x1, . . . ,xi, . . . ,x j, . . . ,xk), x ∈ RA

Given a PVM and an assignment of commuting projections, we can compute their validity, or ex-

pected value, of the projections in the measure.

Proposition 5.2. Let p = (px : x ∈ A), px ∈ Proj(d), be a PVM and q = (qx : x ∈ A), qx ∈ Proj(d′), a

collection of pairwise commuting projections.

• Validity of q in p is the projection p |= q ∈ Proj(dd′) defined as:

p |= q := ∑
x∈A

px⊗qx

• Conditioning p given q is the PVM p|q ∈ Qdd′(A ) defined if validity p |= q is non-zero as:

p|q =

(

px⊗qx

p |= q
: x ∈ A

)

The rows of the following table correspond to scalars, states, predicates, and validity in three different

effectuses (deterministic, probabilistic, quantum):

Effectus Set K (D) K (Qd)

1→ 1+1 b ∈ {0,1} p ∈ [0,1] E ∈ Proj(d)

1→ X x ∈ X (px)x∈X , ∑ px = 1 (Ex)x∈X , ∑Ex = 1

X → 1+1 S⊆ X f : X → [0,1] q : X → Proj(d)

1→ X → 1+1 x ∈ S ∑ px · f (x) ∑Ex⊗q(x)
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