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We introduce residuated ortholattices as a generalization of—and environment for the investigation

of—orthomodular lattices. We establish a number of basic algebraic facts regarding these struc-

tures, characterize orthomodular lattices as those residuated ortholattices whose residual operation

is term-definable in the involutive lattice signature, and demonstrate that residuated ortholattices are

the equivalent algebraic semantics of an algebraizable propositional logic. We also show that or-

thomodular lattices may be interpreted in residuated ortholattices via a translation in the spirit of

the double-negation translation of Boolean algebras into Heyting algebras, and conclude with some

remarks about decidability.

1 Introduction

Orthomodular lattices have been studied extensively as an algebraic foundation for reasoning in quantum

mechanics (see, e.g., [7]), and their assertional logic is among the most prominent quantum logics (see,

e.g., [9, p. 483]). Regrettably, the algebraic theory of orthomodular lattices suffers from several defects

that have inhibited its study. For instance, the variety of orthomodular lattices is not closed under Mac-

Neille completions [13] or even canonical completions [14]. Because existing proofs that ortholattices

have the finite model property invoke the MacNeille completion [2], this presents a significant obstacle

in tackling decidability questions. Indeed, it remains an open question whether the equational theory of

orthomodular lattices (or, equivalently, their assertional logic) is decidable.

Many of these challenges seem to be due to the orthomodular law itself, whose properties contribute

to the underlying difficulty of the previously-mentioned questions. Consequently, one plausible approach

to address these questions is to embed orthomodular lattices in an environment that is more amenable

from the perspective of completions, decidability, proof theory, and related issues. The present study

contributes to research in this direction, introducing residuated ortholattices as a candidate for such an

amenable environment.

Section 2 defines and contextualizes residuated ortholattices, and undertakes a preliminary study of

their algebraic properties. Notably, we provide several characterizations of orthomodular lattices within

this environment in Section 2.2. We subsequently establish in Section 3 that (in contrast to ortholat-

tices) residuated ortholattices are the equivalent algebraic semantics of their assertional logic. Finally, in

Section 4 we exhibit a double-negation translation of orthomodular lattices into residuated ortholattices.

As an application of this translation, we show that the decidability of the equational theory of any of
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several varieties of residuated ortholattices suffices to guarantee the decidability of the equational theory

of the corresponding variety of orthomodular lattices. In particular, if the equational theory of residuated

ortholattices is decidable, then so is the equational theory of orthomodular lattices.

2 From orthomodular lattices to residuated ortholattices

We assume familiarity with lattice theory, universal algebra, and algebraic logic, and we invite the reader

to consult [4, 11, 9] as references on these topics. A bounded involutive lattice is a bounded lattice

(A,∧,∨,0,1) equipped with an antitone involution ¬. A bounded involutive lattice is called an ortholat-

tice (or an OL) if it satisfies either of the equivalent identities x∧¬x ≈ 0 or x∨¬x ≈ 1,1 and an ortholattice

A is called an orthomodular lattice (or an OML) if it satisfies the quasiequation

x ≤ y Ô⇒ y ≈ x∨(y∧¬x),

where as usual x ≤ y abbreviates x∧ y ≈ x. Equivalently, by replacing x by x∧ y, orthomodular lattices

may be defined relative to ortholattices by the identity y ≈ (x∧y)∨(y∧¬(x∧y)). Due to their relevance

in the logical foundations of quantum mechanics as well as purely algebraic concerns, ortholattices and

orthomodular lattices are the subject of an extensive literature; see e.g. [3, 7] for an overview.

In any bounded involutive lattice (A,∧,∨,¬,0,1), we may define two binary operations ⋅ and → by

x ⋅y ∶= x∧(¬x∨y),

x→ y ∶= ¬x∨(x∧y),

for all x,y ∈ A. The operation ⋅ is usually called Sasaki product,2 and as usual we will often abbreviate

x ⋅y by xy. The operation → is well-known as a candidate for an implication-like operation in OMLs (see,

e.g., [15]), and has been called Sasaki hook in this context. However, in our more general setting, → will

not behave as an implication. We caution that neither ⋅ nor → is associative or commutative in general.

If A = (A,∧,∨,¬,0,1) is a bounded involutive lattice, we say that ⋅ is residuated3 provided that there

exists a binary operation / on A such that for all x,y,z ∈ A,

x ⋅y ≤ z ⇐⇒ y ≤ x/z. (R)

Dually, we say that→ is co-residuated if there exists a binary operation ⊙ on A such that for all x,y,z ∈A,

y ≤ x→ z ⇐⇒ x⊙y ≤ z. (CoR)

Chajda and Länger show in [5] that for each orthomodular lattice A, Sasaki product ⋅ is residuated and

x/y = x→ y for all x,y ∈ A (and therefore also that → is co-residuated and x⊙y = x ⋅y for all x,y ∈ A). This

does not hold for bounded involutive lattices generally, but we may obtain the following.

Proposition 2.1. Let A be a bounded involutive lattice. The following are equivalent.

(1) The operation ⋅ is residuated.

(2) The operation → is co-residuated.

1As usual in universal-algebraic studies, we use the symbol ≈ to denote formal equality.
2Note that some authors denote the term x∧(¬x∨y) by y ⋅x, while others denote it by x ⋅y as we do here.
3
Most studies of residuated structures focus on binary operations with both left and right (co-)residuals. Since we consider

only structures with a (co-)residual on one side, we will simply use the term (co-)residuated for brevity.
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n 2 3 4 5 6 7 8 9 10 11 12

OMLs 1 0 1 0 1 0 2 0 2 0 3

ROLs 1 0 1 0 2 0 4 0 7 0 15

Table 1: The number of OMLs and ROLs of cardinality n up to isomorphism.

Moreover, if A is a bounded involutive lattice for which the above equivalent conditions hold, then A is

an ortholattice.

Proof. Suppose that ⋅ is residuated and that / is its residual. For x,y ∈ A we define a binary operation ⊙
on A by

x⊙y = ¬(y/¬x).

Now observe that for all x,y,z ∈ A,

x ≤ y→ z ⇐⇒ x ≤ ¬(y ⋅¬z)

⇐⇒ y ⋅¬z ≤ ¬x

⇐⇒ ¬z ≤ y/¬x

⇐⇒ ¬(y/¬x) ≤ z.

⇐⇒ x⊙y ≤ z.

Thus ⊙ is a co-residual for →. The converse follows by a similar argument, showing that if ⊙ is a

co-residual for →, then x/y = ¬(x⊙¬y) defines a residual for ⋅.
Now suppose that A satisfies the equivalent conditions (1) and (2) and let x ∈ A. Direct computation

shows that x ⋅0 = x∧¬x for all x ∈ A. On the other hand, 0 ≤ x/0 implies by residuation that x ⋅0 = 0. Thus

x∧¬x ≈ 0 holds in A, and A is an ortholattice.

Definition 2.2. A residuated ortholattice (or ROL) is an expansion of a bounded involutive lattice

(A,∧,∨,¬,0,1) by a binary operation / satisfying (R).

There are many residuated ortholattices that are not OMLs. Table 2 displays a computer-assisted

count (up to isomorphism) of the number of OMLs and ROLs of cardinality at most 12. By employing

the usual methods of residuated structures [11], one may show that the condition (R) may be replaced by

a finite set of identities, whence residuated ortholattices form a variety. We denote the varieties of OLs,

OMLs, and ROLs by OL, OML, and ROL, respectively.

2.1 Basic properties of residuated ortholattices

The following lemma is used throughout the sequel. Its proof is straightforward, and we omit it.

Lemma 2.3. Let A be a bounded involutive lattice and let x,y,z ∈ A. Then:

(1) If y ≤ z, then x ⋅y ≤ x ⋅ z and x→ y ≤ x→ z.

(2) x∧y ≤ x ⋅y ≤ x.

(3) x ⋅x = x.

(4) x ⋅1 = 1 ⋅x = x.

(5) 0 ⋅x = 0 and x ⋅0 = x∧¬x.
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(6) x→ 0 = ¬x.

(7) x ⋅¬x = ¬x ⋅x = x∧¬x.

(8) x ⋅y = (¬x∨y) ⋅x.

If additionally A is a residuated ortholattice and S ⊆ A, then the following hold:

(9) x(x/y) ≤ y.

(10) x/x = 1.

(11) If y ≤ z, then x/y ≤ x/z.

(12) If ⋁S exists in A, then ⋁y∈S xy exists in A and x ⋅⋁S =⋁y∈S xy.

(13) If ⋀S exists in A, then ⋀y∈S x/y exists in A and x/⋀S =⋀y∈S x/y.

Sasaki product is not generally associative, but we can establish several weak forms of associativity

(compare with [10]).

Definition 2.4. Let A be a set and let ⋆ be binary operation on A. We say that ⋆ is:

(1) left alternative if (x⋆x)⋆y = x⋆(x⋆y) for all x,y ∈ A.

(2) right alternative if y⋆(x⋆x) = (y⋆x)⋆x for all x,y ∈ A.

(3) alternative if it is both left and right alternative.

(4) flexible if (x⋆y)⋆x = x⋆(y⋆x) for all x,y ∈ A.

(5) power associative if ⋆ is associative in every 1-generated subalgebra of (A,⋆).

Lemma 2.5. Let A be a bounded involutive lattice. Then:

(1) ⋅ is power associative and alternative.

(2) (xy)x ≈ xy.

(3) x(yx) ≤ (xy)x.

(4) If A also satisfies x(y∨ z) ≈ xy∨ xz, then ⋅ is flexible. In particular, this holds if A is a residuated

ortholattice.

Proof. (1) The operation ⋅ is idempotent by Lemma 2.3(3), and idempotency entails power associativity.

Since ⋅ is idempotent, we need only verify xy ≈ x(xy) to prove left alternativity and yx ≈ (yx)x to prove

right alternativity. Let x,y ∈ A. Now by Lemma 2.3(2) we obtain

xy = x∧xy ≤ x(xy) & (yx)x ≤ yx,

so it suffices to verify the reverse inequalities.

For left alternativity, observe that x(xy) ≤ xy if and only if x(xy) ≤ x and x(xy) ≤ ¬x∨ y. The former

conjunct holds by Lemma 2.3(2). For the latter, since xy ≤ ¬x∨y by definition, we have

x(xy) = x∧(¬x∨xy) ≤ ¬x∨xy ≤ ¬x∨(¬x∨y) = ¬x∨y.

For right alternativity, yx ≤ (yx)x if and only if yx ≤ yx and yx ≤ ¬(yx)∨ x. We need only verify the latter

inequality since ≤ is reflexive. Again, yx ≤ y and yx ≤ ¬y∨x by definition, and since ¬ is order reversing,

we obtain

yx ≤ ¬y∨x ≤ ¬(yx)∨x.
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● 1 = ¬0

● y ● ¬x ● z

● ¬z ● ¬y ● x

● 0 = ¬1

Figure 1: The labeled Hasse diagram of an ortholattice whose Sasaki product ⋅ is not flexible. E.g.,

(xy)x = x ≠ 0 = x(yx).

It follows that ⋅ is both left and right alternative, and hence alternative.

(2) Let x,y ∈ A. Observe that:

(xy)x = (x∧(¬x∨y))x Definition of ⋅
= (x∧(¬x∨y))∧ [¬(x∧(¬x∨y))∨x] Definition of ⋅
= x∧(¬x∨y)∧ [¬x∨(x∧¬y)∨x] Involutive lattice properties

= x∧(¬x∨y)∧(x∨¬x) Absorption law

= x∧(¬x∨y) Absorption law

= xy. Definition of ⋅

(3) Recall that ⋅ is isotone in its second coordinate and yx ≤ y by Lemma 2.3(2). Thus using (2) we

have for all x,y ∈ A that x(yx) ≤ xy = (xy)x.

(4) By (2) and (3) it is enough to verify xy ≤ x(yx) = x∧(¬x∨yx). Since xy ≤ x by Lemma 2.3(2), this

is equivalent to showing xy ≤ ¬x∨yx. Observe that:

xy = x∧(¬x∨y) Definition of ⋅
≤ (x∨¬y)∧(¬x∨y) Lattice properties

≤ (x∨¬y) ⋅(¬x∨y) Lemma 2.3(2)

= (x∨¬y)(¬x)∨(x∨¬y)y Since x(y∨ z) ≈ xy∨xz

= (¬(¬x)∨¬y)(¬x)∨(¬y∨x)y Involutive lattice properties

= (¬x)(¬y)∨yx Lemma 2.3(8)

≤ ¬x∨yx By Lemma 2.3(2).

Therefore the claim is settled.

Note that the hypothesis of Lemma 2.5(4) cannot be dropped, even if A is assumed to be an ortholat-

tice (see the example depicted in Figure 2.1).

2.2 Term-definability of residuals

If A is an OML, the residual of ⋅ is given→, which is itself definable by a term in the language {∧,∨,¬}.
This is a remarkable property that OMLs share with Boolean algebras (but generally not other kinds of

residuated structures), and has been pursued as another avenue of generalizing OMLs (see [6, 8]). We

will show that OMLs are the only residuated ortholattices with this property. Toward this, we recall the

following well-known fact about OLs and OMLs [3, Proposition 2.1].
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● 1 = ¬0

●a

●¬b

● b

● ¬a

● 0 = ¬1

/ 0 ¬a ¬b a b 1

0 1 1 1 1 1 1

¬a a 1 a a 1 1

¬b b b 1 1 b 1

a b b b 1 b 1

b a a a a 1 1

1 0 ¬a ¬b a b 1

Figure 2: The forbidden configuration B6, also called Benzene, that witnesses the failure of the ortho-

modular law.

Lemma 2.6. Let A be an ortholattice, and denote by B6 the ortholattice whose labeled Hasse diagram

is depicted in Figure 2. The following are equivalent.

(1) A is orthomodular.

(2) B6 is not a subalgebra of A.

Using this fact, we obtain the following.

Theorem 2.7. Let V be a subvariety of ROL such that / is definable in V by a term in the language

{∧,∨,¬,0,1}. Then V is a variety of OMLs.

Proof. Let t(x,y) be a term in the language {∧,∨,¬,0,1} such that V satisfies t(x,y) ≈ x/y, and toward a

contradiction assume that V is not a variety of OMLs. Then there exists A ∈ V such that A is not ortho-

modular, and by Lemma 2.6 we have that B6 is a subalgebra of A in the signature {∧,∨,¬,0,1}. Since

t(x,y) is a term in the language {∧,∨,¬,0,1}, we have that t(x,y) defines a residual in the {∧,∨,¬,0,1}-
subalgebra B6. Because the residual of ⋅ is uniquely-determined when it exists, it follows that t(x,y) is

a term defining the operation / given in the table of Figure 2. Note that every ortholattice congruence

of B6 respects the term t(x,y), whence that every ortholattice congruence is a congruence for / as well.

However, it is easy to see the ortholattice congruence generated by (a,¬b) does not respect /. It follows

that the residual of B6 is not term-definable, a contradiction.

Proposition 2.8. Let A be a bounded involutive lattice. The following are equivalent.

(1) A is an OML.

(2) A satisfies the quasiequation x ≤ y Ô⇒ y ⋅x ≈ x.

(3) A satisfies the identity x ⋅(x→ y) ≤ y.

(4) A is an ROL and A satisfies the identity x ⋅y ≈ x⊙y, where ⊙ is the co-residual of →.

(5) A is an ROL and A satisfies the identity x/y ≈ x→ y.

(6) A is an ROL and / is definable by a term in the language {∧,∨,¬,0,1}.

Proof. (1) is easily seen to be equivalent to (2) from the quasiequation defining orthomodularity. If A is

an OML, then x ⋅(x→ y) ≤ y follows because → is an upper adjoint for ⋅ by [5]. Conversely, if (3) holds

then A can readily be seen to be an ortholattice since, by Lemma 2.3,

x∧¬x = x ⋅¬x = x ⋅(x→ 0) ≤ 0,

and hence x∧¬x = 0. To show that A is orthomodular, suppose that x,y ∈ A with x ≤ y. On the one hand,

x = y∧x and we obtain x = y∧x ≤ y∧(¬y∨x) = y ⋅x. On the other hand, x ≤¬y∨x =¬y∨(y∧x) = y→ x. By
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the hypothesis and the fact that ⋅ preserves the order on the right, we get y ⋅x ≤ y ⋅(y→ x) ≤ x. Therefore

x = y ⋅x. It follows that (1), (2), and (3) are equivalent.

(4) and (5) are readily seen to be equivalent to one another. (5) implies (3) follows because x(x/y) ≤ y

in any ROL, whereas the converse comes from [5]. Thus items (1) through (5) are equivalent, and (6) is

equivalent to these as an immediate consequence of Theorem 2.7 and [5].

3 Congruence regularity and the logic of residuated ortholattices

Let K be a class of algebras of common similarity type L. Recall that the relative equational consequence

of K is the relation ⊧K from sets of L-equations to L-equations defined by E ⊧K s ≈ t if and only if for

every A ∈K and every tuple a assigning elements to the variables appearing in E∪{s≈ t}, if uA(a)= vA(a)
for all (u ≈ v) ∈ E then sA(a) = tA(a). If further L contains a constant symbol 1, the assertional logic

of K (see [9, Definition 3.5]) is the logic (L,⊢K), where ⊢K is the relation from sets of L-formulas to

L-formulas given by

Γ ⊢K ϕ ⇐⇒ {γ ≈ 1 ∶ γ ∈ Γ} ⊧K ϕ ≈ 1.

The assertional logic of OL is a textbook example of a logic that is weakly algebraizable but not alge-

braizable [9, Example 6.122.5]. This defect is related to the structure of congruences of OLs. Recall

that an algebra A with a constant 1 is said to be 1-regular if for any congruences θ ,ψ of A we have

that [1]θ = [1]ψ implies θ =ψ , where [a]θ denotes the θ -congruence class of a ∈ A. A variety V whose

language has a designated constant 1 is said to be 1-regular if all of the algebras in V are 1-regular. It is

well-known [3, Proposition 4.3] that OML is 1-regular, and that the assertional logic of every 1-pointed,

1-regular variety is algebraizable in the sense of Blok and Pigozzi (see [9, Theorem 6.146] and [1]).

Lemma 3.1. The variety ROL of residuated ortholattices is 1-regular.

Proof. Let A = (A,∧,∨,¬,/,0,1) be a residuated ortholattice and suppose that θ ,ψ are congruences of

A such that [1]θ = [1]ψ . Let (x,y) ∈ θ . Then by applying the fact that θ is a congruence for / and

(x,x),(y,y) ∈ θ , we have that (x/x,x/y),(y/y,y/x) ∈ θ , i.e., (1,x/y),(1,y/x) ∈ θ . It follows from the

hypothesis that (1,x/y),(1,y/x) ∈ ψ . Since ψ is a congruence for ∧,∨,¬, ψ is also a congruence for ⋅.
Hence it follows that (x,x(x/y)),(y,y(y/x)) ∈ψ as well. Now because x(x/y)∨ y = y and y(y/x)∨ x = x,

it follows that (x∨ y,y) ∈ ψ and (x,x∨ y) ∈ ψ . By transitivity, we obtain that (x,y) ∈ ψ and θ ⊆ ψ . A

symmetric argument shows that ψ ⊆ θ , whence θ =ψ .

The following is an immediate corollary of Lemma 3.1 and the preceding remarks. It demonstrates

that the logical deficiencies of OL (as compared to OML) can be ameliorated by the expressive power

afforded by adding a residual.

Theorem 3.2. The assertional logic of ROL is algebraizable in the sense of Blok and Pigozzi and its

equivalent algebraic semantics is ROL.

Among other consequences, this entails that the lattice of axiomatic extensions of the assertional

logic of ROL is dually isomorphic to the lattice of subvarieties of ROL. Although one could extract a

syntactic presentation of the assertional logic of ROL (e.g., providing a Hilbert-style calculus), we do not

further address this issue in the present paper.
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4 A negative translation and relative decidability

As a final topic for this paper, we exhibit a negative translation of OML into ROL inspired by [12]. For

this, we will need a number of preliminary lemmas.

4.1 Preliminaries to the translation

Lemma 4.1. Let A be a residuated ortholattice. Then for all x,y ∈ A:

(1) ¬x ≤ x/y.

(2) ¬(x/y) ≤ x ≤ (¬x)/y.

(3) (x/y)x = x∧x/y = x(x/y).

(4) x∧x/y ≤ y.

(5) x/(x∧y) = x/y.

(6) xy = x(yx).

(7) xy = 0 if and only if yx = 0.

Proof. Recall that x(¬x) = (¬x)x = x ⋅0 = x∧¬x = 0 by Lemma 2.3. (1) and (2) are easy computations.

For (3), observe that:

(x/y)x = x/y∧(¬(x/y)∨x) Definition of ⋅
= x/y∧x By (2)

= x∧(¬x∨x/y) By (1)

= x(x/y) Definition of ⋅

Note that (4) follows immediately from (3) and the fact that x(x/y) ≤ y.

For (5), the ≤ direction follows from Lemma 2.3(11). On the other hand, x/y ≤ x/(x∧y) if and only if

x(x/y) ≤ x∧y, which holds by Lemma 2.3(2,9). (6) follows directly from Lemma 2.5(2) and (4). Clearly,

(7) follows from (6) since yx = 0 implies xy = x(yx) = x ⋅0 = 0. The converse follows symmetrically.

Given a residuated ortholattice A = (A,∧,∨,/,0,1), we define the following operations on A:

∼x ∶= x/0 x ∶= ∼∼x
x∗y ∶= x∧(∼x∨y) x−−∗y ∶= ∼x∨(x∧y)

Define also the sets ∼X = {∼x ∶ x ∈ X} and X = {x ∶ x ∈ X} for X ⊆ A.

Lemma 4.2. Let A be a residuated ortholattice and let x,y ∈ A. Then ∼ is antitone, and:

(1) ∼1 = 0 and ∼0 = 1.

(2) x ≤ ∼∼x

(3) ∼x = ∼∼∼x. Hence ∼A ⊆ A and A = A.

(4) ∼(x∨y) = ∼x∧∼y.

(5) ∼∼x = ∼¬x.

(6) If x,y ∈ A and x ≤ y, then y∗x = x.

(7) ∼x∨∼y = ∼(x∧y).
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Proof. As a consequence of Lemma 4.1, we have ¬x ≤ ∼x, ¬∼x ≤ x ≤ ∼¬x, and ∼x ⋅x = x∧∼x = x ⋅∼x = 0.

For the antitonicity of ∼, suppose x ≤ y. We wish to show ∼y ≤ ∼x. By residuation, it is enough to

show x ⋅∼y ≤ 0, or equivalently (by Lemma 4.1(7)), that ∼y ⋅x ≤ 0. Since ⋅ preserves the order in its right

coordinate, ∼y ⋅x ≤ ∼y ⋅y ≤ 0. Therefore ∼ is antitone. Note that the antitonicity of ∼ immediately yields

that:

∼(x∨y) ≤ ∼x∧∼y, (DM1)

∼x∨∼y ≤ ∼(x∧y). (DM2)

We now prove (1)–(7).

(1) By Lemma 2.3(4), ∼1 = 1 ⋅∼1 ≤ 0. On the other hand, 0 ⋅1 = 0 and thus 1 ≤ ∼0.

(2) By residuation, x ≤ ∼∼x = (∼x)/0 if and only if ∼x ⋅x ≤ 0, which holds as noted above.

(3) Applying ∼ to (2), ∼x ≤ ∼x. On the other hand, ∼x ≤ ∼x by (2). Since ∼∼∼x = ∼x = ∼x, the first

claim follows. The second claim follows since ∼x = ∼x, and thus x = x.

(4) Using residuation and Lemma 4.1(7), we have ∼x∧∼y ≤ ∼(x∨y) if and only if (x∨y)(∼x∧∼y) ≤ 0

if and only if (∼x∨∼y)(x∨y) ≤ 0 if and only if x∨y ≤ ∼(∼x∧∼y). Observe that:

x∨y ≤ ∼∼x∨∼∼y By (2)

≤ ∼(∼x∧∼y) By (DM2).

The claim then follows from (DM1).

(5) Since ¬x ≤ ∼x by Lemma 4.1(1), the antitonicity of ∼ gives ∼∼x ≤ ∼¬x. Thus we need only verify

∼¬x ≤ ∼∼x, or equivalently that ∼x ⋅∼¬x ≤ 0. Observe that:

∼x ⋅∼¬x = ∼x∧(¬∼x∨∼¬x) Definition of ⋅
= ∼x∧∼¬x By Lemma 4.1(2)

= ∼(x∨¬x) By (4)

= ∼1

= 0 By (1).

(6) Clearly a ⋅b ≤ a∗b since ¬a ≤ ∼a. Hence x ≤ y implies x = y∧ x ≤ y ⋅x ≤ y∗x. Thus, it suffices to

show y∗x ≤ x. Since x = ∼∼x by assumption, this is equivalent to showing that ∼x ⋅(y∗x) ≤ 0. Note that

¬∼x ≤ x ≤ y∗x by Lemma 4.1(2) and x ≤ y, and observe:

∼x ⋅(y∗x) = ∼x∧(¬∼x∨y∗x)
= ∼x∧y∗x

= ∼x∧(y∧(∼y∨x))
= (∼x∧y)∧(x∨∼y)
= (∼x∧∼(∼y))∧(x∨∼y) Since y = y

= ∼(x∨∼y)∧(x∨∼y) By (4)

= 0.

(7) Let a = ∼(x∧y) and b = ∼x∨∼y. Since b ≤ a by (DM2), it is enough to verify a ≤ b. We claim first

that ab = a. Since ab = a∧(¬a∨b), it suffices to show ¬a∨b = 1, or equivalently, a∧¬b ≤ 0. Now,

¬b = ¬(∼x∨∼y) = ¬∼x∧¬∼y ≤ x∧y,

by Lemma 4.1(2), and hence a∧¬b ≤ a∧(x∧y) = 0 since A is an ortholattice. Now note that ∼x,∼y, and

a = ∼(x∧y) are contained in A by (3). Furthermore, ∼x,∼y ≤ a since b ≤ a. Hence for c ∈ {∼x,∼y}, by (6)

it follows that a∗c = c and thus a ⋅c ≤ c. Therefore, a = a(∼x∨∼y) = a(∼x)∨a(∼y) ≤ ∼x∨∼y.
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Lemma 4.3. Let A be a residuated ortholattice. Then the following are equivalent:

(1) A is an OML.

(2) A satisfies ∼x ≈ ¬x.

(3) A satisfies x ≈ ∼∼x.

Proof. First we show (2) and (3) are equivalent. If (2) holds then ∼∼x = ¬¬x = x. If (3) holds then

¬x = ∼∼(¬x) = ∼(∼¬x) = ∼(∼∼x) = ∼x by Lemma 4.2(5) and (3).

Now we show (1) is equivalent to (2) and (3). Supposing A is an OML, by Proposition 2.8, / and

→ coincide. By Lemma 2.3(6), ¬x = x→ 0 = x/0 = ∼x. On the other hand, supposing (2) and (3) hold,

¬ and ∼ coincide and A = A. Suppose x,y ∈ A = A with x ≤ y. Then by Lemma 4.2(6) we have y∗ x = x.

But we have y∗x = y∧(∼y∨x) = y∧(¬y∨x) = y ⋅x, so y ⋅x = x. Then A is an OML by Proposition 2.8(2),

completing the proof.

Lemma 4.4. Let A be a residuated ortholattice. Then for all x,y ∈ A:

(1) x = x and ¬x = ∼x = ∼x.

(2) x∨y = x∨y and x∧y = x∧y.

(3) x ⋅y = x∗y.

Proof. Clearly (1) follows from Lemma 4.2(3,5) and (2) follows from Lemma 4.2(4,7). Using these

facts, observe that: x ⋅y = x∧(¬x∨y) = x∧(¬x∨y) = x∧(∼x∨y) = x∗y.

For a residuated ortholattice A, define A = (Ā,∧,∨,∼,−−∗,0,1).

Lemma 4.5. Let A = (A,∧,∨,¬,/,0,1) be a residuated ortholattice.

(1) A is an OML.

(2) The map x↦ x is an ortholattice homomorphism of A onto A.

(3) x/y = x−−∗y for all x,y ∈ A.

Proof. For (1), note by Lemma 4.2(1) and Lemma 4.4(2), it follows that (Ā,∧,∨,0,1) is hereditarily a

bounded lattice. By Lemma 4.2 and Lemma 4.4(1), ∼ is an antitone involution on A, which furthermore

satisfies x∧∼x ≈ 0 by Lemma 4.1. Thus A is an ortholattice. Noting that the Sasaki product in A is

∗, observe that A satisfies the quasiequation x ≤ y Ô⇒ y∗x ≈ x by Lemma 4.2(6), whence by Proposi-

tion 2.8(2) we have that A is orthomodular. (2) is immediate from Lemma 4.4, and (3) is a straightforward

computation using the fact that −−∗ is the residual of ∗ in the OML A.

Caution 4.6. The identity ∼∼(x/y) ≈ ∼∼x/∼∼y is false in B6 since a/¬b = b = b ≠ 1 = a/a = a/¬b. Thus

the map x↦ x̄ is not an ROL homomorphism.

4.2 The negative translation

Let t be a residuated ortholattice term, and recall that ∼t ∶= t/0 and t ∶= ∼∼t. We define the term T(t)
inductively on the complexity of t as follows: T(0) = 0, T(1) = 1, T(x) = x for all variables x, T(¬s) =
∼T(s), and T(r⋆s) =T(r)⋆T(s) for each ⋆ ∈ {∧,∨,/}. If E is a set of equations, we define the translation

of this set to be T[E] = {T(u) ≈ T(v) ∶ (u ≈ v) ∈ E}.

Definition 4.7. For subvarieties W,V of ROL, we say the V is translatable into W if for any sets of

equations E ∪{s ≈ t} in the language of residuated ortholattices, E ⊧V s ≈ t ⇐⇒ T[E]⊧W T(s) ≈ T(t).
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The following is evident:

Proposition 4.8. For varieties W,V of residuated ortholattices, if V is translatable into W then deciding

equations in V is no harder than deciding equations in W. In particular, if the equational theory of W is

decidable then the same holds for V.

For A ∈ROL and an ROL-term t in n-variables, by tA∶An→ A we mean the term function of t on A. If

t is a unary term and a = (a1, . . . ,an) ∈An, by tA(a) we denote the tuple (tA(a1), . . . ,t
A(an)), in particular

we will write a as an abbreviation for (x)A(a), i.e., a = (a1, ...,an) ∈ (A)
n.

Lemma 4.9. Let t be a residuated ortholattice term, A ∈ROL, and a an element of an appropriate power

of A. Then T(t)A(a) = tA(a).

Proof. We proceed by induction on the complexity of t. Observe T(0)A = 0A
= 0A and T(1)A = 1A

= 1A

by Lemma 4.5. If t is a variable x, then T(x)A(a) = (x)A(a) = a = xA(a) by definition.

Now suppose the claim holds for terms r and s. If t = r⋆s where ⋆ ∈ {∧,∨,/}, then

T(r⋆s)A(a) = [T(r)⋆T(s)]A(a) Def. of T(−)

= T(r)A(a)⋆A T(s)A(a)

= rA(a)⋆A sA(a) Inductive hypothesis

= rA(a)⋆A sA(a) Lemma 4.4, Lemma 4.5(3)

= (r⋆s)A(a).

Essentially the same argument establishes the case for t = ¬s. This completes the proof.

If V is a variety and E is a set of equations in the language of V, we denote the subvariety of V

axiomatized by E by V+E .

Lemma 4.10. Let E be a set of equations in the language of ROLs, and set V = OML+E and W =

ROL+T[E]. Then:

(1) V is a subvariety of W.

(2) If A ∈W, then A ∈V.

Proof. We first prove (1). Clearly V is a subvariety of ROL, so it suffices to show that if A ∈ V and

(u ≈ v) ∈ E , then A satisfies T(u) ≈ T(v). Let a be a tuple in an appropriate power of A, and note that

a = a and A = A from Lemma 4.3. By hypothesis uA(a) = vA(a), so uA(a) = vA(a). It follows from

Lemma 4.9 that T(u)A(a) = T(v)A(a), so A satisfies T(u) ≈ T(v) as desired.

Now for (2), let A ∈W and suppose that (u ≈ v) ∈ E . Then A satisfies T(u) ≈ T(v). If a is a tuple

from an appropriate power of A, then as before a = a by Lemma 4.3. By hypothesis we have T(u)A(a) =

T(v)A(a), and by Lemma 4.9 we get uA(a) = uA(a) = vA(a) = vA(a). It follows that A satisfies u ≈ v, so

it follows that A ∈ V.

Theorem 4.11. Let V =OML+E, let W =ROL+T[E], and suppose that U is a subvariety of ROLs such

that V ⊆U ⊆W. Then V is translatable into U.

Proof. Let D∪{s ≈ t} be a set of equations in the language of ROLs, and suppose first that D ⊧V s ≈ t.

Let A ∈U and let a be a tuple of elements of the appropriate power of A such that T(u)A(a) = T(v)A(a)

holds for each equation (u ≈ v) ∈ D. Then by Lemma 4.9 we have uA(a) = vA(a) for each (u ≈ v) ∈D.
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Since A ∈ U ⊆W, Lemma 4.10(2) gives A ∈ V. The hypothesis then implies sA(a) = tA(a), and again

applying Lemma 4.9 yields that T(s)A(a) = T(t)A(a). It follows that T[D] ⊧U T(s) ≈ T(t) as desired.

For the converse, suppose that T[D]⊧U T(s)≈T (t). Let A ∈V, let a be a tuple from a suitably-chosen

power of A, and suppose that uA(a) = vA(a) for all (u ≈ v) ∈D. As before we have a = a and A =A, which

implies uA(a) = vA(a). Lemma 4.9 then gives T(u)A(a) = T(v)A(a) for each (u ≈ v) ∈D. Since V ⊆ U

we have A ∈ U, so the assumption gives T(s)A(a) = T(t)A(a). A final application of Lemma 4.9 gives

sA(a) = tA(a), so sA(a) = tA(a). It follows that D ⊧V s ≈ t, and this establishes that V is translatable into

U.

In particular, we obtain the following consequence of Theorem 4.11.

Corollary 4.12. If V is a subvariety of OML axiomatized relative to orthomodular lattices by a set E of

equations, then V is translatable into ROL+T[E]. In particular, OML is translatable into ROL.

Specializing Proposition 4.8 in light of Theorem 4.11, we get the following.

Corollary 4.13. OML has a decidable equational theory if any variety of residuated ortholattices that

contains it has a decidable equational theory.

Of course, via Theorem 3.2 these results may be exported to the assertional logics that are algebraized

by the varieties mentioned above. However, we do not further pursue that line of inquiry here.
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