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The ZH-calculus is a complete graphical calculus for linear maps between qubits that admits a

straightforward encoding of hypergraph states and circuits arising from the Toffoli+Hadamard gate

set. In this paper, we establish a correspondence between the ZH-calculus and the path-sum formal-

ism, a technique recently introduced by Amy to verify quantum circuits. In particular, we find a bijec-

tion between certain canonical forms of ZH-diagrams and path-sum expressions. We then introduce

and prove several new simplification rules for the ZH-calculus, which are in direct correspondence to

the simplification rules of the path-sum formalism. The relatively opaque path-sum rules are shown

to arise naturally from two powerful families of rewrite rules in the ZH-calculus. The first is the

extension of the familiar graph-theoretic simplifications based on local complementation and pivot-

ing to their hypergraph-theoretic analogues: hyper-local complementation and hyper-pivoting. The

second is the graphical Fourier transform introduced by Kuijpers et al., which enables effective sim-

plification of ZH-diagrams encoding multi-linear phase polynomials with arbitrary real coefficients.

1 Introduction

The very nature of quantum computation makes it hard to verify classically that a given quantum circuit

implements the desired computation without incurring exponential space or time costs. It is however

still possible to develop smart heuristics that can verify that quantum circuits indeed implement the

right unitary. One such heuristic is the path-sum approach [2]. It represents each quantum gate in the

circuit by the action it has on the computational basis states, given by a Boolean function determining

the output basis state and a semi-Boolean function giving relative phases of outputs, each of which

can depend on inputs as well as auxiliary Boolean variables, or ‘paths’, that are summed over. Amy

developed a set of simplification rules for these path-sums that were powerful enough to completely

simplify a set of benchmark quantum circuits that implemented classical reversible functions to their

classical specification. Each of these rewrite rules eliminates a variable from the path-sum, but beyond

that, their interpretation is quite opaque.

In this paper we will see that path-sum expressions and the rewrite rules from [2] can be represented

in a natural way using the ZH-calculus. The ZH-calculus is a graphical language recently introduced by

Backens and Kissinger [4] that can straightforwardly represent computations involving Hadamard and

Toffoli gates, and generalisations thereof. It comes with a set of graphical rewrite rules that are complete,

meaning that any two diagrams representing equal linear maps can be graphically transformed into one

another.

http://dx.doi.org/10.4204/EPTCS.340.10
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


L. Lemonnier, J. van de Wetering & A. Kissinger 189

There are two key ingredients in our translation of the path-sum rewrite rules into the ZH-calculus.

The first is based on the realisation that ZH-diagrams can easily represent hypergraph states [24, 22].

Graph states are a type of stabiliser state widely used in a variety of quantum protocols as well as the one-

way model of measurement-based quantum computation [23]. Interestingly, the graph operations of local

complementation and pivoting can be performed on the underlying graph of a graph state by applying

local Cliffords [21]. We will show in this paper that the graph-theoretic simplifications of ZX-diagrams

from [10] based on local complementation and pivoting extend naturally to hypergraph-theoretic simpli-

fications of ZH-diagrams, which we call hyper-local complementation and hyper-pivoting.

The second ingredient is producing a ZH-calculus analogue to the operation of lifting of a Boolean

polynomial Q to a related polynomial Q to enable substitution into a semi-boolean function. This oper-

ation plays an important role in the path-sum reductions, and it turns out to correspond to the graphical

Fourier transform introduced by Kuijpers and two of the authors in [19].

By introducing a new connection between path-sums and hypergraph states via the ZH-calculus we

provide not only a new perspective on verification of quantum circuits, but also new techniques that can

be applied to measurement-based quantum computing models based on hypergraph states [15, 25, 14].

Computations could be analysed and verified using either the ZH-calculus or path-sums, similar to how

the ZX-calculus can be used to analyse the one-way model of MBQC [6, 12].

Related work. This work is an extension of a technical report by one of the authors in 2019 [20]. Since

then, parallel work of Vilmart has drawn a similar correspondence between the path-sum approach and

the ZH-calculus [27]. That work differs from ours in two ways. First, its correspondence is semantical:

i.e. it defines categories of ZH-diagrams and sum-over-paths expressions, modulo the appropriate laws

and gives functors in either direction. Ours is syntactic: we establish a direct bijection between certain

universal families of ZH-diagrams and path-sum expressions. Second, at the level of rewriting, Ref. [27]

focuses on the Clifford fragments of each of the two languages and proves completeness, whereas we

aim to capture the full power the two languages in reasoning beyond Clifford computations, but like [2],

our goal is to develop useful heuristics for diagram simplification rather than a complete procedure for

deciding equality (which is a QMA-hard problem [7]).

Much as the ZX-calculus is closely connected to the theory of graph states and the one-way model,

the ZH-calculus is closely connected to the emerging theory of hypergraph states. In that context, a

notion of local complementation for hypergraph states has been introduced by Gachechildaze et al. [16]

which is closely related to the simplification we introduce in Section 4.1. In addition, a restricted version

of the graphical Fourier transform was described for weighted hypergraph states in [26].

2 ZH-calculus

In this section we will recall the ZH-calculus, together with (annotated) !-box notation and the Fourier

transform rule of [19].

The ZH-calculus is a diagrammatic language introduced by Backens and Kissinger [4] that represents

linear maps as ZH-diagrams. These are string diagrams based on two generators: Z-spiders, depicted as

white dots; and H-boxes, depicted as white boxes with a complex parameter a:

. . .

. . .

n

m

:= |0 . . .0〉 〈0 . . .0|+ |1 . . .1〉〈1 . . .1|
. . .

a

. . .

n

m

:= ∑ai1...im j1... jn | j1 . . . jn〉〈i1 . . . im|



190 Hypergraph Simplification

Here in the right-hand equation the sum runs over all i1, . . . , im, j1, . . . , jn ∈ {0,1}. Hence, an H-box

represents a matrix with a as its |1 . . .1〉 〈1 . . .1| entry, and ones everywhere else. By convention, we omit

the parameter a when a=−1, and hence an unlabeled H-box with 1 input and 1 output is the conventional

Hadamard gate (up to normalisation). More complex diagrams are constructed by composing these

generators either by stacking them or by joining the outputs of the first with the inputs of the second,

which correspond respectively to the tensor product and regular composition of linear maps.

Our calculations will greatly benefit from the usage of !-box – pronounced as “bang box” – nota-

tion [17]. A !-box, drawn as a blue square around a piece of a ZH-diagram, represents a part of the

diagram that may be replicated an arbitrary number of times, and hence allows one to express a whole

family of diagrams at once:

←→
{

, , , , . . .

}

When used in equations, corresponding !-boxes on either side of the equation should be understood

to be replicated an equal number of times.

As in [4] we will also use annotated !-boxes that are labelled by a set or a natural number to denote

the number of copies of the diagram. For example, letting B = {0,1} denote the set of Booleans we

have:

b ∈ B2

ab

:=
a00 a01 a10 a11

and

2

3

:=

Note that in the right-hand diagram we had overlapping !-boxes resulting in a fully-connected bipartite

graph of connectivity. Also following [4] we use some derived generators: the X-spider and the NOT

gate.

:= 1
2

(XS) ¬ := 1
2

(N)

The power of the ZH-calculus comes from the set of graphical rewrite rules associated to it. First

of all, ZH-diagrams are considered equal when they can be topologically deformed into one another, as

long as the order of in- and outputs is preserved [8, 9]. Second, there are a set of rewrite rules that can

be applied to parts of a diagram. We present these standard rules in Figure 1.

These rules are complete meaning that if two ZH-diagrams represent the same linear map, then those

diagrams can be transformed into one another using some application of these rules [4].

Some of our results will require the Fourier transform of a ZH-diagram as constructed in [19]. Be-

fore we introduce this Fourier transform, we recall some of the notation of [19]. First, there are the

exponentiated H-boxes and the associated phase spiders, that allow us to make the connection between

ZH-diagrams and path-sums more direct:

. . .

α
. . .

:=

. . .

eiα

. . .
α :=
. . .

. . .

. . .

. . .
α α :=

. . .

. . .

. . .

. . .
α (1)

Second, there are the disconnect boxes from [19] that combine nicely with annotated !-boxes:

1 0= = 1
2

(2)
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(ZS1) = (ZS2) == (BA1) =

(HS1)
a

a= 2 (HS2) = 2 (BA2) =

(M)

a b

=
ab

(U)
1

= (I)
a a

=
¬

a

(A) a b
=

a+b
2

¬

2 (O) =¬2 ¬

Figure 1: The rules of the ZH-calculus. Throughout, a,b are arbitrary complex numbers. These are the

!-boxed versions of the rules as presented in [4].

Let [n] = {1, . . . ,n} denote the n element set and let |b| denote the weight of a bitstring b ∈ B
n, i.e. the

number of 1’s in b. Denote by B
n
∗ the set of all non-zero bitstrings, i.e. Bn \ (0, . . . ,0).

Proposition 2.1. [19] The following Fourier-transform rule holds.

=

α (−2)|b|−1α

bi

b ∈ Bn
∗

i ∈ [n] i ∈ [n]

2

For example, in the n = 2 and n = 3 cases we have:

α

=

−2αα α

2

α

= α α

−2α

α

−2α −2α

4α
2

Remark 2.2. The reason we call this rule a Fourier transform is because it is closely related to the Fourier

transform of semi-Boolean functions. See [19] for the details. We presented the rule using exponentiated

H-boxes. A more general version using regular H-boxes (as long as the label is non-zero) also holds.

Before we continue onto our introduction of path-sums, it will be useful to introduce a new class of

ZH-diagrams that generalises the definition of graph-like ZX-diagrams from [10].

Definition 2.3. We say a ZH-diagram is hypergraph-like when
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• all spiders are Z-spiders,

• every in- and output wire is connected only to a spider (so no connections directly to H-boxes),

• the only wires are between H-boxes and spiders,

• there is at most one wire between any given H-box and spider (so no parallel edges),

• and there are no H-boxes connected to exactly the same set of spiders.

We call these diagrams hypergraph-like, because most of their structure is captured by the underlying

hypergraph that has as vertices the spiders and as hyperedges the H-boxes.

Definition 2.4. A hypergraph G = (V,E) consists of a set of vertices V and a set of hyperedges E . Each

hyperedge e ∈ E is a non-empty set of vertices e ⊆ V . We call a hyperedge simple when it contains

exactly two vertices. A simple graph is a hypergraph where every hyperedge is simple.

The underlying hypergraph of a hypergraph-like ZH-diagram is a simple graph iff all H-boxes have ar-

ity 2. Such diagrams are graph-like as defined in [10]. Every ZH-diagram can be reduced to a hypergraph-

like ZH-diagram representing the same linear map. Before we prove this, we need a lemma.

Lemma 2.5. Multiple parallel edges between an H-box and a Z-spider can be reduced to a single edge.

a =..
.

a (3)

Proof. Follows easily from Lemma 5.1 in [5].

Lemma 2.6. Every ZH-diagram can be efficiently transformed into a hypergraph-like ZH-diagram.

Proof. First transform all grey spiders and NOT gates into white spiders using the definitions (XS) and

(N). Remove all double Hadamard gates this introduces with (HS2) — the equation label refers to Fig-

ure 1. Fuse all the spiders by applying (ZS1) repeatedly. Disconnect in- and outputs from H-boxes by

introducing identities with (ZS2), and similarly introduce identities between H-boxes that are connected.

Remove parallel edges between H-boxes and spiders with Lemma 2.5. Finally, fuse H-boxes that have

the same set of neighbours using (M).

Remark 2.7. The weighted hypergraphs of [26] associate phases to each hyperedge. The resulting

weighted hypergraph states precisely correspond to hypergraph-like ZH-diagrams where every spider

has exactly one output wire and there are no inputs. The ZH normal form diagrams of [4] similarly have

each Z-spider connected to a unique output, but there H-boxes are also allowed to be connected to white

spiders via a NOT gate.

3 Path-sums and pure path-sums

Path-sums give a compact way of representing the action of a linear map A on computational basis states

in terms of two polynomial functions f and φ :

A :: |xxx〉 7→ λ ·∑
yyy

e2πi·φ(xxx,yyy) | f (xxx,yyy)〉 (4)

In this description λ ∈ C is a (typically irrelevant) global scalar factor; xxx ∈ B
n where n is the number

of input qubits of A is a bit string which we will typically, by minor abuse of notation, treat as lists
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of variables; the sum is over all bitstrings yyy ∈ B
k for some k; f = ( f1, . . . , fm) where each fi ∈ B[xxx,yyy]

is a Boolean (i.e. F2-valued) polynomial describing the i-th output basis state in terms of xxx and yyy and

m is the number of qubit outputs of A; and φ ∈ R[xxx,yyy] is a polynomial valued in the real numbers (or

some sub-ring thereof) describing the phase of each summand, which is often referred to as the phase

polynomial.

Example 3.1. The path-sum representation of the CNOT gate is |x1x2〉 7→ |x1(x1⊕ x2)〉. Hence, we have

φ = 1, no path variables y, and f = ( f1, f2) where f1(x1,x2) = x1 and f2(x1,x2) = x1⊕ x2.

While there are some practical benefits for keeping the data f and φ separate, we will consider a

slight variation on path-sum expressions that we call pure path-sum expressions, which keeps all of the

relevant data about U in φ and treats inputs and outputs on the same footing. This will enable us to make

an exact correspondence with ZH-diagrams in the sequel.

For a set S, let S∗ be the set of finite lists of elements of S.

Definition 3.2. A pure path-sum expression consists of:

• A set of path variables xxx = (x1, . . . ,xk),

• an input signature i ∈ {1, . . .k}∗,
• an output signature o ∈ {1, . . .k}∗,
• and a phase polynomial φ(xxx) ∈ R[xxx].

The associated linear operator of a pure path-sum expression is A := ∑xxx e2πiφ(xxx) |xxxo〉〈xxxi| where the

sum is over all bitstrings xxx ∈ B
k and xxxo = xo1

xo2
· · ·xo|o| and xxxi = xi1 xi2 · · ·xi|i| . I.e. xxxo contains only the

components of xxx that are listed in the output signature o and can have repetitions and permutations of the

elements.

We don’t lose any expressiveness by using pure path-sum expressions. In fact, we can translate a

path-sum expression in the form of (4) to a pure path-sum expression, at the cost of introducing some

dummy variables:

λ ∑
xxx,yyy

e2πi·φ(xxx) | f (xxx,yyy)〉 〈xxx|= λ

2m ∑
vvv,www,xxx,yyy

e
2πi·
[

φ(xxx)+ 1
2 ∑ j v j(w j+ f j(xxx,yyy))

]

|www〉〈xxx| . (5)

Here we used the identity 1
2 ∑v j

eiπv j(w j+ f j(xxx,yyy)) = δw j , f j(xxx,yyy) to obtain the RHS above.

Remark 3.3. It will be convenient in the sequel for φ to have a certain canonical form. Namely that

φ(xxx) = ∑i λiφi(xxx) for λi ∈ R where each φi is a Boolean monomial, i.e. φi(xxx) = ∏ j x j · yi, j for some

yi ∈ B
k. The procedure above introduces terms in φ that are not of this form, but are e2πiα f (xxx) where

f : Bk → B is some Boolean function. Such functions f can however always be written as an XOR of

monomials. Using the identity x⊕ y = x+ y−2x · y repeatedly we can then write any Boolean function

f as f = ∑ j λ j f j where λ j ∈ R and f j are monomials. Hence e2πiα f (xxx) = e2πi∑ j αλ j f j(x) is of the desired

form.

Example 3.4. Applying the transformation of Eq. (5) to the path-sum representation of Example 3.1

yields

CNOT =
1

4
∑

v1,v2,
w1,w2,
x1,x2

e
2πi· 1

2

[

v1(w1+x1)+v2(w2+(x1⊕x2))
]

|w1,w2〉〈x1,x2| .
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λ ∑
y0,xxx

e2πiR(xxx) |xxxo〉〈xxxi| −→ 2λ ∑
xxx

e2πiR(xxx) |xxxo〉〈xxxi| [Elim]

λ ∑
y0,xxx

e2πi( 1
4

y0+
1
2

y0Q(xxx)+R(xxx)) |xxxo〉〈xxxi| −→
√

2λ ∑
xxx

e2πi( 1
8
− 1

4
Q(xxx)+R(xxx)) |xxxo〉〈xxxi| [ω]

λ ∑
y0,y1,xxx

e2πi( 1
2

y0(y1+Q(xxx))+R(y1,xxx)) |xxxo〉〈xxxi| −→ 2λ ∑
xxx

e2πi(R[y1←Q])(xxx) |xxxo〉〈xxxi| [HH]

λ ∑
y0,y1,xxx

e2πi(αy0X(xxx)+ 1
2

y0Q(xxx)+ 1
2

y0y1+
1
2

y1Q′(xxx)+βy1(1−X(xxx))+R(xxx)) |xxxo〉〈xxxi|

−→ 2λ ∑
xxx

e2πi( 1
2

Q(xxx)Q′(xxx)+αX(xxx)Q′(xxx)+β(1−X(xxx))Q(xxx)+R(xxx)) |xxxo〉〈xxxi| [Case]

Figure 2: Pure path-sum reduction rules. Here λ ∈ C, α ,β ∈ R, Q,Q′,X : Bk→ B are Boolean polyno-

mials and R : Bk→R is any semi-Boolean function. The symbol P for a Boolean polynomial P : Bn→B

represents its lifting P :Bn→R that is defined inductively by x= x, PQ=P ·Q and P⊕Q=P+Q−2PQ.

Hence, it maps a Boolean polynomial to an integer polynomial which has the same value over the

Booleans. Finally, R[y1 ← Q] indicates that every occurrence of y1 in the function R is replaced by

the value of Q(x).

Further applying x1 ⊕ x2 = x1 + x2 − 2x1 · x2, and eliminating monomials with coefficient 1, we can

simplify this to

CNOT =
1

2
∑

v1,v2,
w1,w2,
x1,x2

e
2πi·
[

1
2

v1w1+
1
2

v1x1+
1
2

v2w2+
1
2

v2x1+
1
2

v2x2

]

|w1,w2〉〈x1,x2| , (6)

which is indeed a pure path-sum. It can actually be further simplified to the path-sum of Eq. 8 later on

by using the identity ∑v1,w1
(−1)v1w1+v1x1 |w1〉= 2 |x1〉.

A pure path-sum allows easy repetition of variables in the input as well as the output, so that we

can succinctly write linear maps such as the following one representing a Z-spider with 2 inputs and 1

output:

A := ∑
x

e2πi·0 |x〉 〈xx|

While it is possible to write these maps using a standard path-sum, this requires additional dummy

variables, e.g. M :: |x0x1〉 7→ 1
2 ∑v e

2πi·
[

1
2
(v(x0+x1))

]

|x0〉.
In [2], several reduction rules were presented for path-sum expressions. Each of these 4 rules removes

at least one path-variable from the expression. We present these rules, translated into pure path-sum

expressions, in Figure 2. Of these rules, [Elim] is the easiest to understand: a single variable that does not

occur in any other part of the expression can be safely removed. The other rules are however considerably

more opaque in their interpretation. In the next section we will see that translated into the ZH-calculus,

they gain an intuitive meaning.

4 Translating path-sums into ZH-diagrams

In this section we will see that pure path-sums can be straightforwardly represented by hypergraph-like

ZH-diagrams and vice versa. We will use this correspondence to translate the path-sum reduction rules
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into rules for the ZH-calculus, and prove them diagrammatically. In the process we will see that these

rules correspond to quite canonical hypergraph-theoretic operations.

First, let us describe the translation between ZH-diagrams and pure path-sum expressions. Recall

that we write [n] := {1,2, . . . ,n}

Definition 4.1. A hypergraph-like ZH-diagram D is given by the following data:

1. Finite sets [k] and [l] of spiders and H-boxes, respectively,

2. a function H : [l]→P([k]) where H(i) = J when the i-th H-box is connected to all of the spiders

in J,

3. a set of phase angles {α1, . . . ,αl} where α j ∈ [0,2π) is the label on H-box j,

4. an input function I : [m]→ [k] and an output function O : [n]→ [k]where I(i) = j when the i-th

input of D is connected to spider j and similarly O(i) = j when the i-th output is connected to

spider j.

Note that the first two items in Definition 4.1 specify an undirected hypergraph, whence the name.

Following [9] let us introduce notation for the computational basis states and effects: x := |x〉 and x

:= 〈x|. Then starting with a generic hypergraph-like ZH-diagram, we can expand each of the Z-spiders

as a sum over basis elements as follows:

α1

αl

..
.

..
.

..
.

...

...

..
.

H
O

I

= ∑
x1...xk

α1

αl

..
.

..
.

..
.

...

...

..
.

x1

x1x1

x1

xk

xkxk

xk

= ∑
x1...xk

α1

..
.

...

αl xI(1) xI(m)

xO(1) xO(n)

...

Xl

X1

where the sets X1, . . . ,Xl are defined as X j := {xi | i ∈H( j)}. Note we can write basis elements ‘sideways’

without ambiguity as (|x〉)T = 〈x|. In the RHS above, each H-box contributes a phase α j when all of

the variables in X j are 1 (i.e. when ∏X j = 1) and a phase of 0 otherwise. So the whole ZH-diagram

evaluates to:

∑
x1...xk

e
i
[

∑ j α j ·∏X j

]

∣

∣xO(1) . . .xO(n)

〉〈

xI(1) . . .xI(m)

∣

∣ (7)

Letting φ(xxx) := (∑ j α j ·∏X j)/2π , i := [I(1), ..., I(m)], and o := [O(1), ...,O(n)], we see that (7) is a

generic pure path-sum expression.

Conversely, from any pure path-sum expression e, representing the phase polynomial φ(xxx) as a sum

of monomials (cf. Remark 3.3), we can reconstruct H and {α j} j from the phase polynomial φ(xxx) and

the functions I and O from the lists i and o, such that evaluating the ZH-diagram as in (7) gives e. If we

ensure φ(xxx) has no repeated monomials, this reconstruction is furthermore unique, up to re-indexing of

H-boxes.

Let [.]zh→ps be the operation of translating a ZH-diagram to a pure path-sum expression by evaluation,

and let [.]ps→zh by the process of reconstructing a ZH-diagram from a pure path-sum expression. By

construction these satisfy: [[e]ps→zh]zh→ps = e and [[D]zh→ps]ps→zh
∼=D, for any pure path-sum expressions

e and hypergraph-like ZH-diagrams D, where ‘∼=’ means equal up to permutation of the sets of spiders

and H-boxes. In [27] it is shown that this construction is actually functorial and leads to an equivalence

of categories.
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Example 4.2. The usual diagram for the CNOT gate in the ZH-calculus is given by the LHS below.

=

Here the RHS is the hypergraph-like diagram resulting from applying Lemma 2.6 to the LHS. Translating

it into a path-sum (and recalling that by convention unlabelled H-boxes have a label of −1) gives

∑
x1,x2,x3,x4∈B

e2πi 1
2
(x2x3+x1x3+x3x4) |x1x4〉〈x1x2| . (8)

Translating the CNOT path-sum of Eq. (6) into a ZH-diagram gives:

x1

x2

v1 w1

v2 w2

By applying [.]ps→zh to both sides of the rules of Figure 2, we get an equation between (families of)

ZH-diagrams. For [Elim] it is easy to see that the corresponding ZH-calculus rule is the simple removal

of an arity-0 spider representing the scalar 2. For the other rules it is harder to see directly what the

translation should be. We cover each of the rules [ω], [HH] and [Case] in the next subsections.

4.1 Hyper-local complementation

In this section, we will look at the [ω] rule from Figure 2 and show it is equivalent to a new simplification

we can derive using the ZH-calculus, which we call hyper-local complementation.

Definition 4.3. Let G = (V,E) be a simple graph and u ∈ V a vertex. The local complementation of G

about the vertex u, written as G ⋆u, is the graph (V,E ′) where {v,w} ∈ E ′ iff {v,w} 6∈ E when v and w

are both neighbours of u in V , and {v,w} ∈ E ′ iff {v,w} ∈ E otherwise. In other words: G⋆u is the same

graph as G except that neighbours of u are connected iff they are not connected in G.

Local complementation has featured in quantum information theory as it can be used to combina-

torially capture local Clifford equivalence of certain stabiliser states called graph states [21]. It has a

corresponding rewrite rule in the ZX-calculus [11]. Local complementation has also been used in the

context of circuit simplification with the ZX-calculus [10]. In that paper it was shown that a Z-spider

labelled by a phase of ±π
2

can be deleted from a ZX-diagram without changing the linear map, as long

as one first performs a local complementation about the vertex. Translating the rule from [10] in ZH

notation, we obtain:

π
2

..
.

...

..
. =

-π
2

...

..
.

-π
2

-π
2

..
.

-π
2

..
.

..
.

...

√
2ei π

4 (9)

where the right-hand side is a totally connected graph of Z spiders, connected via H-boxes. This rule can

be proven in the ZX-calculus, and hence by completeness, also in the ZH-calculus.

We can extend this to hyperlocal complementation by introducing a !-box on each of the Z-spiders

at the boundary:
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Proposition 4.4. The following hyperlocal complementation rule holds in the ZH-calculus.

π
2

..
.

...

..
. =

-π
2

...

..
.

-π
2

-π
2

..
.

-π
2

..
.

..
.

...

√
2ei π

4 (10)

Proof. See Appendix A.

Remark 4.5. That a version of hyperlocal complementation can be implemented on a hypergraph state

using local operations was first found in [16]. A version of hyperlocal complementation in the ZH-

calculus is also presented in [4].

Remark 4.6. As in [4], we adopt a ‘hybrid’ notation mixing !-boxes with ellipses to express the hyper-

local complementation rule. This is due to a limitation of !-box notation, which is not rich enough to

capture complete graphs of unbounded size [28].

Let us consider [ω] in Figure 2 in more detail to find the connection between it and Eq. (10). The

phase-polynomial on the LHS of [ω] is φ(y0,xxx) =
1
4
y0 +

1
2
y0Q(xxx)+R(xxx) where Q is a Boolean polyno-

mial and R is an (for us) irrelevant semi-Boolean function. The variable y0 corresponds to the central

spider of the LHS of Eq. (10) while the 1
4
y0 term in the phase polynomial corresponds to the π

2
-labelled

H-box. We can write Q as Q(xxx) = ⊕n
j=1m′j(xxx) for some monomials m′j. Note that we have the identity

e2πi 1
2

y0Q(xxx) = e2πi 1
2 ∑ j y0m′j(xxx). Hence, the term 1

2
y0Q(x) contributes an H-box to the ZH-diagram for each

monomial m′j, which are the neighbouring H-boxes of the central spider in Eq. (10).

The RHS phase polynomial in [ω] is φ(xxx) = 1
8
− 1

4
Q(xxx)+R(xxx). The function R is again irrelevant,

and the term 1
8

becomes the eiπ/4 scalar in the RHS ZH-diagram. The lifting of Q is given by

Q =
n

∑
r=1

∑
E∈Pr([n])

(−2)r−1 ∏
i∈E

m′i (11)

where Pr([n]) ⊆P([n]) is the set of subsets of [n] that contain exactly r elements. We can then write

Q = ∑ j m′j +
1
2 ∑ j<k m′jm

′
k+ f (xxx) where the first two sums represent the terms corresponding to r = 1 and

r = 2, and f contains the remaining terms. Hence,

e2πi(− 1
4

Q) = e2πi(− 1
4 ∑ j m′j+

1
2 ∑ j<k m′jm

′
k+ f (xxx)) = e2πi(− 1

4 ∑ j m′j+
1
2 ∑ j<k m′jm

′
k)

as f is valued in the integers so that it does not contribute to the phase. Each of the e−i π
2 m′j terms

contributes an −π
2

-labelled H-box connected to the spiders of the monomial m′i, while each eiπm′jm
′
k term

contributes an unlabeled H-box connected to all the spiders of both m′j and m′k. This indeed results in the

fully connected graph in the RHS of Eq. (10).

4.2 Fourier Hyper pivot

On the LHS of [HH] in Figure 2 the phase polynomial is φ(y0,y1,xxx) =
1
2
y0y1 +

1
2
y0Q(xxx) + R(y1,xxx).

Hence, in the corresponding ZH-diagram we see that y0 and y1 are connected by an arity-2 exponentiated

H-box with a phase of 2π 1
2
= π , and hence is a regular Hadamard gate. Writing the Boolean polynomial

Q as Q =
⊕n

j m′j where the m′j are monomials as in the previous section we see that each monomial

introduces an H-box to the ZH-diagram that is connected to the spider of y0.



198 Hypergraph Simplification

We can separate the action of y1 in R as R(xxx,y1) = S(xxx)y1 +T (xxx) for some functions S and T where

we can furthermore expand S as S(x) = ∑ j
α j

2π m j(x) for some monomials m j. Hence, in the translated

ZH-diagram y1 shares an α j-valued H-box with each of the spiders of the monomials m j. Combining

these observations we see that the relevant part of the pure path-sum on the LHS of [HH] is:

αk

n k ∈ [m]

y0 y1m′j m j

To write the RHS of [HH] we need to represent R[y1 ← Q] = S(xxx) ·Q(xxx)+ T(xxx). By representing

elements of the powerset P([n]) as bitstrings in B
n we can rewrite the lifting of Q in Eq. (11) as

Q = ∑
b∈Bn∗

(−2)|b|−1 ∏
i∈[n]

(m′i)
bi .

Here ∏
i∈[n]

(m′i)
bi is again a Boolean monomial that is 1 precisely when m′i is 1 for all i for which bi = 1.

Hence, the relevant term in the RHS phase polynomial becomes

S ·Q = ∑
j

∑
b∈Bn∗

(−2)|b|−1 α j

2π
m j ∏

i∈[n]
(m′i)

bi

In the translation to the ZH-calculus we hence get H-boxes with a phase of (−2)|b|−1α j that are connected

to all the spiders of m j and to all the spiders of the monomial ∏
i∈[n]

(m′i)
bi . We can represent this using the

disconnect box of Eq. (2), so that the corresponding ZH-diagram is:

(−2)|b|−1α jbi

i ∈ [n]
b ∈ Bn

∗ j ∈ [m]

m jm′i

Hence, [HH] is equivalent to the following result for ZH-diagrams, that we call the Fourier hyper-

pivot.

Theorem 4.7 (Fourier hyper-pivot). The following equation holds in the ZX-calculus for any set of real

numbers α1, . . . ,αm.

=αk (−2)|b|−1αkbi

n k ∈ [m] i ∈ [n]
b ∈ Bn

∗
k ∈ [m]

2 (12)

To see why we call this a Fourier hyper-pivot, let us introduce the notion of a regular pivot.

Definition 4.8. Let G = (V,E) be a simple graph and {u,v} ∈ E a connected pair of vertices. The pivot

of G along the edge uv is the graph G⋆u⋆ v⋆u.

Whereas local complementation complements the connectivity of the neighbours of a vertex, a pivot

along uv complements the connectivity between three groups of vertices: those connected to u and not

to v, those connected to v but not to u, and those connected to both u and v.

In the ZX-calculus, pivoting on a graph-like diagram can be proven using the bialgebra rule between

the Z- and X-spider [13]. The version we are interested in is where we pivot on two connected spiders

u and v followed by the deletion of these same vertices. This can be represented particularly elegantly

using !-boxes:
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Proposition 4.9. [10] The following pivoting rule holds in the ZH-calculus for any n,m ∈ N.

=
n m n m

2

This is indeed a pivot (followed by vertex deletions) as every vertex (spider) connected to the left

pivoted vertex becomes connected via a 2-ary H-box to every neighbour of the right pivoted vertex. The

reason we only distinguish two groups of vertices, instead of three, is because spiders that are connected

to both the vertices also belong to both !-boxes, and hence also get the appropriate connectivity. Since

these vertices belong to both !-boxes, they furthermore get connected to themselves, a connection that

can be simplified to a simple phase:

. . .
=

. . .
= π

. . .

By allowing each H-box in Proposition 4.9 to have arbitrary arity, we can generalise the above rule

to a hyper-pivot followed by two vertex deletions.

Proposition 4.10. The following hyper-pivot rule holds in the ZH-calculus for any n,m ∈ N.

=
n m n m

2 (RHP)

We see that Proposition 4.10 is a special case of Theorem 4.7 where all the α j are equal to π (which

corresponds to R being a Boolean polynomial in [HH]). To prove Theorem 4.7 we combine the hyper-

pivot rule with the Fourier transform of Proposition 2.1, hence the name. The proofs of Theorem 4.7 and

Proposition 4.10 are given in Appendix A.

Remark 4.11. If we assume (RHP) as a rule of the ZH-calculus together with (ZS1), (ZS2) and (HS2) of

Figure 1, then we can prove the rules (BA1), (BA2), and (HS1). Hence, hyperpivoting supersedes these

separate rules, resulting in a more ‘compact’ calculus.

Remark 4.12. Similar to how a pivot is implemented by a combination of three local complementations,

our hyperpivot rule can be implemented by three of the hyperlocal complementations of [16].

Using the hyperpivot rule we can straightforwardly prove identities that would be hard to show using

the ZX-calculus. We give an example of this in Appendix B.

4.3 Case hyper pivot

Like the [HH] rule, the [Case] rule enables the elimination of a pair of variables y0,y1 from a path-sum

expression. However, unlike the case rule, both variables are allowed to occur in monomials that have

coefficients other than 1
2
, as long as they are ‘orthogonal’ in a certain sense. That is, the non-1

2
monomials

containing y0 must be multiplied by some boolean function X(x), whereas those containing y1 must be

multiplied by its negation. This can be expressed as the following ZH-calculus rule:
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Theorem 4.13 (Case hyper-pivot). The following rewrite rule holds in the ZH-calculus.

n

n′

αk

k ∈ [m]

βk′

k′ ∈ [m′]

=

i ∈ [n′]

k ∈ [m]

(−2)|b
′|−1αkb′i

b′ ∈ Bn′
∗

j ∈ [n]
k′ ∈ [m′]

(−2)|b|−1βk′b j

b ∈ Bn
∗

¬
2

¬

We present the details of its proof and its exact relation to the [Case] rule in Appendix C.

This rule seems less canonical than the others, and it is in fact omitted in a later presentation of the

path-sum formalism by Amy [1]. However, it is interesting to note that this rule essentially arises from

two different, incompatible simplifications using hyper-pivoting starting from the same ZH-diagram (di-

agram (15) in Appendix C). To adopt terminology from rewrite theory, the Case hyper-pivot rule arises

from closing a critical pair of the hyper-pivot rule with itself. This shows firstly that simplification using

the other two laws is not confluent, which is unsurprising given its heuristic nature. More interestingly,

it suggests that standard automated techniques for dealing with critical pairs, namely Knuth-Bendix com-

pletion, could yield useful new simplification rules.

5 Conclusion and Future Work

We have found a bijective correspondence between path-sum expressions and ZH-diagrams and we gave

ZH-calculus versions of each of the path-sum simplification rules. Furthermore, the derivation of the

Case hyper-pivot rule suggests many more such rules could be recovered automatically by studying

overlapping applications of the existing simplification rules.

The natural next step is to cash in these new structural insights to develop new techniques to simplify

and verify circuits. ZH-diagrams and the Fourier hyper-pivot have been implemented using the PyZX

library [18] and seem to be effective at reducing many families of circuits to a compact form analogous

to the GSLC form of ZX-diagrams [3], however it is a topic of ongoing research to characterise exactly

when this succeeds and when it succeeds efficiently.

Amy showed that the path-sum reduction rules suffice to verify the functional interpretation of many

quantum circuits. By casting his rules in the ZH-calculus we extend this to arbitrarily constructed linear

maps based on hypergraph states. In particular, we can use our results to verify and analyse MBQC

schemes based on hypergraph states, such as those of Refs. [25, 15]. Using graphical languages to study

MBQC schemes has already resulted in several new results [12, 6] and so this seems like a promising

approach to new results in the burgeoning field of hypergraph MBQC.

Finally, it does not seem like the simplification rules here have yet captured the full power of the ZH-

calculus. It would be interesting to see if other ZH-calculus rules, such as the ortho rule from Ref. [4],

can be translated into useful, and previously unconsidered simplification rules for path-sum expressions

and/or ZH-diagrams.
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Proof of Proposition 4.4.
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Proof of Proposition 4.10.
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=
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2

mn
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=

n m

2
(HS1)

Proof of Theorem 4.7. Instead of proving Theorem 4.7 exactly, we will prove the slightly more general

following equation, that has regular instead of exponentiated H-boxes:

=λk λ
(−2)|b|−1

k
bi

n k ∈ [m] i ∈ [n]
b ∈ Bn

∗
k ∈ [m]

2

Let us prove this equation:
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=λk

n k ∈ [m]

λk

n k ∈ [m]

21
2

m+n
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n
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n
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λk

n
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mn
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(HS1)

i ∈ [n]

k ∈ [m]

λ
(−2)|b|−1

k
bi

b ∈ B
n
∗

21
2

mn

=

(2.1)

2m

i ∈ [n]

k ∈ [m]

λ
(−2)|b|−1

k
bi

b ∈ Bn
∗

2mn+1 1
2

mn2n

=

(CC)

i ∈ [n]

k ∈ [m]

λ
(−2)|b|−1

k
bi

b ∈ Bn
∗

=
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2m

2mn+1 1
2

mn2n

2m

After fusing the connected white spiders, we need one final step, the correctness of which we prove

in Lemma A.1:

=

i ∈ [n]

k ∈ [m]

λ
(−2)|b|−1

k
bi

b ∈ Bn
∗
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2
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Lemma A.1. Let χ(λ ,b) := λ (−2)|b|−1

. The following equation holds in the ZH-calculus for all n and m:

=

i ∈ [n]

k ∈ [m]

χ(λk,b)bi

b ∈ Bn
∗

2mn+1

1
2

mn2n

i ∈ [n]
k ∈ [m]

χ(λk,b)bi

b ∈ Bn
∗

2

2m

Proof. We prove by induction on m. The base case m = 0 is trivial, so suppose the equation holds for a

fixed m. We will prove it for m+1.

First, expand the !-box of m+1 one time:

=

i ∈ [n]

k ∈ [m+1]

χ(λk,b)bi

b ∈ Bn
∗

2(m+1)n+1

1
2

(m+1)n2n

i ∈ [n]

k ∈ [m]

χ(λk,b)bi

b ∈ Bn
∗

2n+1

1
2

n2n

χ(λm+1,b)bi

b ∈ Bn
∗

2mn+1

1
2

mn2n2m+1
2m

Then by induction hypothesis:

i ∈ [n]

k ∈ [m]

χ(λk,b)bi

b ∈ Bn
∗

2n+1

1
2

n2n

χ(λm+1,b)bi

b ∈ Bn
∗

2mn+1

1
2

mn2n

=

i ∈ [n]
k ∈ [m]

χ(λk,b)bi

b ∈ Bn
∗

2n+1

1
2

n2n

χ(λm+1,b)bi

b ∈ Bn
∗

2m

Before stating the next step, we prove that for any Boolean b:

b χ =

b

χ

b

2 (13)
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Indeed for both b = 0 and b = 1, the equation holds:

0 χ = χ

1
2

= χ1

= χ12 = χ2

0

χ

0

= 2

1 χ = χ

= χ2 = 2

1

χ

1

Using Eq. (13):

=

i ∈ [n]

k ∈ [m]

χ(λk,b)bi

b ∈ Bn
∗

2

1
2

n(2n−1)

χ(λm+1,b)bi

b ∈ Bn
∗

i ∈ [n]

k ∈ [m]

χ(λk,b)bi

b ∈ Bn
∗

2

χ(λm+1,b)

bi

b ∈ Bn
∗

bi

Now note that each of the white spiders in the top !-box is connected by many wires to the H-box labelled
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with χ(λm+1,b). Hence, using Lemma 2.5 we can ignore the top bi disconnect box:

=

i ∈ [n]
k ∈ [m]

χ(λk,b)bi

b ∈ Bn
∗

2

χ(λm+1,b)bi

b ∈ Bn
∗

i ∈ [n]
k ∈ [m]

χ(λk,b)bi

b ∈ Bn
∗

2

χ(λm+1,b)

bi

b ∈ Bn
∗

bi

And finally we can put back the m+1 term of the !-box:

=

i ∈ [n]
k ∈ [m]

χ(λk,b)bi

b ∈ Bn
∗

2

χ(λm+1,b)bi

b ∈ Bn
∗

i ∈ [n]
k ∈ [m+1]

χ(λk,b)bi

b ∈ Bn
∗

2

B Usage example of the regular hyper pivot

Using the hyperpivot rule we can straightforwardly prove identities that would be hard to show using the

ZX-calculus. For instance, consider the following Toffoli circuit.

⊕ ⊕
⊕ ⊕ ⊕ ⊕

⊕ ⊕

By reducing it to a hypergraph-like ZH-diagram, and repeatedly applying hyperpivoting to any pair of

connected internal spiders, we can reduce it to the identity:

−→∗
(RHP)+ (HS2)

1
28
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1
28

(HS2)
=

1
25

(RHP)
=

1
24

(M)+(HS2)
=

1
23

(M)
=

1
23

(RHP)
=

1
22

=

1
22

(M)
=

1
22

(HS2)
=

The several uses of (HS2) are highlighted by braces as follows: . In this case, the multipli-

cation law (M) is only used with −1× (−1) = 1, then two H-boxes connected to the same white dots

eliminates themselves. They are signaled with braces:

Finally, the other operations are (RHP) applications, and highlighted this way: .

C The [Case] rule in the ZH-calculus

The [Case] rule as stated in Figure 2 can be generalized to the following equation:

∑
y0,y1,xxx

ϕX(−1)y0Q(−1)y0y1(−1)y1Q′ψ1−X |xxxo〉〈xxxi| −→ 2∑
xxx

(−1)QQ′ϕ [y0← Q′]X ψ [y1← Q]1−X |xxxo〉 〈xxxi|

where ϕ and ψ are complex functions overy0 and xxx, respectively y1 and xxx, and X , Q and Q′ are boolean

polynomials over xxx.

This rule indeed generalises [Case] in Figure 2, which is easily seen by replacing ϕ by e2πi(αy0X+R)

and ψ by e2πi(βy1(1−X)+R).
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Let us first show the correctness of this rule algebraically. For a fixed x, we have:

∑
y0,y1

ϕX(−1)y0Q(−1)y0y1(−1)y1Q′ψ1−X =











∑
y0,y1

(−1)y0Q(−1)y0y1(−1)y1Q′ψ if X = 0

∑
y0,y1

ϕ(−1)y0Q(−1)y0y1(−1)y1Q′ if X = 1

Now applying the [HH] rule to both cases, this reduces to:

{

2(−1)QQ′ψ [y1← Q] if X = 0

2ϕ [y0← Q′](−1)QQ′ if X = 1

which is indeed equal to 2(−1)QQ′ϕ [y0← Q′]X ψ [y1← Q]1−X as required.

Using similar reasoning as in Sections 4.1 and 4.2 we can show that this path-sum rule is equal to the

following diagrammatic rule:

n

n′

λk

k ∈ [m]

µk′

k′ ∈ [m′]

=

i ∈ [n′]
k ∈ [m]

λ
(−2)|b

′|−1

k
b′i

b′ ∈ Bn′
∗

j ∈ [n]
k′ ∈ [m′]

µ
(−2)|b|−1

k′
b j

b ∈ Bn
∗

¬
2

¬

Before we prove this rule in the ZH-calculus, let us state the following lemma that we will need.

Lemma C.1. The ZH-calculus proves the following, for any set of complex numbers λi ∈ S:

¬

λi

i ∈ S

=

Proof. Expand the NOT using its definition, and apply the hyperpivot rule to the resulting white spider

and its neighbour on the left. It is then straightforward to check that all the resulting H-boxes with

multiples of λi cancel out, resulting in the correct diagram.
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Now let us prove the diagrammatic [Case] rule. Starting with:

n

n′

λk

k ∈ [m]

µk′

k′ ∈ [m′]

¬
(14)

Unfuse all the µ-labelled H-boxes using (HS1):

n

n′

λk

k ∈ [m]

µk′

k′ ∈ [m′]

¬

1
2

m′

(15)

Apply a Fourier hyper-pivot to the middle two spiders. This results in many copies of the λk H-boxes,

but most of these are canceled by applying Lemma C.1, and we get the following diagram:

1
2

m′

i ∈ [n′]
k ∈ [m]

λ
(−2)|b

′|−1

k
b′i

b′ ∈ Bn′
∗

j ∈ [n] k′ ∈ [m′]

2

µk′

Now for every instance of the pair of spiders connected by the arity-2 H-box in the [m′]-annotated

!-box we will apply a Fourier hyper-pivot. This results in diagram (17) below. In order to see why we get

this diagram, let us consider one of these hyper-pivots, and calculate the phases that appear on each of the

H-boxes. Expanding the [n]-annotated !-box we get n groups of white spiders, n ‘2-legged’ H-boxes and

n ‘3-legged’ H-boxes. Because each pair of a ‘2-legged’ and ‘3-legged’ H-box coming from the same
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expansion of the !-box are connected to the same group of white spiders, the Fourier transform of the

hyper-pivot will introduce H-boxes that have multiple wires to the same group of white spiders. These

are then collapsed to a single wire using Lemma 2.5. As a result, multiple H-boxes will be connected to

the same set of spiders and hence will fuse using the rule (M).

To understand the resulting phases on the H-boxes, we separate cases into H-boxes that arise just

from the ‘2-legged’ H-boxes, and ones that arise from a combination of both. The first case results in the

normal pattern for a Fourier hyper-pivot and gives the lower µ-labeled H-boxes in diagram (17).

For the other case, let us denote by f (p,q) the number of H-boxes after the Fourier hyper-pivot that

have at least one of its connections arising from a 3-legged H-box, carry a phase of µ(−2)q−1

, and are

connected to some chosen set of p groups of white spiders (and the group of spiders to the right of the

µ H-box, which all H-boxes will be connected to). Then when (M) is applied to fuse all the H-boxes

connected to the same set of p groups of spiders, the resulting H-boxes will have phases of

2n

∏
q=p

µ f (p,q)(−2)q−1

= µ∑2n
q=p f (p,q)(−2)q−1

. (16)

Hence, to determine this phase, we need to calculate f (p,q). So fix some set of size p of groups of spiders,

and suppose there is an H-box with a phase of (−2)q−1 connected to these groups. By assumption, some

of the connections ‘originated’ from the 3-legged H-boxes. Let 1≤ r ≤ p denote this number. Note that

there are
(

p
r

)

ways to choose the 3-legged H-boxes. The remaining original connections of the H-box

must have come from the 2-legged H-boxes. Some of these will connect to H-boxes that aren’t connected

to those of the first r, but others will be ‘doubled’ up. As the phase on the H-box is (−2)q−1 there must

have been a total of q wires, and hence p−q wires need to be doubled up. There are r possible choices

for doubling up, and hence there are
(

r
p−q

)

possible ways we can double up the correct number of wires.

Hence:

f (p,q) =
p

∑
r=1

(

p

r

)(

r

q− p

)

Combining this with Eq. (16) we see that the resulting H-box connected to any set of p groups of spiders

carries a phase of µ raised to the power of

2n

∑
q=p

p

∑
r=1

(

p

r

)(

r

q− p

)

(−2)q−1.

Let us simplify this expression:

2n

∑
q=p

p

∑
r=1

(

p

r

)(

r

q− p

)

(−2)q−1 ∗=
p

∑
r=1

(

p

r

) p+r

∑
q=p

(

r

q− p

)

(−2)q−1

=
p

∑
r=1

(

p

r

)

r

∑
q=0

(

r

q

)

(−2)q+p−1

= (−2)p−1
p

∑
r=1

(

p

r

)

r

∑
q=0

(

r

q

)

(−2)q

∗∗
= (−2)p−1

p

∑
r=1

(

p

r

)

(−1)r

= (−2)p−1

(

p

∑
r=0

(

p

r

)

(−1)r−1

)
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∗∗
= (−2)p−1(0−1)

=−(−2)p−1

Here in the equality marked ∗ we are warranted in changing the limit of summation because
(

r
q−p

)

= 0

whenever q> p+r, and the equalities marked ∗∗ are applications of the binomial identity ∑n
k=0

(

n
k

)

xkyn−k =
(x+ y)n with y = 1.

The preceding discussions and calculations show that we indeed get the labeled H-boxes as stated in

the following diagram:

i ∈ [n′]
k ∈ [m]

λ
(−2)|b

′|−1

k
b′i

b′ ∈ Bn′
∗

j ∈ [n]
k′ ∈ [m′]

2

µ
(−2)|b|−1

k′
b j

µ
−(−2)|b|−1

k′
b j

b ∈ Bn
∗ (17)

We claim that this diagram is equal to the following, which finishes our proof:

i ∈ [n′]
k ∈ [m]

λ
(−2)|b

′|−1

k
b′i

b′ ∈ Bn′
∗

j ∈ [n]
k′ ∈ [m′]

µ
(−2)|b|−1

k′
b j

b ∈ Bn
∗

¬
2

To see that this is true, decompose the NOT in this diagram using its definition, and apply a Fourier

hyper-pivot on the resulting white spider and the one beneath it.
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