
M. Backens, C. Heunen (Eds.): Quantum Physics and Logic (QPL) 2021

EPTCS 343, 2021, pp. 193–209, doi:10.4204/EPTCS.343.10

© T. Carette, Y. D’Anello & S. Perdrix

This work is licensed under the

Creative Commons Attribution License.

Quantum Algorithms and Oracles with the Scalable

ZX-calculus

Titouan Carette Yohann D’Anello Simon Perdrix
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The ZX-calculus was introduced as a graphical language able to represent specific quantum primi-

tives in an intuitive way. The recent completeness results have shown the theoretical possibility of a

purely graphical description of quantum processes. However, in practice, such approaches are lim-

ited by the intrinsic low level nature of ZX calculus. The scalable notations have been proposed as

an attempt to recover an higher level point of view while maintaining the topological rewriting rules

of a graphical language. We demonstrate that the scalable ZX-calculus provides a formal, intuitive,

and compact framework to describe and prove quantum algorithms. As a proof of concept, we con-

sider the standard oracle-based quantum algorithms: Deutsch-Jozsa, Bernstein-Vazirani, Simon, and

Grover algorithms, and we show they can be described and proved graphically.

Introduction

The ZX-calculus is a graphical language for quantum computing [12]. This is a formal but also intu-

itive language which captures fundamental properties of quantum mechanics. Contrary to the quantum

circuit formalism, the ZX-calculus is equipped with a complete equational theory [22, 20, 23]. This

theoretical result makes the ZX-calculus a ideal tool for multiple applications in quantum computing.

Among others we can cite the optimisation of quantum circuits [24, 15, 3] and the design of fault tolerant

quantum computation [5, 16, 21, 4]. In this paper, we want to investigate one of the initial motivations

of the ZX-calculus: make the ZX-calculus is a companion language for the description and the proof of

quantum algorithms. We consider the standard oracle-based quantum algorithms: Deutsch-Jozsa [14],

Bernstein-Vazirani [6], Simon [26], and Grover [18] algorithms and show they can be formulated and

proved graphically. Our approach relies on the diagrammatic description of the quantum oracles and, in

particular, a graphical axiomatisation of the various promises the oracles satisfy.

A section of the ”Dodo book” [13] is dedicated to the description of quantum algorithms in ZX-

calculus (in particular Deutsch-Jozsa and Grover), and a few articles [28, 27, 17] address the diagram-

matic description of quantum oracles, but we show that the recent developments in the formalism, mainly

the scalable construction [7, 9] and the discard construction [8] allow for more self-contained, accurate

and compact ZX-based proofs of quantum algorithms. Notice that depending on the algorithm we also

use generators of the ZH-calculus [1] a variant of the ZX-calculus.

1 The ZX-calculus

In this section we introduce various graphical tools. We use the ZX-calculus of [12] alongside the H

harvestman of [1]. We work with the extension to mixed state quantum mechanics of [8] and the scalable

notations of [7]. Thus, the language could be denoted SZXH -calculus, for simplicity we will rather say

ZX-calculus.
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1.1 String diagrams

Our diagrams are arrows in a C-colored prop, i.e., a small strict symmetric monoidal category whose

monoid of objects is spanned by a set C. We represent maps as colored string diagrams. A map f : a → b

is depicted as a box with input and output wires: ..
. ..

.
f . By convention, we do not write the colors

of the wires if this is clear from context. We do not draw wires of tensor unit type. We draw our diagrams

from left to right. The composition g◦ f : a → c of two diagrams f : a → b and g : b → c is depicted by

plugging diagrams:

..

. ..
.g..

.
f

de f
= ..

. ..
.g ◦ ..

. ..
.

f .

The tensor f ⊗g : a⊗c → b⊗d of two diagrams f : a → b and g : c → d is depicted by juxtaposition

of diagrams:

..

. ..
.g

..

. ..
.

f
de f
= ..

. ..
.

f ⊗ ..
. ..

.g .

For any color c ∈C, the identity idc : c → c is depicted: . The swap map σc,c′ : c⊗ c′ → c′⊗ c is

depicted: . σn,m is a natural involution meaning:

= and for any diagram D : ..
. ..

.
D

..

.
=

..

...
.

D
..
. .

Our language also has a symmetric compact structure. For every color c ∈ C, there are two maps,

cup map : I → c⊗ c and the cap map : c⊗ c → I, satisfying:

= = = = .

1.2 Scalable notations

Given a monochromatic prop D we define a colored prop SD . D being monochromatic we denote 1 the

only color. All object are tensor products of copies of 1, the tensor of n copies is denoted n and the tensor

unit is denoted 0. SD is a N
∗-colored prop, where N

∗ are the natural integers without zero. The colors

are denoted [n], the tensor unit is denoted [0]. The size of a type is inductively defined as: |[n]| de f
= n and

|a⊗b| de f
= |a|+ |b|. We use thin wires to denote wires of type [1] and thick wires denote any [n]. We write

[m]n for the tensor product of n wires [m] with the convention [m]0 = [0]. For every generator g : n → m

of D and every k ∈ N
∗ there is a generator Sk(g) : [k]n → [k]m in SD . Those scaled generators satisfy

the same equations as the original ones. This induces a family of strict symmetric monoidal functors:

Sk : D → SD defined on objects as Sk(1)
de f
= [k] and on morphisms as Sk(g)

de f
= Sk(g). SD contains also

two fundamental families of generators, the dividers and the gatherers:

: [n+1]→ [1]⊗ [n] : [1]⊗ [n]→ [n+1]

satisfying:

= = .
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From those equations we can deduce a coherence like result, the rewiring lemma proved in [9]:

lemma 1 (Rewiring). Given to types a and b such that |a|= |b|, there is a unique isomorphism γa,b : a→ b

made of dividers and gatherers.

In other words, any well typed equation involving only dividers and gatherers holds. The boxing

functor [ ] : SD → SD is defined as [a]
de f
= [|a|] on objects and as [ f ]

de f
= γb,[b] ◦ f ◦ γ[a],a on morphisms

f : a → b. Boxing is not a strict but a strong monoidal functor, in fact we have:

[ f ⊗g] =
[ f ]

[g]

We define inductively the thickening endofunctor: Tk : SD → SD as Tk([n])
de f
= [kn], T1

de f
= idSD and

..

.
Tk+1( f )..

. de f
= ..

.

..

.

..

.
T1( f )

Tk( f )

..

.

..

.

..

.

Finally, for each generator g in D we add the equations: Tk(S1(g)) = Sk(g). Thus Tl ◦Sk = Skl , this

implies graphically:

..

.
Sk+1(g)..

. = ..
.

..

.

..

.
S1(g)

Sk(g)

..

.

..

.

..

.

It is shown in [9] that any diagram in SD can be rewritten into normal form.

lemma 2 (Normal form). For each f : a → b in SD there is a unique | f | : |a| → |b| in D such that

f = γ[1]|b|,b ◦S1(| f |)◦ γ[1]|a| ,a

This gives the wire stripping functor | | : SD → D . Note that f 7→ |Sk( f )| is the multiplexing

functor of [11]. If D has a compact structure then so does SD . In this situation, an iteration mechanism

is available.

lemma 3 (Iteration). Given any diagram f : a → a in SD:

Tk+1([ f ])

[(k+1)a]

[ka][a]

[a] [a]

=
(

[ f ]
)k+1

This allows to represent for loops graphically. In practice we need to compute the thickening of [ f ].
Thickening a scaled generator is by definition very easy, this only increases the size of every wires and

generators. However, thickening a divider or a gatherer involves a permutation of the wires. This allows

to apply the iteration mechanism as soon as we have a good representation of permutations.
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1.3 Arachnids

Various graphical calculi have been introduced to represent quantum mechanics over qubits. The ZX-

calculus was first introduced in [12]. Then the ZW-calculus in [19] and latter the ZH-calculus [1]. Those

languages have their own specificities but are similar enough to be combined when needed. In this paper

we will use a mix of ZX-calculus and ZH-calculus. The green and red families of spiders are indexed by

phase vectors in
(

R
/

2πZ
)k

, by convention the phase is 0 if not given. The yellow family of harvestmen

(a variation of spiders obeying a modified fusion rule) is indexed by complex vectors, by convention the

phase is −1 if not given. They are respectively depicted:

a..
. ..

.
: ·[k]n → [k]m a..

. ..
.

: [k]n → [k]m ..
. ..

.
x : [k]n → [k]m

Denoting α1 (resp. x1) the head of the phase vector α (resp. x) and α ′ (resp. x′) its tail, the arachnids

interact with dividers and gatherers with:

α..
. ..

.
..
.

..

.
=

α ′..
. ..

.
..
.

α1..
. ..

.

α..
. ..

.
..
.

..

.
=

α ′..
. ..

.
..
.

α1..
. ..

.

..

. ..
.

x

..

.

..

.
=

..

. ..
.

..

.
..
. ..

.
x1

x′

All of them are flexsymmetric that is for every arachnid g : a → b and every permutation of wires σ :

..

. ..
.g

σ

..

. ..
...

.

..

.
=

..

. ..
.g

..

. ..
.

.

Furthermore, we can bend the legs of the arachnids:

α..
. ..

. = α ..
...

.
α..

. ..
. = α ..

...
. ..

. ..
.

x = ..
...

.
x

They all satisfy fusion rules:

α..
. ..

.

β..
. ..

.
= α +β

..

. ..
.

..

. ..
.

α..
. ..

.

β..
. ..

.
= α +β

..

. ..
.

..

. ..
. ..

. ..
.

..

. ..
.
=

..

. ..
.

..

. ..
.

Note we only define fusion of yellow boxes indexed by phase −1.

The three arachnids interact with each other in the following way:

..

. ..
. = ..

. ..
.

..

.
..
. ..

. ..
. = ..

.

..

.
..
...

.
α..

. ..
. = α..

. ..
.

1.4 Quantum gates

Quantum processes are maps in the category CPM2 whose objects are the sets M2n×2n(C) of matrices

and arrows are the completely positive maps. M2×2(C) corresponds to a qubit and M2n×2n(C) to a

register of n qubits. We denote 2 the set {0,1}. |x〉 with x ∈ 2n denotes the canonical basis of C2n

. We

write 〈x| de f
= |x〉† where † is the Hermitian adjoint. To each type we associate an Hilbert space and to each

diagram we associate a completely positive map. In other words, there is an interpretation functor

J K : SD → CPM2. We have J[n]K de f
= M2n×2n(C) and Ja⊗bK de f

= JaK⊗ JbK. Note that in general [a+b] 6=
[a]⊗ [b], but we always have J[a+b]K ≃ J[a]⊗ [b]K ≃ M2a+b×2a+b(C). The wires have interpretations.
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J K de f
= ρ 7→ ρ

r z
de f
= ρ ⊗ρ ′ 7→ ρ ′⊗ρ

r z
de f
= ∑

x∈2n
|xx〉〈xx|

r z
de f
= ρ 7→ ∑

x∈2n
〈xx|ρ |xx〉.

The dividers and gatherers act trivially:
r z

de f
= ρ 7→ ρ

r z
de f
= ρ 7→ ρ

We use the well tempered normalization of [2] setting J⋆K de f
= 1√

2
. The arachnids of type [k]n → [k]m

have interpretations:
r

a..
. ..

.
z

de f
= ρ 7→V ρV † with V

de f
= 2k n+m−2

4 ∑
x∈2k

ei(x·a)|x〉⊗n〈x|⊗m

r
a..

. ..
.
z

de f
= ρ 7→V ρV † with V

de f
= 2k 2−n−m

4 ∑
xi∈2k

k

∏
j=1

1+e
i

(

a j+
n+m

∑
i=1

xi, j

)

2
|x1 · · ·xn〉〈xn+1 · · ·xn+m|

r
..
. ..

.
x

z
de f
= ρ 7→V ρV † with V

de f
= 2−k n+m

4 ∑
xi∈2k

k

∏
j=1

x

n+m
∧

i=1

xi, j |x1 · · ·xn〉〈xn+1 · · ·xn+m|

Where the xi are binary words of size k and xi, j is the j-th bit of xi. By convention if the phase is not given

it is 0 for red and green spiders and -1 for yellow ones. Usually quantum algorithms are presented as

quantum circuits built from elementary quantum gates. Our language is expressive enough to represent

all of them. The main idea is that our generators decompose quantum gates into more fundamental parts

which equational theory is better understood. The most common states are represented:

State |0〉 |1〉 |0〉+|1〉√
2

|0〉−|1〉√
2

Diagram
⋆

π
⋆ ⋆

π
⋆

Density Matrix

(

1 0

0 0

) (

0 0

0 1

) (

1
2

1
2

1
2

1
2

) (

1
2 − 1

2

− 1
2

1
2

)

We will also use the mirror image of those states corresponding to effects. By doing so we will obtain

post-selected circuits and we will be able to compute amplitudes.

The following table provides the representation of the most common quantum gates gates. They are

all pure maps, i.e., operators of the form: ρ 7→V ρV †. We just give the corresponding matrix V .

Name H Not Z Swap C-Not C-Z Toffoli

Gate H Z
Z

Diagram π π

V

(

1√
2

1√
2

1√
2

−1√
2

)

(

0 1

1 0

) (

1 0

0 −1

)









1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

































1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

























We will also use the discard map and its transpose which is the non normalized completly mixed

state:
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J K de f
= ρ 7→ Tr(ρ)

s
⋆2

{
de f
= ρ 7→ ∑

x∈2

|x〉〈x|

The first corresponds to discarding data and the second is a uniform probabilistic mixture of states.

The isometries, the maps such that V V † = , satisfies: V = .

2 The calculus of oracles

Many quantum algorithms are defined using oracles. An oracle can be viewed as a black box, it is

not however an arbitrary map, a quantum oracle may have some structure: they are usually quantum

encodings of classical functions, moreover some promises can provide additional informations about

the behaviour of the oracle. In the spirit of the ZX-calculus, we decompose, in this section, classes of

quantum oracles into smaller components with better understood algebraic properties.

2.1 Function arrows

Given a function f : 2n → 2m we define a function arrow:
f

: [n]→ [m].t
f

|
= ρ 7→V ρV † with V

de f
= |x〉 7→ 2

m−n
4 | f (x)〉

Any function arrow satisfies:

x

f
= f (x)

f
=

f
=

f

f

.

Where, with a slight abuse of notation, the π factor is omitted, e.g. xπ is simply depicted x , when it

is clear that x is a binary vector. We can visualize some properties of function as graphical equations for

the corresponding function arrow:

lemma 4. Given a function arrow f :

f is balanced
de f⇔ ∀x,y ∈ 2m | f−1 ({x}) |= | f−1 ({y}) | ⇔

f
=

f is injective
de f⇔ ∀x,y ∈ 2n ( f (x) = f (y)⇒ x = y) ⇔

f
=

f

f

We see that being balanced implies being surjective. But the converse is not true.

2.2 Red arrows

A function f : 2n → 2m can be seen as a map f : Fn
2 → F

m
2 , if this map is F2-linear then it can be described

by a matrix A ∈ Mm×n (F2). The red matrix arrows indexed by A is defined by
A

de f
=

f
. By

convention if the index matrix is not given it is assumed that it is the full of one matrix. Those arrows

have been extensively studied in [7] and [9]. We recall the main properties of red matrix arrows. First

the F2-linearity translates to:
A

= and
A

=

A

A

.

They interact with the dividers and gatherers as:
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(

A B
)

=

A

B

and

(

A

B

)

=

A

B

.

Most of the properties of red matrix arrows can be summed up into one meta rule:

A B
⋆h

=
C D

⋆k

⇔ Im

(

C

D

)

= Ker
(

A B
)

With k
de f
= dim

(

Ker

(

C

D

))

and h
de f
= dim

(

coKer
(

A B
))

.

A last important rule is the interaction with the Hadamard gate:
A

=
At

.

Red matrix arrows were the first motivation to the definition of scalable notations in [10] where they

are applied to the design of error correcting codes.

2.3 Yellow arrows

As noted in [9], the possibility to index arrows by matrices is linked to a bi-algebra structure. If the

red/green bi-algebra leads to red matrix arrows, the yellow/green bi-algebra gives us another family of

matrix arrows over the boolean semi-ring B
de f
= ({0,1},∧,∨). A function f : 2n → 2m can be seen as a

map f : Bn → B
m, if this map is a homomorphism of B-semi module, that is f (a∧b) = f (a)∧ f (b) and

f (1) = 1, then it can be described by a matrix A ∈Mm×n (B). The yellow matrix arrow indexed by A is

then defined by
A

de f
=

f
. We take the same convention as red arrows, if no matrix is given then

it is imply that the arrow is indexed by the full of one matrix. Being a homomorphism of B-semi module

translates to: π

A
= π and

A
=

A

A

. Yellow matrix have less properties than

red ones. However we still have:

(

A B
)

=

A

B

and

(

A

B

)

=

A

B

.

2.4 Quantum oracle

The function arrow of f is unitary if and only if f is a bijection. There is however a standard way to

associate with any function f : 2n → 2m a unitary transformation defined as U f = |x〉|y〉 7→ |x〉| f (x)⊕ y〉,
often call quantum oracle. As pointed out in [13], the quantum oracle can be constructed as follows:

f : [n]⊗ [m] → [n]⊗ [m]. Indeed,

t
f

|
= |x〉|y〉 7→ |x〉| f (x)⊕ y〉. We can double check that

quantum oracles are involutions:

f f = f f =
f

=
f

= =
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From a quantum oracle we can easily compute the original function using ancillas.

f

x

⋆n

⋆m = f
x

x

⋆n

⋆m =
f (x)

⋆m =
f (x)

⋆m

Note that the Toffoli gate is in fact the quantum oracle representing the AND gate. Often, we consider

boolean functions, then, another kind of oracle is available. For any boolean function f : 2n → 2, the

diagonal oracle of f is

π

f : [n]→ [n]:

u
v

π

f

}
~= |x〉 7→ (−1) f (x)|x〉. We can construct the diagonal

oracle from the oracle using ancillas:

f

π

⋆n = f

π

⋆n = f

π

⋆n
π

= f

π

We have now enough graphical structures to tackle the most basic quantum algorithms.

3 Quantum Algorithms

In this section we provide a diagrammatic treatment of some quantum algorithms that frequently appear

in quantum computing textbooks like [25]. They are oracle-based: given a function which satisfies

some properties (the promise), we want to recover some information about the function using a minimal

number of queries to the corresponding quantum oracle.

3.1 Bernstein-Vazirani

The Bernstein-Vazirani algorithm has been introduced in [6]. The goal is to recover a string of bits

encoded into a function.

Input: A function f : {0,1}n →{0,1} of the form f (x) = st · x with s ∈ {0,1}n.

Problem: Find s.

Circuit:
H

H

U f

|0〉⊗n

|1〉

H
→

π

f

⋆n

⋆

Reformulating graphically the promise on f gives us:
f

=
st

and then:

π

st⋆

⋆n

=
π

st

⋆n+1

=
π

st

π

⋆n+1

=
st

π

⋆n

= π

⋆n
s

= s

⋆n

We see the circuit directly outputs the state |s〉.
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3.2 Deutsch-Jozsa

The Deutsch-Jozsa algorithm [14] is historically the first of all quantum algorithms. Given a function

that is known to be either constant or balanced, the goal is to decide in which case we are using only one

query to the oracle. The version we present here is a little bit more general than usual, since we do not

require f to output a single bit. The general principle is the same as Bernstein-Vazirani,the difference is

that we are here interested in the probability of outputting |0〉⊗n.

Input: A function f : {0,1}n →{0,1}m which is either constant or balanced.

Problem: Decide whether f is constant or balanced.

Circuit:
H

H

U f

|0〉⊗n

|1〉⊗m

H
→

π

f

⋆n

⋆n

We compute the amplitude of the outcome |0〉⊗n:

π

f

⋆n

⋆m

⋆n

=
π

f

⋆2n+m

=
π

π

f⋆2n+m

= π

f⋆2n

We then have two cases:

• If f is balanced then
f

= and π

f⋆2n

= π

⋆2n

= 0.

• If f is constant then there exists x ∈ {0,1}m such that
f

= x :

π

f⋆2n

= π x

⋆2n

= π x = 1.

So if the outcome is |0〉⊗n then f is constant otherwise f is balanced.

3.3 Simon

Simon’s algorithm is more subtle than the algorithm we have seen so far. This algorithm is probabilistic,

moreover the quantum computation is combined with a classical processing. We are given a strictly

periodic function f and the goal is to find the period s. The quantum part of the algorithm is nothing but

a random generator that outputs a string y such that y · s = 0, in a uniform way. Repeating this quantum

part several times, this gives, with high probability, enough linearly independent equations to solve the

linear system with a classical algorithm and find s.
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Input:
A function f : {0,1}n →{0,1}n with an s ∈ {0,1}n, s 6= 0n, such that:

f (x) = f (y)⇔ (x = y)∨ (x⊕ s = y).

Problem: Find s.

Circuit:
H

U f

H|0〉⊗n

|0〉⊗n
→ f

⋆n

⋆n

The translation of the promise into a graphical property is less straightforward than with the algo-

rithms we have seen so far. Let h be an orthogonal projector on s⊥, h is clearly strictly s periodic. So

there is a bijective function g : {0,1}n →{0,1}n such that
f

=
h g

. The circuit reduces to:

⋆n

h
g⋆n =

h
g

⋆2n

=
hg⋆2n

=
h⋆2n

=
h⋆2n

=
h⋆2n

.

Since by definition ht = h. We can directly see the resulting state: it is a uniform mixture of the

elements in s⊥. In other words, we can use this circuit to sample uniformly at random vectors yi such

that yi · s = 0.

3.4 Grover

The last and most famous algorithm we present is the Grover’s Algorithm [18]. Given a boolean function

f : 2n → 2 such that 1 has a unique preimage x. The objective is to find x. Roughly speaking, the

algorithm consists in applying k times a combination of the quantum oracle and a diffusion operator on

the superposition of all classical inputs. We then show that choosing k wisely, the output is |x〉 with a

high probability.

Input: A boolean function f : {0,1}n →{0,1} such that f−1({1}) = {x} with x ∈ {0,1}n.

Problem: Find x.

Circuit:
H

H

U f

|0〉⊗n

|1〉

H H

k

.... Uor →

[kn]

[(k-1)n][n]

[n] [n]

π

f

⋆n

π

π

×

Here we need to explain the translation into diagrams. First the ancillas is only here to form the

diagonal oracles we then have:
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H

H

U f

|0〉⊗n

|1〉

H H

k

.... Uor → H D f|0〉⊗n H H

k

.... Dor

translating into diagrams:

H D f|0〉⊗n H H

k

.... Dor →

k

....⋆n

π

f

π

π

Now, using the iteration mechanism of Lemma 3 to represent the k queries gives:

k

....⋆n

π

f

π

π

→

[kn]

[(k-1)n][n]

[n] [n]

π

f

⋆n

π

π

×

The × stands for the matrix resulting of the thickening of the AND gate. The promise translates to:
f

= x̄ where x̄ is the bit-wise negation of x. Our goal is to compute the probability of the

outcome |x〉. Making the x red phase slides gives:

x
⋆n

π

π

⋆n

π

x̄

[kn]

××
=

x

⋆2n

π

π

π

x̄

[kn]

×× =

⋆2n

π

π

π

π

[kn]

××

Using the iteration mechanism we get:

⋆2n

π

[2kn]

π

× .

Here we will translate a geometric approach into diagrams.

lemma 5. Setting ν
de f
= 1√

2n−1
, cos( µ

2
)

de f
= −1√

2n
and sin( µ

2
)

de f
=

√
2n−1√

2n
, the map V

de f
= π π

ν

satisfies:

• = V † • V V † =

• = 1
ν V • V

π

π

= µ π
2

−π
2
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This lemma allows us to rewrite the diagram as follows:

1
ν

⋆2n

π

[2kn]

πVV †

V †

V

× .

Making the isometries slide gives:

1
ν

⋆2n

π

[2kn]

π

V V †

× =

1
ν

1
2

µ

⋆2n

[2kn]

−1
2

= 1
2

⋆2n

2kµ−1
2

1
ν

The last step being the iteration mechanism. We can now compute the interpretation:

u
v 1

2

⋆2n

2kµ−1
2

1
ν

}
~ =

∣

∣

∣

∣

(

1 0
)

(

cos(kµ) sin(kµ)
−sin(kµ) cos(kµ)

)(

−cos( µ
2
)

sin( µ
2
)

)∣

∣

∣

∣

2

= cos2(2k+1
2

µ)

So the probability is maximal when 2k+1
2

µ ≃ 0 mod π . Moreover µ = π ± 2√
2n
+ o( 1√

2n
), thus k ≃

π
4

√
2n.

Conclusion

In this article, we have used scalable notations to verify some standard quantum algorithms. For the

moment, this work is merely exploratory. Trying to tackle graphically many algorithms and protocols

is the only way to evaluate the current ergonomics of graphical methods. The ultimate goal is to be

able to compile high level quantum programming languages directly into diagrams. Then a graphical

proof assistant could be used to provide proofs of correctness and optimizations. Case studies like in this

paper are steps toward a double understanding. First, how graphical languages must be designed to fit

this purpose. Second, what should be the specifications of future graphical proof assistants. Those two

perspectives are clearly entangled.

If the graphical verification of most of the algorithms we presented are neat and straightforward. Our

approach of Grover’s algorithm is still not rigorous enough to be implemented in a future proof assistant.

More works need to be done on the higher level structure like the iteration mechanism we have sketched

out.
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A Proofs

lemma 6 (Iteration). Given any diagram f : a → a in SD:

Tk+1([ f ])

[(k+1)a]

[ka][a]

[a] [a]

=
(

[ f ]
)k+1

Proof. By induction, for k = 0:

T1([ f ])

[a] [a]
=

[a][a]
T1([ f ]) =

[a] [a]
T1([ f ]) = [ f ]

For k > 0, let k = l +1:

Tl+2([ f ])

[(l +2)a]

[(l +1)a][a]

[a] [a]

=

[(l +2)a]

[a]

[a]
T1([ f ])

Tl+1([ f ])

[a]

=
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[a]

[a]

[a]
[ f ]

Tl+1([ f ])

[a]

=

[(l +1)a]

[a]

[a]
[ f ]

Tl+1([ f ])

[a]

[a]

=

[(l +1)a]

[a]

[a]
[ f ]

Tl+1([ f ])

[a]

[a]

= Tl+1([ f ])

[(l +1)a]

[la][a]

[a] [a]
[ f ]

[a]

lemma 7. Given a function arrow f :

f is balanced
de f⇔ ∀x,y ∈ 2m | f−1 ({x}) |= | f−1 ({y}) | ⇔

f
=

f is injective
de f⇔ ∀x,y ∈ 2n ( f (x) = f (y)⇒ x = y) ⇔

f
=

f

f

Proof.

f
= ⇔

t
f

|
= J K

⇔ ∑
x∈2n

| f (x)〉 = ∑
y∈2m

2
n−m

2 |y〉

⇔ ∀x,y ∈ 2m | f−1 ({x}) |= | f−1 ({y}) |

f
=

f

f

⇔
t

f
|
=

u
wv

f

f

}
�~

⇔ ∀x,y ∈ 2n δx=y| f (x)〉 = δ f (x)= f (y)| f (x)〉
⇔ ∀x,y ∈ 2n ( f (x) = f (y)⇒ x = y)

lemma 8. Setting ν
de f
= 1√

2n−1
, cos( µπ

2
)

de f
= −1√

2n
and sin( µπ

2
)

de f
=

√
2n−1√

2n
, the map V

de f
= π π

ν

satisfies:
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• = V † • V V † =

• = 1
ν V • V

π

π

= µ π
2

−π
2

Proof. We proceed point by point:

• By rewriting:

V † = ππ

ν

= ππ =

• By rewriting:

= ππ = π π

ν
1
ν

= 1
ν V

• First we can check:

u
v

ν2

1

}
~ = J K and then

ν2

1 = . So:

V V † = π π

ν
ππ

ν

=

νν π

=

ν2

π

= =

• First we have : V

π

π

=

π

π

π π

ν

= π π π

ν

. So the ques-

tion reduces to show that: π π = π πµ1
π
2

ν
−π
2

1
ν

.

We proceed by induction on n. If n = 1 then ν = 1 and µ = −π
2

:

= ππ = −π
2

−π
2

−π
2

ππ = π µ π
2

−π
2

For n > 1 we need the following observation:

1√
2

(

1 1

1 −1

)

⊗
(

1√
2n−1

2n−1−1√
2n−1

1√
2n−1

−1√
2n−1

)









1 0

0 1

0 1

0 1









=









1 0

0 1

0 1

0 1









(

1√
2n

2n−1√
2n

1√
2n

−1√
2n

)

.

Graphically:

µ ′π π
2

ν ′
−π
2

1
ν ′

1

1
1 =

π
µπ π

2

ν
−π
2

1
ν

π
π
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with ν ′ de f
= 1√

2n−1−1
, cos( µ ′π

2
)

de f
= −1√

2n−1
and sin( µ ′π

2
)

de f
=

√
2n−1−1√

2n−1
.

We have:

π π = π
π

π

ππ

The induction hypothesis gives:

π
π

π

πµ ′π π
2

ν ′

−π
2

1
ν ′

π

And finally, using the previous observation:

π
π

π

πµ ′π π
2

ν ′

−π
2

1
ν ′

π
= π πµ1

π
2

ν
−π
2

1
ν
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