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Conditional distributions, as defined by the Markov category framework, are studied in the setting

of matrix algebras (quantum systems). Their construction as linear unital maps are obtained via a

categorical Bayesian inversion procedure. Simple criteria establishing when such linear maps are

positive are obtained. Several examples are provided, including the standard EPR scenario, where

the EPR correlations are reproduced in a purely compositional (categorical) manner. A comparison

between the Bayes map, the Petz recovery map, and the Leifer–Spekkens acausal belief propagation

is provided, illustrating some similarities and key differences.
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1 Introduction

There is a correspondence between stochastic maps (conditional probabilities) on finite sets and posi-

tive unital maps on finite-dimensional commutative C∗-algebras by a stochastic variant of Gelfand du-

ality [19, 14]. Hence, any concept involving stochastic maps that is described categorically can be

transferred to arbitrary (not necessarily commutative) C∗-algebras, thus justifying quantum analogues of

classical concepts. In particular, Bayesian inversion, disintegrations, and conditioning have been for-

mulated categorically [12, 8, 9, 6, 5, 15, 21, 13], and the first two have been analyzed in the setting of

finite-dimensional C∗-algebras in [21, 22] through a generalization of Markov categories [5, 13] to their

quantum variants [20]. However, conditioning in this setting remains unexplored, as far as I am aware.1

Since conditioning in quantum theory is not a settled subject, this direction deserves some investigation.

The purpose of the present work is to begin the systematic study of quantum conditionals as positive

maps between finite-dimensional C∗-algebras. Although this goal is not fully realized here, we are

content with achieving it on bi-partite systems of matrix algebras equipped with states whose marginals

are faithful. Even though this sounds quite restrictive, it already includes many cases of interest, such as

1The conditioning in [15] does not use the multiplication map in its formulation of conditioning in the quantum setting.
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2 Conditional Distributions

the fully entangled EPR state on a two qubit system [10, 4]. The case of multi-partite states, non-faithful

marginals, and more general hybrid classical-quantum systems will be addressed in future work.

In this work, we use category theory to define what we mean by quantum conditionals. Then, we

prove a purely categorical theorem indicating how one can construct quantum conditionals through the

usage of Bayes maps (whose definition is motivated by categorical probability theory). We then im-

plement this construction in the setting of matrix algebras. In general, the resulting conditional does

not define a positive map. As such, we find necessary and sufficient conditions for conditionals to be

positive. A positive conditional need not be completely positive, and EPR provides an example illus-

trating this point. We end by introducing the conditional domain, which is the largest operator system

for which a conditional is positive (in the Heisenberg picture). Typically, this operator system is not a

C∗-subalgebra. Examples are provided throughout.

2 Quantum Markov categories

This section briefly reviews the abstract theory of quantum CD and Markov categories [20], which are

generalizations of CD and Markov categories [5, 13]. String diagrams are reviewed in these mentioned

papers, but see [25] for a more thorough exposition. Time will always go up the page. The composition

will go up the page for definitions and the example FinStoch, while the composition will go down the

page for C∗-algebra maps (in the Heisenberg picture).

Definition 2.1. A classical CD category is a symmetric monoidal category (M ,⊗, I), with ⊗ the tensor

product and I the unit (associators and unitors are excluded from the notation), and where each object

X in M is equipped with morphisms !X ≡ X : X → I, called the discarder/grounding, and ∆X ≡ :

X → X ⊗X , called the copy/duplicate, all satisfying the following conditions

= = = = (2.2)

X ⊗Y = X Y I =
X ⊗Y

=
X Y I

= (2.3)

expressed using string diagrams. A classical Markov category is a classical CD category for which every

morphism X
f−→ Y is unital, i.e. natural with respect to in the sense that f = . A state on X is a

morphism I
p−→ X , which is drawn as

p

X
.

Example 2.4. Let FinStoch be the category whose objects are finite sets and where a morphism X
f−→Y

is a stochastic map/conditional probability2 from X to Y , which, by definition, assigns to each element

x ∈ X a probability measure fx on Y , whose value on y is written as fyx. The composite of a composable

pair X
f−→ Y

g−→ Z is defined by the Chapman–Kolmogorov equation (g◦ f )zx := ∑y∈Y gzy fyx. The tensor

product is the cartesian product of sets and the product X ×X ′ f× f ′−−−→ Y ×Y ′ of stochastic maps X
f−→ Y

and X ′ f ′−→ Y ′, and is given by ( f × f ′)(y,y′)(x,x′) := fyx fy′x′ . The tensor unit is the single element set,

often denoted by {•}. Functions are special kinds of stochastic maps whose probability measures are

2The reader will notice that the notation is not used in this article, unlike in our earlier works [19, 21, 20, 22]. The

reason is because we do not need to emphasize the distinction between deterministic maps and stochastic maps in this work.
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{0,1}-valued. In particular, the maps ∆X and !X are the stochastic maps associated to the functions

∆X(x) := (x,x) and !X(x) = •. A state on X encodes a probability measure on X .

The conditions in (2.2) suggest that classical Markov categories cannot be extended to the quantum

setting due to the universal no-broadcasting theorem [2] (see also [18, Theorem 5.1]). However, there

is a way around these restrictions by working with a larger class of morphisms, adding an even and

odd grading for morphisms, and substituting the commutativity condition for another closely-related

condition [20].

Definition 2.5. A quantum CD category is a Z2-graded symmetric monoidal category M ,3 where each

object X is equipped with an even discarder, an even copy map, and an odd involution ∗X ≡
X

: X → X

satisfying the same conditions as a classical CD category, except the last condition in (2.2), and also

satisfying the additional conditions

= =
X ⊗Y

=
X Y

X

=

X

(2.6)

A quantum Markov category is a quantum CD category in which every morphism is unital.4 A morphism

X
f−→ Y is said to be ∗-preserving iff f ◦∗X = ∗Y ◦ f .

Example 2.7. From now on, all C∗-algebras will be assumed unital. Although the category of finite-

dimensional C∗-algebras and positive unital maps (cf. Notation 3.11) does not form a quantum Markov

category (essentially due to the no-broadcasting theorem), this category naturally embeds into a quantum

Markov category, allowing the structure of the ambient quantum Markov category to be utilized [20]. Let

fdC*-AlgU
op

Y
be the category whose objects are finite-dimensional C∗-algebras (see [19, Section 2.3] for

a review of C∗-algebras within a categorical setting).5 For example, a matrix algebra will be written as

Mn(C) indicating the C∗-algebra of complex n×n matrices. A morphism from A to B in fdC*-AlgU
op

Y

is either a linear (even) or conjugate-linear (odd) unital map B
F−→ A . Notice that the function goes

backwards because of the superscript op. The tensor product (over C) is the tensor product of finite-

dimensional C∗-algebras, so that the unit is C. The tensor product of linear maps is defined in the usual

way, while the tensor product of conjugate-linear maps can be defined similarly [27, Section 9.2.1].

However, note that it does not make sense to define the tensor product of a linear map with a conjugate-

linear one. The ∗ operation is the involution on a C∗-algebra, which is conjugate-linear. The copy

map ∆A from A to A ⊗A in fdC*-AlgU
op

Y
is the multiplication map A ⊗A

µA−−→ A determined on

elementary tensors by A1 ⊗A2 7→ A1A2. The discard map from A to C in fdC*-AlgU
op

Y
is defined to be

the unit inclusion map !A : C→A sending λ ∈C to λ1A . A linear map B
F−→ A is ∗-preserving if and

only if it sends self-adjoint elements in B to self-adjoint elements in A . For convenience, we will drop

the op and work directly with the unital maps on the algebras from now on.

Although we have introduced the categories FinStoch and fdC*-AlgUY, we will be more explicit

and work mainly with matrix algebras, linear maps, and positive maps in our main results. The abstract

setting will mainly be used in the next two sections to provide the general context.

3This means that there is a functor M → BZ2 (where BZ2 is the one object category whose set of morphisms equals

Z2 = {0,1} and whose composition is defined by addition modulo 2 in Z2) and a tensor product is defined for all objects and

all morphisms of the same degree. Morphisms sent to 0/1 are called even/odd. Note that the tensor product of morphisms of

different degrees is not defined, but the collection of even morphisms is a symmetric monoidal category.
4Unitality is defined differently for odd morphisms. We exclude the details because we will not need this definition here.
5Every such finite-dimensional C∗-algebra is ∗-isomorphic to a finite direct sum of (square) matrix algebras [11, Theo-

rem 5.5].
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3 Bayes maps, conditionals, and a.e. equivalence

Here, we review two formulations of Bayes’ theorem, which we express categorically. Throughout this

section, M will denote either a classical or quantum Markov category and C will denote some (not

necessarily monoidal) subcategory of M . Furthermore, all morphisms will be even from now on.

Definition 3.1. Given states I
p−→ X and I

q−→Y , a morphism X
f−→Y in M is state-preserving iff q = f ◦ p,

and one writes (X , p)
f−→ (Y,q). A left/right Bayes map for (X , p)

f−→ (Y,q) is a morphism f L/ f R : Y → X

in M such that

q

f L

X Y

=

p

f

X Y
/

q

f R

XY

=

p

f

XY

(3.2)

If all morphisms are in C , then f L/ f R are said to be left/right Bayesian inverses of (X , p)
f−→ (Y,q) (in

C ).

Bayes maps are automatically state-preserving. If all morphisms are ∗-preserving, then there is no

distinction between left and right concepts (this is always the case in classical Markov categories [5, 20]).

Definition 3.3. Let I
s−→ X ⊗Y be a state and let p and q denote its marginals I

s−→ X ⊗Y
πX−→ X and

I
s−→ X ⊗Y

πY−→ Y , respectively. Here, πX and πY are the projections, which are defined as πX :=
(

X ⊗
Y

idX×!Y−−−−→ X ⊗ I ∼= X
)

and πY :=
(

X ⊗Y
!X⊗idY−−−−→ I ⊗Y ∼= Y

)

. A conditional distribution of s given Y / X

(or Y / X conditional for short) is a morphism Y
s|Y−→ X

/

X
s|X−→Y such that

q

s|Y
X Y

=
s

X Y
/

s

X Y

=

p

s|X
X Y

. (3.4)

Definition 3.5. Let X and Y be objects, let I
p−→ X be a state and let f ,g : X → Y be morphisms. The

morphism f is said to be left/right p-a.e. equivalent to g iff

p

f

Y X

=

p

g

Y X
/

p

f

X Y

=

p

g

X Y

. (3.6)

All of these definitions are quite similar. Indeed, if f L and f R are left and right Bayes maps for some

(X , p)
f−→ (Y,q), then they are automatically left and right a.e. unique, respectively. Furthermore, the Y /X

conditionals are also left/right a.e. unique. A.e. equivalence agrees with the standard measure-theoretic

notion [5, Proposition 5.3, 5.4] (as well as the C∗-algebraic one [21, Definition 2.9], [20, Theorem 5.12]).

With these preliminaries, Bayes’ theorem can now be expressed in two different ways.

Theorem 3.7. [Bayes’ theorem via Bayesian inversion] Every state-preserving stochastic map (X , p)
f−→

(Y,q) admits a (necessarily a.e. unique) Bayesian inverse (in FinStoch).
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Theorem 3.8. [Bayes’ theorem via conditional distributions] Every joint state {•} s−→ X ×Y in FinStoch

admits both (necessarily a.e. unique) X and Y conditionals.

Example 3.9. These two versions of Bayes’ theorem are often expressed as the equations

p(x|y)p(y) = p(y|x)p(x) and p(x|y)p(y) = p(x,y) = p(y|x)p(x), (3.10)

respectively. Although it seems as though the former is a special case of the latter,6 notice that the

input data for each definition is different. The first version has input data a morphism X
f−→ Y and a

state {•} p−→ X (the state q on Y is obtained via composition). Meanwhile, the second version has input

datum a state {•} s−→ X ×Y . This distinction may seem pedantic, but it is crucial for generalizing to the

non-commutative setting [22, Remarks 2.46 and 5.96].

Notation 3.11. If A is a matrix, A† denotes its conjugate transpose. A matrix A ∈Mm(C) is positive iff it

is self-adjoint (A† =A) and its eigenvalues are non-negative, equivalently A=C†C for some C ∈Mm(C).

The standard matrix units of Mm(C) will be denoted by E
(m)
i j with i, j ∈ m, where m := {1, . . . ,m}.

They satisfy E
(m)
i j E

(m)
kl = δ jkE

(m)
il , where δ jk is the Kronecker delta taking value 1 when j = k and 0

otherwise. A linear map F : Mn(C) → Mm(C) is positive (completely positive) iff F (F ⊗ idMk(C))

sends positive matrices to positive matrices (for all k ∈ N). In terms of the notation at the beginning of

Section 3, M = fdC*-AlgUY and C = fdC*-AlgPU is the subcategory consisting of (linear) positive

unital maps. If F : Mn(C)→ Mm(C) is linear, then F∗ denotes its adjoint with respect to the Hilbert–

Schmidt inner product on matrices, i.e. F∗ : Mm(C) → Mn(C) is the unique linear map satisfying

tr(F∗(A)B) = tr(AF(B)) for all A ∈ Mm(C) and B ∈ Mn(C). An example that appears often is the

Hilbert–Schmidt dual of the inclusion ιMm(C) : Mm(C)→ Mm(C)⊗Mn(C) sending A to A⊗1n, and is

given by the CPU map trMn(C), which is called the partial trace. Explicitly, trMn(C) is determined by its

action on simple tensors, namely trMn(C)(A⊗B) = tr(B)A, and it satisfies

trMn(C)

(

(A⊗B)(1m⊗C)
)

= trMn(C)

(

(1m ⊗C)(A⊗B)
)

(3.12)

for all inputs A,B,C. Finally, if A ∈ Mm(C), then AdA : Mm(C) → Mm(C) denotes the linear map

sending C ∈ Mm(C) to ACA†.

Example 3.13. Let A := Mm(C) and B := Mn(C) be two matrix algebras. Let ω = tr(ρ · ) and

ξ = tr(σ · ) be states on A and B, respectively, with respective density matrices. Let B
F−→ A be a

unital linear map. If σ is positive definite (so that the state ξ is faithful), then there are unique left and

right Bayes maps for (B,ξ )
F−→ (A ,ω). They are respectively given by

FL(A) := σ−1F∗(ρA) and FR(A) := F∗(Aρ)σ−1 (3.14)

for all A ∈ A . If F is ∗-preserving, demanding that these two functions be equal7 is equivalent to

demanding that there is a ∗-preserving Bayes map F . In this case, its explicit formula is given by

(see [22, Corollary 5.32])

F(A) =
√

σ−1F∗ (
√

ρA
√

ρ)
√

σ−1. (3.15)

Hence, if F is positive unital (PU) or completely positive unital (CPU), then so is F . The reader will

notice that (3.15) is the formula for the (dual of the) Petz recovery map [1, 23, 24, 3, 16]. However,

we will later see that the Petz recovery map is distinct from the Bayes map in general. The difference

between the Petz recovery map and the Bayes map is more pronounced in the case that σ is not positive

definite (so that ξ is not faithful), though the details of this will not be discussed here (but see [22]).

6This is especially due to the abusive notation of using p for all mathematical objects.
7Note that a.e. equivalence now reduces to equality since ξ is faithful.
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Before using this example, we first need to explain how conditionals can be constructed using Bayes

maps more abstractly. Afterwards, we will look at several examples by combining the two results.

4 Constructing conditionals using Bayes maps

Theorem 4.1. Given a joint state I
s−→ X ⊗Y with marginals I

p−→ X and I
q−→ Y , let Y

L−→ X ⊗Y and

X
R−→ X ⊗Y be left and right Bayes maps for (X ×Y,s)

πY−→ (Y,q) and (X ×Y,s)
πX−→ (X , p), respectively.

Then s|X :=
(

X
R−→X ⊗Y

πY−→Y
)

and s|Y :=
(

Y
L−→X ⊗Y

πX−→X
)

are X and Y conditionals of s, respectively.

Proof. By assumption

q

L

X Y Y

=

s

=

s

and

p

R

YXX

=

s

=

s

. (4.2)

The definitions of s|X and s|Y are drawn as

s|X
X

Y

:= R and s|Y
Y

X

:= L . (4.3)

From this, we immediately obtain

q

s|Y
X Y

=

q

L

=

s

=
s

X Y

=

s

=

p

R

=

p

s|X
X Y

, (4.4)

which is the desired conclusion. �

This theorem, together with the left/right a.e. uniqueness of left/right Bayes maps, is useful because

it allows us to write down explicit formulas for conditionals in the quantum setting, at least up to the

supports of the states. For the remainder of this work, we will focus on applying this to matrix algebras,

rather than arbitrary finite-dimensional C∗-algebras.

Corollary 4.5. Set A := Mm(C) and B := Mn(C). Let ζ ≡ tr(ν · ) be a state on A ⊗B (with density

matrix ν) whose marginals on A and B are given by ζ ◦ ιA =: ω ≡ tr(ρ · ) and ζ ◦ ιB =: ξ ≡ tr(σ · ),
respectively. Suppose that ρ and σ are invertible. Then there are unique conditionals B

F−→ A and

A
G−→ B given by

F(B) := trB
(

(1m ⊗B)ν
)

ρ−1 and G(A) := σ−1trA
(

ν(A⊗1n)
)

. (4.6)

The Hilbert–Schmidt duals of these maps are given by

F∗(A) = trA

(

ν
(

(ρ−1A)⊗1n

)

)

and G∗(B) = trB

(

(

1m ⊗ (Bσ−1)
)

ν
)

. (4.7)
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Proof. The first claim follows from Theorem 4.1 and Example 3.13. For instance, the formula for F is

given by F(B) = ι∗
A

(

(1A ⊗B)ν
)

ρ−1 = trB
(

(1A ⊗B)ν
)

ρ−1. The second claim (4.7) follows from the

definition of the Hilbert–Schmidt inner product and the cyclic properties of the trace. �

Are the conditionals F and G in Corollary 4.5 positive maps? Let’s look at some examples.

Example 4.8. In the notation of Corollary 4.5, take m = n = 2 and take ν to be Bohm’s EPR density

matrix ν := 1
2

[

0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

]

corresponding to the pure state 1√
2

(

| ↑〉⊗ |↓〉− |↓〉⊗ |↑〉
)

, where | ↑〉 and | ↓〉

are just e1 =
[

1
0

]

and e2 =
[

0
1

]

expressed in Dirac notation, [4, 10]. Then the marginal density matrices

ρ and σ both equal 1
2
12. Since this is invertible, the conclusions of Corollary 4.5 apply. Hence,

F

([

a b

c d

])

=trB













a b 0 0
c d 0 0
0 0 a b
0 0 c d













0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0












=

[

d −b

−c a

]

=

[

0 1

−1 0

][

a b

c d

]T[
0 −1

1 0

]

, (4.9)

which shows that F is PU, but not CPU. The same formula is obtained for G. It is worth comparing

this expression to the one obtained by using the Petz recovery map instead of the Bayes map. The Petz

recovery map R : A ⊗B → A associated to the inclusion ιA : A → A ⊗B and the state ζ on A ⊗B

is given by

R(A⊗B) =
√

ρ−1trB
(√

ν(A⊗B)
√

ν
)
√

ρ−1 = 4trB (ν(A⊗B)ν) , (4.10)

where we have used the fact that ρ = 1
2
12 and ν2 = ν (because ν is a rank 1 density matrix), so that√

ν = ν . Precomposing R with the inclusion gives F ′ :=R◦ ιB, which acts as

F ′
([

a b

c d

])

=
1

2
trB













0 0 0 0
0 a+d −a−d 0
0 −a−d a+d 0
0 0 0 0












=

1

2

[

a+d 0

0 a+d

]

=
tr
([

a b
c d

])

2
12. (4.11)

Notice that the map F ′, obtained using the Petz recovery map, is actually CPU, unlike the conditional

F we obtained in (4.9). However, which one of these two maps recovers the standard EPR correlations

obtained by a standard quantum-mechanical wave collapse argument?

Suppose that Alice (represented by A ) obtains new evidence (or has belief) in the form of a state

ϕ = 〈↑ | · | ↑〉 (for example, suppose that she set up an apparatus to measure the spin and obtained the

result spin up). Then by applying the maps F and F ′ to these states via pullback,8 Alice infers that Bob

(represented by B) would obtain the state on B given by

(ϕ ◦F)

([

a b

c d

])

= d =

〈

↓
∣

∣

∣

∣

[

a b

c d

]∣

∣

∣

∣

↓
〉

and (ϕ ◦F ′)

([

a b

c d

])

=
tr
([

a b
c d

])

2
. (4.12)

The first map shows that the spin up state for Alice changes to the spin down state for Bob once the

map F is applied. On the other hand, the map F ′ always gives the totally mixed state for Bob. This

indicates that F is a more suitable inference map describing the EPR correlations, since F ′ loses all the

entanglement (more precisely, it is an entanglement breaking channel). Note that analogous conclusions

hold if the evidence Alice has is the spin in any direction: F will predict the opposite spin for Bob while

F ′ still predicts the totally mixed state.

8One could equivalently obtain the Hilbert–Schmidt duals and act on the associated density matrices in the Schrödinger

picture. We illustrate how this is done in other examples later.
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The fact that F , and not F ′, reproduced the EPR correlations suggests that it has its merits and

deserves further study (an alternative derivation of the EPR correlations is done via the formalism of

conditional density matrices in [17, Section III.B and Section V.A.3], but see footnote 12 below). Exam-

ple 4.8 also shows that a joint state can have positive conditionals that are not necessarily CPU. But do

conditionals always need to be positive? The next example shows that the answers to this question is no.

Example 4.13. Set A := M2(C) and B := M2(C). A general pure state in C
2 ⊗C

2 ∼= C
4 is of the

form |Ψ〉 = c↑↑| ↑↑〉+ c↑↓| ↑↓〉+ c↓↑| ↓↑〉+ c↓↓| ↓↓〉, where c↑↑,c↑↓,c↓↑,c↓↓ ∈ C satisfy |c↑↑|2 + |c↑↓|2 +
|c↓↑|2 + |c↓↓|2 = 1 (here | ↑↓〉 = | ↑〉 ⊗ | ↓〉 and similarly for the other vectors). Given p ∈ (0,1), set

q := 1− p and let ν := |Ψ〉〈Ψ| be the density matrix in A ⊗B ∼= M4(C) associated to the pure state

with c↑↑ =
√

p
2
, c↑↓ =

√

q
2
, c↓↑ =−

√

p
2
, and c↓↓ =

√

q
2
. Then

ν =
1

2









p
√

pq −p
√

pq√
pq q −√

pq q

−p −√
pq p −√

pq√
pq q −√

pq q









, ρ =
1

2

[

1 q− p

q− p 1

]

, and σ =

[

p 0

0 q

]

. (4.14)

Thus, ρ−1 = 1
2pq

[

1 p−q
p−q 1

]

and σ−1 =
[

p−1 0

0 q−1

]

. Using Corollary 4.5, one obtains the explicit formulas

F
([

a b
c d

])

=
1

2

[

a+d+ pc+qb√
pq

d−a+ pc−qb√
pq

d−a+ qb−pc√
pq

a+d− pc+qb√
pq

]

, G∗([ a b
c d

])

=
1

2

[

a+d+ pb+qc√
pq

d −a+ qc−pb√
pq

d −a+ pb−qc√
pq

a+d − pb+qc√
pq

]

, (4.15)

G
([

a b
c d

])

=
1

2





a−b− c+d
√

q
p
(a−b+ c−d)

√

p
q
(a+b− c−d) a+b+ c+d



 , and (4.16)

F∗ ([ a b
c d

])

=
1

2





a−b− c+d
√

p
q
(a−b+ c−d)

√

q
p
(a+b− c−d) a+b+ c+d



 . (4.17)

If p = q = 1
2
, then all of these maps are positive. Indeed, given a positive matrix of the form C :=

[ a
b ] [a b ] =

[

aa ab
ba bb

]

, F and G send this matrix to9

F(C) =
1

2

[

a+b

b−a

]

[

a+b b−a
]

and G(C) =
1

2

[

a−b

a+b

]

[

a−b a+b
]

when p = q =
1

2
. (4.18)

However, when p 6= 1
2
, then neither F nor G are positive. In fact, neither F nor G are ∗-preserving, which

is a necessary condition for positivity. We will come back to this in the next section.

5 Positive conditionals

Although the conditionals in Corollary 4.5 reproduce EPR correlations, the expressions (4.6) and (4.7)

have two disadvantages. First, they are only partially defined on the supports.10 Second, they need not

9All positive matrices are non-negative sums of matrices of this type. Hence, proving F(C) and G(C) are positive is

sufficient to proving that F and G are positive, respectively. Proving F and G are positive is also equivalent to proving F∗ and

G∗ are positive.
10We have not discussed this aspect here because we assumed the marginals are invertible. See [22] for more details

regarding supports and their role in Bayesian inversion. The analogous situation for conditionals is part of ongoing work.
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be positive maps. A necessary condition for positivity is ∗-preservation, so we will first analyze when

conditionals are ∗-preserving.

Lemma 5.1. Let A := Mm(C),B := Mn(C), ζ = tr(ν · ),ω = tr(ρ · ), ξ = tr(σ · ), F, and G be as in

Corollary 4.5. Then the following are equivalent.

i. A ∗-preserving conditional B
ζ |A−−→ A (resp. A

ζ |B−−→ B) exists.

ii.
[

ρ , trB
(

ν(1m ⊗B)
)]

= 0 for all B ∈ B (resp.
[

σ , trA
(

ν(A⊗1n)
)]

= 0 for all A ∈ A ).

iii.
[

ρ , trB
(

ν(1m ⊗E
(n)
kl )

)]

= 0 for all k, l ∈ n (resp.
[

σ , trA
(

ν(E
(m)
i j ⊗1n)

)]

= 0 for all i, j ∈ m).

iv. Adρ it ◦F = F (resp. Adσ it ◦G = G) for all t ∈R.11

Proof. (i⇒ii) By Corollary 4.5, the formula for ζ |A is given by F . This linear map is ∗-preserving if

and only if F(B†) = F(B)†, or equivalently F(B†)† = F(B), for all B. Assuming F is ∗-preserving, then

trB
(

(1m ⊗B)ν
)

ρ−1 = F(B) = F(B†)† =
(

trB

(

(

1m ⊗B†
)

ν
)

ρ−1
)†

= ρ−1trB
(

ν(1m ⊗B)
)

. (5.2)

Multiplying both sides by ρ and using the properties of the partial trace gives trB
(

ν(1m ⊗ B)
)

ρ =
ρ trB

(

ν(1m ⊗B)
)

.
(ii⇒i) By a similar calculation, if item ii holds, then F is ∗-preserving.

(ii⇔iii) This follows from linearity since every B can be expressed as B = ∑k,l BklE
(n)
kl .

(iv⇒ii) By analytic continuation (which is valid due to the finite-dimensionality assumption), Adρ it ◦F =

F for all t ∈C. Taking t = i in Adρ it (F(B)) = F(B) and multiplying both sides by ρ2 reproduces item ii.

(ii⇒iv) By the functional calculus, every function of ρ commutes with trB
(

ν(1m ⊗B)
)

. In particu-

lar, ρ ztrB
(

ν(1m ⊗B)
)

= trB
(

ν(1m ⊗B)
)

ρ z for all z ∈ C. Consequently, ρ it trB
(

ν(1m ⊗B)
)

ρ−1ρ−it =
trB

(

ν(1m ⊗B)
)

ρ−1 for all t ∈R, which proves item iv. �

Lemma 5.1 provides a necessary condition for positive conditionals to exist. Are they sufficient?

Namely, if a conditional is ∗-preserving, is it necessarily positive? The motivation for asking this is be-

cause the ∗-preserving condition implies (perhaps surprisingly) complete positivity for Bayes maps [22,

Proposition 5.12]. Based on Example 4.8, we so far know that ∗-preservation is not strong enough

to imply complete positivity (or even Schwarz-positivity) for conditionals, so it is natural to ask about

positivity alone. In the following theorem, we settle this question in the affirmative.

Theorem 5.3. In the notation of Lemma 5.1, a positive conditional B
ζ |A−−→ A (resp. A

ζ |B−−→ B) exists

if and only if any (and hence all) of the conditions in Lemma 5.1 hold.

Proof. It suffices to prove the claim for F . If F is positive, then it is automatically ∗-preserving, so that

one direction in Lemma 5.1 applies. Conversely, suppose that F is ∗-preserving. Then by Corollary 4.5,

item ii of Lemma 5.1, the properties of the partial trace, and the functional calculus12

F(B†B) = trB
(

(1m ⊗B†B)ν
)

ρ−1 =
√

ρ−1trB
(

(1m ⊗B)
√

ν
√

ν(1m ⊗B†)
)
√

ρ−1. (5.4)

Since the right-hand-side of this expression is manifestly positive, F is positive. �

11Adρ it is the Tomita–Takesaki modular group [26] associated to ω = tr(ρ · ). This condition is reminiscent of, but distinct

from, the Accardi–Cecchini condition [1, Proposition 6.1].
12Note that when the assumptions in Theorem 5.3 hold, (5.4) gives an alternative expression for the positive conditional.

Namely, F(B)=Adρ−1/2 (trB (ν(1m ⊗B))). By taking the Hilbert–Schmidt dual, this gives F∗(A)= trA
(

ν
(

Adρ−1/2(A)⊗1n

))

,

which agrees with the acausal belief propagation map from [17, Section III.B.]. However, our conditional (cf. Corollary 4.5)

and the (dual of the) belief propagation map of [17] may disagree outside the conditional domain (cf. Definition 5.5). This is

illustrated in Example 5.14.
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Even if the ∗-preserving conditions do not hold for all elements in the domain algebras, we can

always find maximal subspaces on which F and G are positive.

Definition 5.5. In the notation of Lemma 5.1, set

Aρc :=
{

A ∈ A : [ρ ,A] = 0
}

and Bσ c :=
{

B ∈ B : [σ ,B] = 0
}

(5.6)

to be the commutants of {ρ} and {σ} inside A and B, respectively. Set

Bν :=
{

B ∈ B : trB
(

ν(1m ⊗B)
)

∈ Aρc

}

and Aν :=
{

A ∈ A : trA
(

(A⊗1n)ν
)

∈ Bσ c

}

(5.7)

to be the conditional domains of ν inside B and A , respectively. A (concrete) operator system inside

Mk(C) is a (complex) vector subspace O ⊆ Mk(C) such that 1k ∈ O and A ∈ O implies A† ∈ O .

Lemma 5.8. In the notation of Definition 5.5, Bν and Aν are operator systems.

Proof. It suffices to prove this for Bν . First, Bν is a subspace by linearity. Second, trB(ν) = ρ and

ρ ∈ Aρc imply 1n ∈ Bν . Third, if B ∈ Bν , then

trB
(

ν(1m ⊗B†)
)

=
(

trB
(

(1m ⊗B)ν
))†

=
(

trB
(

ν(1m ⊗B)
))†

. (5.9)

Since Aρc is a ∗-algebra trB
(

ν(1m ⊗B)
)

∈ Aρc implies
(

trB
(

ν(1m ⊗B)
))† ∈ Aρc . Hence, B† ∈ Bν

by (5.9). Thus, Bν is an operator system. �

In this way, although one might not be able to condition on the full algebra to obtain a positive map,

one might be able to condition on an operator system inside that algebra.

Example 5.10. In terms of Example 4.13 and assuming p 6= 1
2
, one can show

Aρc =

{[

a b

b a

]

: a,b ∈ C

}

⊂ A and Bσ c =

{[

a 0

0 d

]

: a,d ∈ C

}

⊂ B (5.11)

are the commutants. The conditional domains are given by

Bν =

{[

a 0

0 d

]

: a,d ∈ C

}

⊂ B and Aν =

{[

a b

b a

]

: a,b ∈ C

}

⊂ A . (5.12)

Example 5.10 suggests that Bν and Aν are not only operator systems, but they might even be C∗-

subalgebras. Is this always the case? The answer to this question is no, though the simplest counterex-

ample I could currently find involves a 9×9 rank 2 density matrix with A = M3(C) and B = M3(C).
Its expression is not particularly enlightening, so I have chosen to not record it here.13

Corollary 5.13. In the notation of Lemma 5.1 and Definition 5.5, the restrictions Bν →֒ B
F−→ A and

Aν →֒ A
G−→ B are positive unital maps from operator systems to C∗-algebras. In terms of the Hilbert–

Schmidt duals (the Schrödinger picture), the restrictions Aρc →֒ A
F∗
−→ B and Bσ c →֒ B

G∗
−→ A are

positive trace-preserving maps between C∗-algebras.

Positivity of the Hilbert–Schmidt duals guarantees that density matrices living in the respective com-

mutants always get sent to density matrices under the conditionals. However, inference can still be made

even when positivity fails outside these commutants, as the following example illustrates.

13Also, I could not find a 4× 4 density matrix ν for which the conditional domains are not C∗-subalgebras, and I suspect

that this may always be the case. I hope to resolve this in future work.
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Example 5.14. Set |±〉 := 1√
2
(|↑〉± |↓〉). In terms of Example 4.13 (see also Example 5.10), suppose

that Alice obtains new evidence in the form of the density matrix |−〉〈−| ∈ Aρc . Using the condi-

tional F∗, she infers Bob (B) to have density matrix | ↑〉〈↑ |. The same result is obtained by a standard

quantum-mechanical wave collapse argument, using the expression |Ψ〉 =√
p|−↑〉+√

q|+↓〉, as well

as by the acausal belief propagation map of [17, Section III.B.]. However, if Alice instead obtains new

evidence |↑〉〈↑| /∈ Aρc , then F∗ (|↑〉〈↑|) = 1
2

[

1
√

p/q√
q/p 1

]

, which is not a density matrix unless p = 1
2
.

Nevertheless, this matrix is a non-orthogonal projection onto the span of the vector
√

p| ↑〉+√
q| ↓〉,

which is the pure state obtained by a standard quantum-mechanical wave collapse argument (it is orthog-

onal when p = 1
2
). Meanwhile, the acausal belief propagation map of [17] provides the density matrix

|+〉〈+|= 1
2

[

1 1
1 1

]

for all p ∈ (0,1), which seems to lose this correlated information. Further investigation

is necessary to establish the differences between these approaches.

6 Discussion and future directions

The work presented here investigated conditioning of joint states with faithful marginals for quantum

systems from the Markov category perspective. Our definitions are distinct from those of [15], which

defines conditioning in terms of predicates and uses operations analogous to those used to define the

Petz recovery map (similar constructions are done using the Q1/2 calculus in [7, 17]). The root of the

distinction between these two approaches comes from our usage of the multiplication map to formulate

Bayes maps, even though it is not a positive map. By using quantum Markov categories [20], we have

been able to define conditioning in a way analogous to what is done in the classical theory, while still

using the multiplication map, and then finding conditions for which the resulting maps are positive.

Some work in progress includes the extension of the results presented here to the case where the

marginal density matrices are not invertible. Although this seems like an innocent generalization, this

is where most of the intricate details occur when analyzing the case of disintegrations and Bayesian in-

version in [21, 22]. It is also what accentuates the difference between Bayesian inverses and the Petz

recovery map. Other work in progress includes generalizing Theorem 5.3 for finite-dimensional C∗-

algebras, i.e. direct sums of matrix algebras, to include hybrid classical-quantum systems14 and to repro-

duce the conditional version of Bayes’ theorem (Theorem 3.8) for commutative algebras (Theorem 3.7

was already reproduced in [22, Example 6.33]).

I see many interesting future directions based on the ideas presented here. For example, what does

the set of joint states admitting positive conditionals look like? In what sense can non-positive maps

be used to provide inferential information more generally than in Example 5.14? What is the structure

of conditionals for multi-partite (as opposed to bi-partite) states on quantum systems? What are the

quantum analogues of the theorems describing the consistency of successive conditioning in classical

probability theory (cf. [13, Lemma 11.11] and the references therein)? Are there approximate versions

of the results presented here using distance measures between states, such as the fidelity or statistical

distance?

Acknowledgements. The author thanks the reviewers of QPL’21 for their numerous helpful sug-
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14The appearance of the modular group in Lemma 5.1 and Theorem 5.3 suggests that it may even be possible to extend

some of these results to faithful states on certain infinite-dimensional C∗-algebras.
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