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We introduce the monoidal closed category qCPO of quantum cpos, whose objects are ‘quantized’
analogs of ω-complete partial orders (cpos). The category qCPO is enriched over the category CPO
of cpos, and contains both CPO, and the opposite of the category FdAlg of finite-dimensional von
Neumann algebras as monoidal subcategories. We use qCPO to construct a sound model for the
quantum programming language Proto-Quipper-M (PQM) extended with term recursion, as well as
a sound and computationally adequate model for the Linear/Non-Linear Fixpoint Calculus (LNL-
FPC), which is both an extension of the Fixpoint Calculus (FPC) with linear types, and an extension
of a circuit-free fragment of PQM that includes recursive types.

1 Introduction

This is a progress report on an ongoing project to develop semantic models for quantum programming
languages, with a particular focus supporting term recursion and type recursion. We introduce the cat-
egory qCPO of ‘quantum cpos’ and Scott continuous maps, which can be regarded as a ‘quantized’
version of CPO, the category of ω-complete partial orders (cpos) and Scott continuous maps. CPO
is a crucial building block for denotational models of classical programming languages with recursive
types [11]; similarly, we show denotational models for quantum programming languages with recur-
sive types can be built using qCPO: we prove qCPO supports a sound and computationally adequate
model of Proto-Quipper-M (PQM) [20] extended with term recursion, as well as sound model of the
Linear/Non-Linear Fixpoint Calculus (LNL-FPC) [13] that is computationally adequate at non-linear
types.

The models of high-level functional quantum programming languages such as PQM are based on
linear / nonlinear models, which arise from the work of Benton [3, 1] on models of the linear lambda
calculus. More precisely, a linear/non-linear model consists of a non-linear Cartesian closed category C,
a symmetric monoidal closed linear category L, and a strong monoidal functor F : C→L that has a right
adjoint:

C L
F

G

a (1)

A result in [12] shows that the semantic models of PQM all are suitable linear/non-linear models, and
results in [12] and [13] show how to add term recursion and type recursion, respectively, to such models.

Abstract LNL models are suitable for a wide range of circuit description languages beyond those
aimed at quantum devices. Examples include nonlinear languages that also support linear types, such as
recent work on languages supporting session types for concurrency [5]. There also have been efforts to
construct more concrete models for quantum programming languages based on a linear category closer
to quantum computation. The category FdAlg of finite-dimensional von Neumann algebras and unital
∗-homomorphisms is one such linear category: any quantum circuit is a sequence of unitary operators
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followed by a measurement, so the category FdHilb of finite dimensional Hilbert spaces is an obvious
example of the linear category M which forms the basis for the model of quantum programming lan-
guages like PQM in [20]. But there is no adjunction between FdHilb and Set, so one has to embed it in
an appropriate linear category to form an LNL model for PQM. In fact, FdHilb embeds contravariantly
in qCPO, which also is a CPO enriched category; this opens the door to using qCPO as a concrete
model for quantum programming languages like PQM that also supports recursion.

The categories qCPO and qCPO⊥! (the subcategory of qCPO of pointed objects and strict maps) are
completely analogous to CPO and CPO⊥! in the nonlinear setting. In fact, the diagram below consists
of the left adjoints of a commuting square of symmetric monoidal adjunctions:

CPO⊥! qCPO⊥!

CPO qCPO

‘(−)

(−)⊥

‘(−)

(−)⊥ (2)

Moreover, qCPO is symmetric monoidal closed, and the horizontal left adjoints in the above diagram
are both inclusion functors. What’s more, the ‘lifting’ functor (−)⊥ : qCPO→ qCPO⊥! in the diagram
restricts to the ordinary lifting functor (−)⊥ : CPO→ CPO⊥!. Combining this lift with the inclusion
CPO→ qCPO gives us a linear/non-linear model:

CPO qCPO⊥!

F

G

a (3)

We now can state our main results, Theorems 6.2, 6.3 and 6.4 below. Following [7], we view a type
constructor as a bifunctor on the category of types, and then Theorem 6.2 states that all type constructors
on qCPO⊥! are parametrically algebraically compact. It follows that qCPO⊥,! supports recursive types
defined by its type constructors. Theorem 6.3 then states that (3) is a sound model for LNL-FPC (and
hence supports recursive types) that is computationally adequate at nonlinear types, while Theorem 6.4
says (3) also is a sound model for Proto-Quipper-M that contains FdAlgop as a monoidal subcategory of
the linear category qCPO⊥!. Importantly, to our knowledge, (3) is the only known LNL model to satisfy
all these properties.

1.1 Related work

Typical quantum programming languages such as Proto-Quipper-M and its relatives [20], the quantum
lambda calculus [22], and QWire [17], all have models consisting of a linear/non-linear adjunction, i.e.,
a monoidal adjunction as given in (1), where the symmetric monoidal category L contains a suitable
monoidal subcategory representing quantum circuits, such as the category FdAlg of finite-dimensional
von Neumann algebras. Models for PQM were given first in [20] and then in [12]. A model of the
quantum lambda calculus in terms of Lafont categories (which also are linear/non-linear models [14])
was given in [16]. Another model was given in [6]. Models for QWire are given in [19], including
descriptions of their relations to linear/non-linear models.

We discuss some of these models in more detail. The category CPO of ω-complete partial orders
(cpos) and Scott continuous maps, and its subcategory CPO⊥! of pointed cpos and strict maps play a fun-
damental role in the semantics of programming languages supporting recursion [8]. Using this approach,
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PQM was extended with term recursion in [12], and soundness was established for the linear/nonlinear
presheaf model

CPO� [FdAlg,CPO⊥!]. (4)

The article [13] focused on extending PQM with recursive types, but considered only the circuit-free
fragment of the language, dubbed LNL-FPC, because it extends FPC with linear types. That paper also
includes a computational adequacy result at non-linear types for abstract models of LNL-FPC.

Because the tensor product of [FdAlg,CPO⊥!] fails to satisfy a crucial hypothesis, the computational
adequacy proof in [13] does not apply to this presheaf model. In fact, the only concrete model that
satisfies all the required conditions for adequacy in [13] is

CPO� CPO⊥!, (5)

but this model does not support quantum circuits since FdAlg does not embed in CPO⊥!.
The model of the quantum lambda calculus given in [16] is sound, computationally adequate at the

unit type, and supports term recursion. However, its construction is intricate, so an alternative model was
proposed in [6]:

Set�WStarop
NMIU�WStarop

NCPSU, (6)

where WStarNMIU denotes the category of von Neumann algebras and normal ∗-homomorphisms, and
WStarNCPSU denotes the category of von Neumann algebras and normal completely positive subunital
maps. This model (6) is natural because it utilizes von Neumann algebras, which are commonly used in
physics to model quantum systems. However, this model is enriched over Set, not CPO, and it can be
shown that the comonad induced by the adjunction between Set and WStarop

NMIU cannot be algebraically
compact, which implies the standard proof relying on algebraically compact type constructors cannot be
used to prove this model supports recursive types.

The only proof we know that an LNL model supports recursion requires the Cartesian closed category
of the model to be CPO, and the linear category to be CPO-enriched. To apply this approach to model (6)
requires replacing Set with CPO, but the functors in the model don’t admit obvious extensions. Instead,
our solution is to restrict the class of von Neumann algebras in the model, and to equip them with a
generalized cpo structure, which we call a quantum cpo.

1.2 Overview of the Rest of the Paper

The remainder of the paper lays out the theory of quantum cpos, their relation to classical cpos, and
the basic categorical results that are needed to use quantum cpos as semantic models. We begin with
quantum sets [9], which describe combined classical/quantum systems that are discrete in the sense that
every complete Boolean algebra of propositions is isomorphic to a power set. The results in [9] draw
heavily on the work in [10] and [25].

We next consider quantum posets and the morphisms between them. Quantum sets can be endowed
with the quantum analog of a partial order – a reflexive, antisymmetric transitive relation. This notion
is derived from the notion of a binary relation between quantum sets, essentially the quantum relations
of Weaver [25]. By formulating an appropriate quantum generalization of families of monotonically
increasing sequences, we then are able to define quantum cpos as a subclass of quantum posets, and
Scott continuous functions as a subclass of monotone functions between them.

The presentation then describes the monoidal closed categories qCPO and qCPO⊥!. We state all the
properties that make these categories useful as models for Proto-Quipper-M, and likely for the semantics
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of arbitrary quantum programming languages as well. Finally, we conclude with a short discussion of
intended future work.

Because of space limitations, most proofs are omitted.

2 Quantum Sets and Relations

We briefly review the essential notions of [9]. A quantum set is a collection of finite-dimensional Hilbert
spaces, e.g., X = {C2,C5}. We call these Hilbert spaces the atoms of X . Intuitively, a quantum set
X is not an ordinary set, so we prefer to write X ∈ At(X ), rather than X ∈ X , when X is an atom
of X . Thus, X is a quantum set, whereas At(X ) is an ordinary set, that is, a set in the ordinary sense,
althoughX and At(X ) are formally equal. This choice of notation affects the meaning of our terminology
and expressions; for example, we will see that `∞(X ) means something other than `∞(At(X )). This
convention is convenient for navigating the dictionary of quantum generalizations.

Two canonical quantum sets are 0 = /0, and 1 = {C}. The Cartesian product of two quantum sets
X and Y consists of tensor product Hilbert spaces: X ×Y = {X ⊗Y |X ∈ At(X ), Y ∈ At(Y)}. Each
quantum set X has a dual X ∗ = {X∗ |X ∈ At(X )}, which consists of dual Hilbert spaces.

A quantum set with a single atom is called atomic. A quantum binary relation from an quantum set
{H} to an atomic quantum set {K} is just a space of operators from H to K, i.e., a subspace of L(H,K).
More generally, a quantum binary relation R from a quantum set X to a quantum set Y is a matrix of
such subspaces; formally, R is a choice of subspaces R(X ,Y ) ⊆ L(X ,Y ), for each X ∈ At(X ), and each
Y ∈ At(Y).

Quantum sets and binary relations form a dagger-compact category qRel. The composition of binary
relations then amounts to matrix multiplication, and as a matrix, the identity binary relation I has sub-
spaces C ·1 down the diagonal, and zero subspaces off the diagonal. The adjoint binary relation R† from
Y to X is defined by R†(Y,X) = {F† | F ∈ R(X ,Y )}, for X ∈ At(X ) and Y ∈ At(Y).

The operator spaces L(X ,Y ) are Hilbert spaces, so the binary relations from X to Y form an ortho-
modular lattice [21]. The bottom element of this orthomodular lattice is⊥X ,Y , defined by⊥X ,Y(X ,Y ) =
0. The top element of this orthomodular lattice is >X ,Y , defined by >X ,Y(X ,Y ) = L(X ,Y ). Two binary
relations R and S are said to be orthogonal, synonymously disjoint, just in case they are orthogonal in
each entry, i.e., just in case TrX(S(X ,Y )† ·R(X ,Y )) = 0 for all X ∈ At(X ) and Y ∈ At(Y).

Each ordinary set S is identified with a quantum set ‘S, obtained by replacing each element of S with
a one-dimensional Hilbert space. The space of linear operators from one one-dimensional Hilbert space
to another is itself one-dimensional, so a quantum binary relation from ‘S to ‘T is corresponds to an
ordinary binary relation from S to T . Thus, we have an inclusion functor from the category of ordinary
sets and ordinary binary relations, to the category of quantum sets and quantum binary relations. It
preserves the obvious dagger-compact structure on the former category, and it is essentially surjective
onto those quantum sets whose atoms are all one-dimensional, which we term classical.

A function F : X →Y is simply a binary relation F from X to Y satisfying F ◦F† ≤ I and F† ◦F ≥ I;
these are the same conditions that characterize which ordinary relations f are functions, if one interprets
F† as the converse f−1. Together with the Cartesian product of quantum sets defined above, the category
qSet of quantum sets and functions is monoidal closed. Then the inclusion functor from the category
Set of ordinary sets and ordinary functions into qSet is strong monoidal, and thus Set and qSet form a
linear/non-linear model [2, 3] with qSet as the linear category.

The category of quantum sets and functions is also dual to a category OpAlg of operator algebras.
Up to isomorphism, the objects of OpAlg are von Neumann algebras of the form

⊕
α∈I Mnα

(C), and
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the morphisms of OpAlg are unital normal ∗-homomorphisms. The contravariant equivalence takes
each quantum set X to the von Neumann algebra `∞(X ) :=

⊕
X∈At(X ) L(X). Each function F : X → Y

corresponds to a unital normal ∗-homomorphism F? : `∞(Y)→ `∞(X ).
Normal states on `∞(X ) are intuitively probability distributions onX . A normal state µ on `∞(X ) can

be pushed forward along a function F from X to Y , using the contravariant equivalence of the previous
paragraph. Explicitly, the pushforward of µ is the normal state µ ◦F? on `∞(Y). If X = ‘S and Y = ‘T ,
for sets S and T , then this corresponds to the usual pushforward of a probability distribution.

A normal state µ on `∞(X ) can also be described by an element m ∈ `1(X ) :=
⊕

X∈At(X ) L(X), using
the expected formula µ(a)=Tr(a ·m), for a∈ `∞(X ). This trace is defined by Tr(a)=∑X∈At(X ) Tr(a(x)),
for a ∈ `∞(X ). The operator m is a choice of density matrices, but normalized so that their traces sum
to 1. The pushforward of µ can be calculated from m using Kraus operators. The contribution of the
density matrix of µ at the atom X ∈ At(X ), to the density matrix of µ ◦F? at the atom Y ∈ At(Y) is
given by the expression dim(Y ) ·∑v∈B v ·m(X) · v†, where B is any basis for F(X ,Y ). Indeed, F(X ,Y ) is
canonically a Hilbert space for the inner product 〈 f1| f2〉= Tr( f1 · f †

2 ).

3 Modeling physical systems

Finitary physical types are naturally modelled by quantum sets. For example, the qubit is modelled by
the quantum set H2, whose only atom is a two-dimensional Hilbert space. By contrast, the classical
bit is modelled by the quantum set ‘{0,1}, which has two one-dimensional atoms. The ‘memory’ of
an idealized quantum computer might consist of finitely many qubits, and finitely many bits, so we can
model such a quantum computer as a composite physical system.

The Cartesian product of ordinary sets generalizes to a symmetric monoidal structure × on the cat-
egories qRel and qSet. We recall that the monoidal product of two quantum sets is defined by forming
binary tensor products of their atoms. Composite systems consisting of two fully quantum systems, that
is, of quantum systems each modelled by a single Hilbert space, are obtained by forming the tensor prod-
uct of the two Hilbert spaces. Similarly, composite systems consisting of two fully classical systems, that
is, of quantum systems modelled by ordinary sets, are obtained by forming the ordinary Cartesian prod-
uct of the two sets. Thus, our generalized product models composite systems consisting entirely of fully
quantum systems, or entirely of fully classical systems. In fact, it is appropriate for modelling mixed
quantum/classical systems as well. In particular, an idealized quantum computer possessing n qubits and
m bits can be modelled by the quantum setH2×·· ·×H2︸ ︷︷ ︸

n

× ‘{0,1}× ·· ·× ‘{0,1}︸ ︷︷ ︸
m

. This quantum set has
2m atoms, each of dimension 2n.

Other natural type constructors are also easily modelled in quantum sets. Sum types are modelled
by disjoint unions of quantum sets, portraying a kind of classical disjunction of potentially quantum
systems. The resulting physical system may be in a pure state of the first type or in a pure state of the
second type, but no superpositions may occur. For example, an idealized quantum computer possessing
a single qubit and a single bit is modelled by a quantum set with two atoms, because the computer can
be in a configuration where the bit has value 0, and it can be in a configuration where the bit has value 1,
but it cannot be in a superposition between two such states.

Higher types are modelled by quantum function sets [9, Definition 9.2], the inner hom objects of the
closed monoidal category qSet. These quantum sets are more challenging to describe, mainly due to the
large automorphism group of the physical qubit. The one-dimensional atoms of the quantum function
set HH2

2 are in canonical bijective correspondence with the automorphisms of H2 in qSet, i.e., with the
∗-automorphisms of M2(C). The quantum function set HH2

2 has higher-dimensional atoms as well. In
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general, the quantum function set from a quantum set X to a quantum set Y has an atom of dimension
d for each unital normal ∗-homomorphism ρ : `∞(Y)→ `∞(X )⊗L(Hd)

1 that is irreducible in the sense
that 0 and 1 are the only projections of the form 1⊗ p that commute with the image of ρ .

The bang operator ! applied to a quantum set extracts the quantum subset consisting of its one-
dimensional atoms; this is essentially an ordinary set. This also is the largest subset of the origi-
nal quantum set that admits a duplication map. Indeed, classical sets all admit duplication maps, but
the no-cloning theorem forbids the duplication of higher dimensional atoms. Returning to the exam-
ple of the previous paragraph, every atom of !(HH2

2 ) is one-dimensional, and furthermore !(HH2
2 ) ∼=

‘qSet(H2,H2).
Each quantum gate or measurement may be modelled by a function between quantum sets. Such a

function is analogous to a function between the configuration spaces of two classical systems. A function
between configuration spaces induces an map from the states on the domain system to the states on the
codomain system. The function pushes probability measures on the domain system forward onto the
codomain system. The standard formalizations of quantum gates and measurements as maps on state
spaces are analogous to these pushforward maps. Examples 3.1 and 3.2 below exhibit the formalizations
of the Hadamard gate and of qubit measurement respectively by functions between quantum sets. Each
function induces a map on states, and in Example 3.3 below, we examine this map in the case of qubit
measurement, recovering the expected probability distributions on experimental outcomes.
Example 3.1. Quantum gates are automorphisms of fully quantum systems, which consist of qubits.
Such an automorphism is typically formalized by a unitary operator. In qSet, such an automorphism is
formalized by a closely-related function. Indeed, each function F1 : Hd →Hd , for any positive integer
d, is defined by F1(Hd ,Hd) = C · u, for some unitary operator u. For example, the Hadamard gate is
formalized by the function F1 : H2→H2 defined by

F1(H2,H2) = C ·
[

1 1
1 −1

]
.

This function F1 is an automorphism of H2 in qSet. The unital normal ∗-homomorphism M2(C) ∼=
`∞(H2)→ `∞(H2)∼= M2(C) that corresponds to this function, in the sense of the duality between quan-
tum sets and hereditarily atomic von Neumann algebras [9], is simply conjugation by the Hadamard
matrix above, appropriately normalized.
Example 3.2. Measurement is a channel from a fully quantum system to a fully classical system; it may
be formalized by a function from an atomic quantum set to a classical quantum set. The effect of this
function on states yields probability distributions on experimental outcomes. In this example we exhibit
the function, and in the next example, we examine its effect on states.

The definition of a function between quantum sets implies functions from an atomic quantum setHd
to a classical quantum set ‘S are in bijective correspondence with projection-valued measurements on
Hd . Explicitly, F2(Hd ,Cs) = L(Hd ,Cs) · ps for each s ∈ S, where (ps |s ∈ S) is a projective POVM.2 In
particular, the standard measurement of a qubit is formalized by a function F2 : H2→ ‘{1,−1} defined
by

F2(H2,Cs) =

{
C · [1 0] s = 1;

C · [0 1] s =−1.

This function F2 is an epimorphism in qSet. Equivalently, it is surjective in the sense that F2◦F†
2 ≥ I. The

unital normal ∗-homomorphism C2 ∼= `∞({1,−1})→ `∞(H2) ∼= M2(C) corresponding to this function,
1Here ⊗ denotes the spatial tensor product of von Neumann algebras [23, Definition IV.1.3].
2POVM stands for Positive Operator-Valued Measurement.
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in the sense of the duality between quantum sets and hereditarily atomic von Neumann algebras [9],
includes C2 into M2(C) diagonally.
Example 3.3. A function between quantum sets is also a quantum channel in the familiar mathematical
sense: normal states are pushed forward to normal states, as described in section 2, and the function
is completely determined by this mapping. In the case of the measurement channel, {[1 0]} is an
orthonormal basis for F2(H2,C1), and {[0 1]} is an orthonormal basis for F2(H2,C−1). A state on

`∞(H2) = M2(C) is a density matrix m =

[
m11 m12
m21 m22

]
, while a state on `∞(‘{1,−1}) ∼= C⊕C is a pair

of positive numbers p1 and p−1 that sum to 1. Pushing forward the density matrix m in the prescribed
way, we find that

p1 = dim(C1) · [1 0] ·
[

m11 m12
m21 m22

]
·
[

1
0

]
= m11, and p2 = dim(C−1) · [0 1] ·

[
m11 m12
m21 m22

]
·
[

0
1

]
= m22.

In this way we recover the probabilities of our two experimental outcomes from F2.

4 Quantum posets

Definition 4.1. A quantum poset is a pair (X ,R) consisting of a quantum set X and a relation R ∈
qRel(X ,X ) satisfying: (1) IX ≤ R (reflexivity); (2) R ◦R ≤ R (transitivity); and (3) R∧R† ≤ IX (anti-
symmetry). (This definition of a quantum poset is essentially that of Weaver [25, Definition 2.6].)

A monotone map F : (X ,R)→ (Y,S) is simply a function F : X → Y satisfying F ◦R ≤ S ◦F.3 We
denote the category of quantum posets with monotone maps by qPOS.

Example 4.2. Let X be a quantum set. Then IX is a quantum order on X , which we call the trivial order.
If (S,v) is an ordinary poset, then (‘S, ‘v) is a quantum poset, and vice versa; for example, the

trivial order v on S corresponds to ‘(v) = I‘S, the trivial order on ‘S. And, a monotone map f between
ordinary posets gives rise to a monotone function ‘ f between the associated quantum posets, and vice
versa. It follows that ‘(−) extends to a fully faithful functor POS→ qPOS.
Example 4.3. A ‘non-classical’ quantum poset is given by the relation R onH2 specified by

R(H2,H2) = C
(

1 0
0 1

)
+C

(
0 1
0 0

)
.

SinceH2 has only one atom H2, R is determined by R(H2,H2). Then (H2,R) is a quantum poset.
The partial orders that appear in recursion theory are often viewed as information orderings. For

example, a partial function on the natural numbers can be viewed as one step in the construction of a
total function, i.e., as a partially specified total function. In this sense, an extension of a given partial
function carries more information about the total function that it purports to describe.

A preorder structure on the phase space of a classical system can be viewed as formalizing some
entropic process undergone by the system. More precisely, whereas a stochastic matrix records the tran-
sition probabilities of the process, the preorder structure simply records which transitions are possible. A
lower configuration in the order is the result of more transitions, and thus carries less information about
the initial configuration of the system.

3This is analogous to the condition ( f × f ) ◦ (≤P) ⊆ (≤Q) ◦ ( f × f ) which characterizes when a map f : (P,(≤P))→
(Q,(≤Q)) between ordinary posets is monotone.



A. Kornell, B. Lindenhovius & M. Mislove 181

The same intuition is available in the quantum setting. A preorder structure on a quantum set X may
be understood as an information order on that quantum set not only by analogy with the classical case,
but also directly. A stochastic channel onHd , formally a completely positive map of the appropriate kind,
determines a preorder on Hd , essentially the unital subalgebra of L(Hd) generated by the adjoints of its
Kraus operators (c.f. [26]). We work with the algebra generated by the adjoints because the information
order is opposite to the transition order; later states carry less information.

Any partial order on a finite set can be encoded as the possible transitions of some stochastic matrix,
but the same is not true in the quantum case. For instance, it is easy to show that the partial order on H2
defined in Example 4.3 does not arise in this way. This phenomenon is intuitively related to the fact that
some partial functions between quantum sets cannot be extended to total functions. If we allow partial
channels, which are permitted to consume their input without producing an output, then the partial order
in 4.3 arises from the partial channel Φ:

Φ(ρ) =
1
2

ρ +
1
2

vρv∗ where v =
(

0 0
1 0

)
In both the classical and quantum cases, it is appropriate to identify configurations that are equivalent

in the information they carry when modelling recursion. In the classical case, we turn the preordered set
into a partially ordered set by taking a quotient. This quotient construction has a quantum analog, which
is most easily viewed using Weaver’s characterization of binary relations between quantum sets [25].

Thus, quantum posets, and therefore also quantum cpos, can be regarded as quantum systems equip-
ped with a stochastic channel that models a kind of decay, and therefore a kind of information order.

More elaborate examples of quantum posets can be described using the coproduct and the monoidal
product on qPOS. The monoidal product (X ,R)× (Y,S) of (X ,R) and (Y,S) in qPOS is the quantum
poset (X ×Y,R×S), where X ×Y is the monoidal product of objects in qRel, and R×S is the monoidal
product of morphisms in qRel. The embedding ‘(−) : POS→ qPOS is strong monoidal, and has a right
adjoint.

Similarly, the coproduct (X ,R)] (Y,S) of (X ,R) and (Y,S) is the quantum poset (X ]Y,R] S),
where X ]Y is the coproduct of objects in qRel, as well as in qSet, and R] S is the coproduct of
morphisms in qRel. The generalization to coproducts of arbitrary families is immediate.

The limit of a diagram D : A→ qPOS can be formed as follows: For each α ∈ A, let D(α) =
(Xα ,Rα). Let X be the limit of the Xα in qSet, and let Jα : X → Xα be the limiting maps. Then
R =

∧
α∈A J†

α ◦Rα ◦ Jα is a partial order on X , and (X ,R) is the limit of D in qPOS.
A partial order R on a quantum set X also imposes a partial order on the set of functions into X from

any fixed quantum set W: if F and G are functions W → X , we define F v G iff G ≤ R ◦F ; this is
completely analogous to the classical setting where g⊆≤ ◦ f expresses g≤ f .

Lemma 4.4. Let (X ,R) be a quantum poset, and let W be any quantum set. Then set qSet(W,X ) of
functions fromW to X is partially ordered by F v G iff G≤ R◦F.

It follows that qPOS(X ,Y) inherits the order from its superset qSet(X ,Y) for any quantum posets
X and Y . This order does not depend on the order on X , which is also what happens classically.

Lemma 4.5. qPOS is order enriched.

The category qPOS has all the categorical properties of the category POS:

Theorem 4.6. The category qPOS is complete, has all coproducts, and is monoidal closed. The functor
‘(−) : POS→ qPOS is strong monoidal and has a right adjoint.
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Since qPOS is monoidal closed, it is enriched over itself, so × is a qPOS-bifunctor. By Theorem
4.6, ‘(−) : POS→ qPOS is the left adjoint of an LNL model, and it follows that× is also a POS-functor.
One also can show that the monoidal product × reflects the order on homsets, hence:
Proposition 4.7. Let (X1,R1), (X2,R2), (Y1,S1) and (Y2,S2) be quantum posets, and let F1,G1 : X1→
Y1 and F2,G2 : X2→Y2 be functions. Then both F1 v G1 and F2 v G2 if and only if F1×F2 v G1×G2.

5 Quantum CPOs

An ω-CPO is an ordinary poset P satisfying the property that any increasing chain x1≤ x2≤ ·· · ∈ P has a
least upper bound x∞ ∈ P satisfying x∞ = supn xn. It is well known that this is equivalent to the condition
that, for any ordinary set W and any increasing sequence of functions f1 ≤ f2 ≤ ·· · : W → P, there is a
function f∞ : W → P satisfying supn fn(w) = f∞(w), ∀w ∈W . This motivates the following definitions:
Definition 5.1. Let (X ,R) be a quantum poset, and letW be any quantum set. Let K1 v K2 v ·· · :W→
X be a monotonically increasing sequence for the order on qSet(W,X ) defined above. If there exists a
function K∞ :W →X such that

R◦K∞ =
∧

n∈N
R◦Kn,

then we say that K∞ is the limit of the sequence, and we write Kn↗ K∞.
Thus, it would be natural to define a quantum cpo to be a quantum poset X that has a limit K∞ for any

increasing sequence K1 v K2 v ·· · : W →X , from any quantum setW . To tame this characterization,
we recallHn denotes the quantum set whose single atom is Hn, the n-dimensional Hilbert space. Together
the quantum setsH1,H2,H3, . . . form a generating family [4, Definition 4.5.1] for qSet, leading to:
Definition 5.2. (a) A quantum poset (X ,R) is a quantum cpo iff for each d ∈ N, and each increasing

sequence K1 v K2 v ·· · : Hd →X , there is a function K∞ : Hd →X such that Kn↗ K∞.

(b) A function F : X → Y between quantum cpos (X ,R) and (Y,S) is Scott continuous iff for each
d ∈ N, and all functions Ki : Hd →X , with i ∈ N∪{∞}, if Kn↗ K∞ then F ◦Kn↗ F ◦K∞.

We write qCPO for the category of quantum cpos and Scott continuous functions.
As implied by the terminology, every ordinary cpo is also a quantum cpo, and conversely.

Theorem 5.3. Let (S,v) be an ordinary poset. Then (‘S, ‘v) is a quantum cpo if and only if (S,v) is a
cpo. Moreover, the functor ‘(−) : CPO→ qCPO is fully faithful.

As in the classical case, all finite quantum posets are quantum cpos.
Proposition 5.4. Let (X ,R) be a quantum poset, where X has a finite number of atoms. Then (X ,R) is
a quantum cpo.

As a consequence, the quantum poset in Example 4.3 is a quantum cpo. We can obtain a more
complex example of a quantum cpo as a quantum analog of the powerset under the inclusion order:
Example 5.5. Let n be a positive integer, and equip the atomic quantum setHn with the trivial order IHn ,
and the ordinary set Ω = {0,1} the standard order 0 < 1, which we denote v. Then the quantum poset
[Hn, ‘Ω]v is a quantum cpo.

Just as POS and qPOS form an LNL model, so do CPO and qCPO:
Theorem 5.6. The category qCPO is monoidal closed, complete, has all coproducts, and is enriched
over CPO as a monoidal closed category, and the functor ‘(−) : CPO→ qCPO is strong monoidal and
has a right adjoint.

Classical cpos and finite quantum posets are the basic examples of quantum cpos. Theorem 5.6
allows us to combine these basic examples to form new quantum cpos.
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5.1 Pointed quantum cpos

Any model of a programming language supporting recursion needs denotations for nonterminating terms.
In ordinary domain theory, this is done by passing to the category CPO⊥! of pointed cpos with strict Scott
continuous maps. In this section we formulate the quantum generalization of this category.

We say that a quantum cpo (X ,R) is pointed if there exists a unique one-dimensional atom X⊥ ∈
At(X ) such that R(X⊥,X) = L(X⊥,X) for each X ∈ At(X ). It follows that any ordinary cpo (P,v)
is pointed if and only if (‘P, ‘ v) is pointed. Given pointed quantum cpos (X ,R) and (Y,S), a Scott
continuous map F : X → Y is said to be strict iff F(X⊥,Y⊥) = L(X⊥,Y⊥). We denote the category of
pointed quantum cpos with strict Scott continuous maps by qCPO⊥!.

There also is a lift functor (−)⊥ : qCPO→ qCPO⊥!, generalizing the ordinary lift functor in the
sense that Diagram 2 of Section 1 commutes. Just as the ordinary lift functor is left adjoint to the
inclusion of CPO⊥! into CPO, we have

Lemma 5.7. The lift functor (−)⊥ : qCPO→ qCPO⊥! is left adjoint to the inclusion functor qCPO⊥!→
qCPO.

There is a symmetric monoidal product⊗ on qCPO⊥!, reminiscent of the smash product on CPO⊥!.
The monoidal unit is obtained by lifting the monoidal unit 1 of qCPO.

Proposition 5.8. The category qCPO⊥! is monoidal closed, and the lifting functor (−)⊥ : qCPO→
qCPO⊥! is strong monoidal.

Proposition 4.7 implies the monoidal product on qCPO⊥! reflects the order on non-zero morphisms
with domain 1⊥, the monoidal unit of qCPO⊥!.

Proposition 5.9. Let (X1,R1) and (X2,R2) be pointed quantum cpos, and let F1,G1 : 1⊥ → X1 and
F2,G2 : 1⊥→X2 be strict Scott continuous functions such that Fi 6= 011Xi for i = 1,2. Then both F1 vG1
and F2 v G2 if and only if F1⊗F2 v G1⊗G2.

Thus the monoidal product on qCPO⊥! behaves similarly to the smash product on CPO⊥!. Our main
theorem provides the LNL model defined by CPO and qCPO⊥!:

Theorem 5.10. The category qCPO⊥! has all coproducts, is complete, symmetric monoidal closed, is
enriched over CPO⊥!, and has a zero object that is e-initial. Furthermore both compositions in Diagram
(2) of Section 1 form the left adjoint component of the model in Diagram (3).

6 Models of quantum programming languages

Proto-Quipper-M (PQM) is a circuit description language designed to support writing quantum circuits
in a high-level functional language and then displaying the evolution of the circuit as a diagram. The
“computer” for which PQM is intended is Knill’s QRAM model – a classical computer with a quantum
coprocessor. Here’s an example of the sort of circuit PQM is meant to define. We present the circuit in
qSet for simplicity. It can then be imported intact into qCPO by the functor X 7→ (X , IX ), where IX is
the trivial order, and then into qCPO⊥! using the lift functor.
Example 6.1. The quantum Fourier transform is a channel from an n-qubit system to itself, and it is given
by a sequence of basic quantum gates: the Hadamard gate and rotation gates [15, section 5.1]. For fixed
n, the quantum Fourier transform is thus modelled by a function on the quantum setHn

2 =H2×·· ·×H2
that can be expressed as a composition of these basic gates.

We model a quantum system consisting of an unknown number of qubits by the quantum set X =
1 +H2 + (H2 ×H2) + · · · . Indeed, a pure state on `∞(X ) is just a pure state on `∞(Hn

2) for some
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Figure 1: The Quantum Fourier Transform [24]

natural number n. A mixed state may be supported on more than one summand, expressing uncertainty
about just how many qubits there are! Note that X is a recursive type over H2; it is the list type. We
have a function N : X → ‘N that maps each atom to its dimension; in other words, N is defined by
N(H⊗n

2 ,Cn) = L(H⊗n
2 ,Cn), for all n ∈ N, with the other components vanishing. It does not play a direct

role in the following description of the quantum Fourier transform.
Using the standard characterization of X as a fixed point, i.e., X ∼= 1+X ×H2, we may define

the term x : X ` Swap(x) : X , which reverses the order of the list, in the usual way. Suppressing this
isomorphism, we “unfold” x : X , writing it as either x = ∗ : 1 or x = (x1,y) : X ×H2, and then we define
Swap(∗) = ∗ and Swap(x1,y1) = (y1,Swap(x1)). We curry to obtain a function Swap : X ( X .

Using the same approach, we can define a function Step :X (X modelling each computational step
of the algorithm. To formalize this definition, we assume a controlled phase gate R :H2×H2× ‘N(
H2×H2, which rotates the phase of the up state of the second qubit by 2π/2n, whenever the first qubit
is in the up state, or equivalently, vice versa. As before, we unfold x :X . If x = ∗, we define Step(x) = ∗.
If x = (x1,y), then we unfold x1. If x1 = ∗, then we define Step(x) = Hy, where H : H2 ( H2 is the
Hadamard gate, and if x1 = (x2,y2), then we define Step(x) to be the result of applying a controlled phase
gate rotating by 2π/2n to (Step(x2),y2). The dimension n is classical data, so it can be duplicated and
used any number of times at each recursion step, but X is a quantum type, so a priori, we cannot evaluate
the function N without consuming the quantum data in any given step in the recursion. For this reason,
this recursion should occur over X × ‘N, so we can increment the dimension separately.

The swapped quantum Fourier transform QFT0 : X (X , depicted in the diagram, can now be simi-
larly defined for x : X distinct from ∗, by

QFT0(x) = (ỹ1,QFT0(Swap(x̃1)),

where (x̃1, ỹ1) = Swap(Step(x)). Of course, the quantum Fourier transform itself is just QFT = Swap◦
QFT0.

There are some important features that this example illustrates. First, lists of qubits are needed to
model the memory of the quantum device, so any model for this circuit must have support for (at least)
inductive types. Second, we don’t know the number of qubits in the state on which the program will
run when the circuit is written, so it must be able to respond to any input length. Since the QFT itself is
inherently (primitive) recursive, the model must support primitive recursion. While these are the simplest
forms of recursion, they make clear the need for these features. Finally, our model also includes FdHilb,
which allows us to reason concretely about the effect of QFT on a given list of qubits.

Returning to our results, we first consider type recursion. Models built over CPO support type
recursion if all the type constructors are algebraically compact [7]. A direct consequence of Theorem
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5.10 is that the CPO/qCPO model (3) in Section 1 satisfies all conditions for a CPO-LNL model (cf. [13,
Definition 5.3.1]), hence we can apply [12, Theorem 3.2] and [13, Theorem 5.3.3] to conclude:

Theorem 6.2. All CPO-endofunctors on qCPO⊥! are algebraically compact. In particular, ⊗, +, (
and ! are CPO-functors, hence endofunctors on qCPO⊥! that are compositions of these four functors
are algebraically compact.

Moreover, by [13, Theorem 6.3.9] any CPO-LNL model is a sound model for LNL-FPC, i.e., the
language introduced in [13] that can both be seen as an FPC with linear types and as an extension of the
circuit-free fragment of PQM with recursive types. By [13, Theorem 7.0.10] any CPO-LNL model is
computationally adequate at non-linear types if I � 0 (which is the case for qCPO⊥! the zero object is 1,
whereas the monoidal unit I is 1⊥) and if the monoidal product reflects the order as in Proposition 5.9.
So we conclude:

Theorem 6.3. The linear/non-linear adjunction (3) is a sound model for LNL-FPC that is computation-
ally adequate at non-linear types.

We now consider term recursion. PQM (including circuits) is extended with term recursion in [12].
We can add the following result:

Theorem 6.4. The linear/non-linear adjunction (3) is a sound model for PQM with term recursion.

Proof. By Theorem 3.2 and Definition 3.4 of [12] a model for PQM consists of a symmetric monoidal
category M of circuits (for quantum computing one typically chooses this category to be FdAlgop), and
an LNL-adjunction of the form (1) such that C and L have finite coproducts, and such that there exists a
strong monoidal embedding E : M→ L. By [12, Theorem 4.3] such a model is a sound model for PQM
with term recursion if the functor !(−) is parametrically algebraically compact, i.e., for fixed A ∈ L, the
endofunctor A⊗!(−) : L→ L is algebraically compact. For qCPO⊥!, the latter condition follows from
Theorem 6.2. Finally, we also know FdAlgop embeds into qCPO⊥!.

To our knowledge, the only other model for which the conclusions of Theorem 6.4 hold is (4),
whereas the only other model for which the conclusions of Theorem 6.3 hold is (5). Hence our model
(3) is the only one we know for which the conclusions of both theorems hold.

7 Future work
Our presentation of the quantum Fourier transform in qCPO⊥! raises the issue of computational ade-
quacy of our model. We do not have a proof, but we believe a proof strategy similar to that in [13] will
prove this for circuits in our model, but some details still need checking.

Our model (3) is the only one known that is both sound for Proto-Quipper-M extended with term
recursion, and also sound and computationally adequate at non-linear types for LNL-FPC. The latter
can be regarded as the circuit-free fragment of Proto-Quipper-M extended with recursive types. Our
next goal is to show that (3) is a sound model for Proto-Quipper-M extended with recursive types that is
computationally adequate at non-linear types. Since our model also supports affine types, we expect that
an adequacy result at all types may follow from results in [18].

We are also working on quantizing the probabilistic power domain monad, whose existence would
imply (3) supports state preparation. With this in hand, we anticipate extending Proto-Quipper-M with
dynamic lifting, i.e., the execution of quantum circuits. We also expect that quantizing the probabilistic
power domain will yield another model for the quantum lambda calculus with term recursion [16].
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