
M. Backens, C. Heunen (Eds.): Quantum Physics and Logic (QPL) 2021
EPTCS 343, 2021, pp. 102–118, doi:10.4204/EPTCS.343.5

© C. Heunen & R. Kaarsgaard
This work is licensed under the
Creative Commons Attribution License.

Bennett and Stinespring, Together at Last

Chris Heunen* Robin Kaarsgaard†

University of Edinburgh

chris.heunen@ed.ac.uk robin.kaarsgaard@ed.ac.uk

We present a universal construction that relates reversible dynamics on open systems to arbitrary
dynamics on closed systems: the restriction affine completion of a monoidal restriction category
quotiented by well-pointedness. This categorical completion encompasses both quantum channels,
via Stinespring dilation, and classical computing, via Bennett’s method. Moreover, in these two
cases, we show how our construction can be essentially ‘undone’ by a further universal construction.
This shows how both mixed quantum theory and classical computation rest on entirely reversible
foundations.

1 Introduction

Two constructions relate reversible dynamics on open systems to arbitrary dynamics on closed systems:

• Stinespring dilation realises a quantum channel as a reversible process on a larger space [18].

• Bennett’s method makes a classical computer program reversible by allowing extra output [2, 17].

This paper presents a universal categorical construction encompassing both, making precise how the
relationship between pure and mixed quantum theory resembles the relationship between reversible and
conventional classical computation.

The construction has three phases: allowing additional constant input, leakage of output, and making
it extensional. The first two phases adjoin auxiliary systems to the processes in question. The ancilla
input can be seen as a form of temporary storage, while the output ancilla is not considered part of the
desired output, and therefore is sometimes called garbage. However, the garbage cannot be discarded
without altering the function. The third phase of the construction ensures that at least the garbage is
extensional (specific to the map being computed rather than the method used to compute it), so that
equality of morphisms is judged solely on their observable input-output behaviour.

We can also go in the converse direction by taking the cofree inverse category. All four phases have
universal properties. On the whole, this shows how both mixed quantum theory and classical computation
rest on entirely reversible foundations.

Reversible dynamics on open systems Arbitrary dynamics on closed systems

partial injections
between sets

partial functions
between sets

completely positive trace-
preserving maps between

fin-dim Hilbert spaces

unitaries between
fin-dim Hilbert spaces

Ext◦Aux◦ Inp

Inv

Ext◦Aux◦ Inp

Inv

*Supported by EPSRC Fellowship EP/R044759/1
†Supported by DFF | Natural Sciences International Postdoctoral Fellowship 0131-00025B

http://dx.doi.org/10.4204/EPTCS.343.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

C. Heunen & R. Kaarsgaard 103

There are some idiosyncracies among the four phases. The Inv-construction recovers partial injec-
tions from partial functions exactly, but only recovers unitaries from completely positive trace-preserving
maps up to a global phase. The Inp-construction leaves the category of partial injections invariant,
whereas it turns unitaries into isometries. The Ext-construction leaves the category of completely pos-
itive trace-preserving maps invariant, because minimal Stinespring dilations exist. That is, Stinespring
dilation allows an extensional choice of auxiliary system, whereas reversibilising embeddings are inten-
sional. There are several (canonical) methods to make irreversible programs reversible. For example,
Bennett’s method stores the input and returns it in full along with the output, while the Landauer embed-
ding [1, 15] additionally returns a trace of all instructions and attendant intermediate states.

Related work Both Stinespring dilation and Bennett’s method have seen categorical presentations.
Despite the similarity of their statements, these categorical completions are surprisingly dissimilar. The
universal construction of completely positive trace-preserving maps from isometries and unitaries is
due to Huot and Staton [11, 12]. A different categorical approach to Stinespring’s dilation theorem
as a universal construction is given by Westerbaan and Westerbaan [19]. The equivalence of discrete
cartesian restriction categories and discrete inverse categories is due to Giles [5], though later recast
by Comfort [4] as a counital completion of inverse categories with chosen semi-Frobenius algebras.
Our Aux-construction generalises a result by Hermida and Tennent [8]. Combining it with our Ext-
construction gives the well-pointed completion of a monoidal restriction category that generalises both
Huot-Staton and Giles.

Future work Following Giles, we conjecture that there is an equivalence between a category of
certain monoidal inverse categories and certain well-pointed monoidal restriction categories. Another
interesting question is whether there is a minimal set that can be adjoined to any partial function to
make it injective. Such a minimal Bennett embedding, as the miniminal Stinespring dilation, could be
used to measure the degree to which a map is reversible. It may relate to the information theoretic
characterisation of reversible maps as those that preserve entropy [15].

Overview We assume familiarity with basic category theory. Section 2 briefly recalls restriction
categories and inverse categories. In Section 3, we present the Aux-construction and show that it is the
affine completion of a restriction monoidal category. Next, Section 4 introduces the Ext-construction,
and shows that it is governed by a universal property. The constructions are put to work in Section 5 by
showing that Ext◦Aux completes isometries to quantum channels and partial injective functions to partial
functions. In Section 6, we use the dual Inp of the Aux-construction to show how quantum channels and
partial functions can be universally constructed from unitaries and partial injections, respectively, and
further that the latter can be recovered from the former by the Inv-construction. Appendix A holds
proofs that would distract in the main body of the article.

2 Restriction categories and inverse categories

While we assume basic familiarity with category theory, and in particular monoidal categories [10], we
briefly summarise restriction categories and inverse categories, which is relatively less well-known. Re-
striction categories [3] axiomatise partially defined morphisms. The idea is to record for each morphism
f its restriction idempotent f , a partial identity defined precisely where f is defined.
Definition 1. A restriction category is a category equipped with a choice of endomorphism f : A→ A
for each morphism f : A→ B satisfying:

(i) f ◦ f = f ;

(ii) f ◦g = g◦ f ;

104 Bennett and Stinespring, Together at Last

(iii) g◦ f = g◦ f ;

(iv) g◦ f = f ◦g◦ f .

The restriction idempotent f measures ‘how partial’ f is. If f = id, we call f total. Any category
becomes a restriction category when endowed with the trivial choice f = id, but many other choices may
be possible. When working with a restriction category, we often leave implicit which choice is made,
just like the choice of tensor product making a category monoidal. When we speak of the following
categories, we will use the trivial restriction structure: Unitary has finite-dimensional Hilbert spaces as
objects and unitary linear maps as morphisms; Isometry has finite-dimensional Hilbert spaces as objects
and isometric linear maps as morphisms; CPTP has finite-dimensional Hilbert spaces as objects and
completely positive trace-preserving maps as morphisms.

But there are also nontrivial choices of restriction structure. On the category Pfn of sets and partial
functions, we will choose the restriction idempotent of a partial function f : A→ B as follows:

f (x) =

{
x if f is defined at x
undefined otherwise

Thus a partial function f is total in the usual sense precisely when it is total in the abstract sense.
A functor F : C → D between restriction categories is a restriction functor when F(f) = F(f).

A (symmetric) monoidal restriction category is a restriction category which that is also (symmetric)
monoidal, such that the monoidal product is a restriction bifunctor: f ⊗g = f ⊗g.

Similarly, restriction limits and colimits are ones that respect the restriction structure, though espe-
cially limits tend to be quite different. A restriction terminal object is an object 1 such that each object
A allows a unique total morphism A→ 1. Restriction terminal objects need not be terminal in the usual
sense; for example, any singleton set is restriction terminal but not terminal in Pfn, because there is (at
least) also the nowhere defined function A→ 1.

Lemma 2. [3] For all appropriate f and g in a restriction category:

(i) g◦ f = g◦ f ;

(ii) g◦ f = f if g is total;

(iii) f = id if f is invertible.

A morphism f : A→ B in a restriction category is a partial isomorphism if there is a morphism
f ◦ : B→ A such that f ◦ ◦ f = f and f ◦ f ◦ = f ◦. Such partial inverses are unique whenever they exist. In
Pfn, the partial isomorphisms are precisely the partial injective functions.

Recall that in a dagger category, every morphism f : A→ B has a partner f † : B→ A such that
f †† = f , id† = id, and (g◦ f)† = f † ◦g† [10].

Proposition 3. [3] The following are equivalent:

(i) C is a restriction category in which each morphism is a partial isomorphism;

(ii) C is an inverse category: a dagger category with f ◦ f † ◦ f = f and f † ◦ f ◦g† ◦g = g† ◦g◦ f † ◦ f .

Inverse categories were originally conceived as a categorical extension of inverse semigroups [14],
but have recently seen applications as categorical models of classical reversible computation [5, 13, 6, 7].
Examples of inverse categories include the category PInj of sets and partial injective functions, as well as
any groupoid (such as Unitary). The connection between restriction and inverse categories generalises
that between mere categories and groupoids.

C. Heunen & R. Kaarsgaard 105

Proposition 4. [13] The wide subcategory Inv(C) of all partial isomorphisms of a (monoidal) restriction
category C is its cofree (monoidal) inverse category: any inverse category D with a (strict monoidal)
functor D→ C allows a unique (strict monoidal) functor D→ Inv(C) making the following diagram
commute:

D

Inv(C) C

If C in the above is a trivial restriction category, then Inv(C) is its core, that is, its cofree groupoid.

3 The Aux-construction

This section is dedicated to the Aux-construction, a generalisation of Hermida and Tennent’s construc-
tion [8] to (symmetric monoidal) restriction categories. After introducing Aux(C), we show step by step
that it is an affine monoidal restriction category. Here, a monoidal restriction category is affine when its
tensor unit I is restriction terminal. The crowning theorem shows that Aux(C) is in fact the restriction
affine completion of C.

Definition 5. Define a relation . on the morphisms of a symmetric monoidal restriction category as
follows. For f : A→ B⊗E and f ′ : A→ B⊗E ′, set f . f ′ if and only if f = f ′ and there is a mediator
h : E→ E ′ making the triangle commute:

A

B⊗E B⊗E ′

f ′f

id⊗h

This is a preorder: reflexivity follows by mediating with identities; transitivity follows by composing
mediators. However, the relation need not be symmetric, for example if dim(E)< dim(E ′) in Isometry.

Definition 6. Write ∼ for the equivalence relation generated by .. Explicitly, for f : A→ B⊗E and
f ′ : A→ B⊗E ′, we have f ∼ f ′ if and only if there are intermediate morphisms f1, . . . , fn−1 with f =

f1 = · · ·= fn−1 = f ′ and mediators E h1−→ E1
h2←−E2

h3−→ ·· · hn←−E ′ making the following diagram commute:

A

B⊗E B⊗E1 B⊗E2 · · · B⊗E ′
id⊗h1 id⊗h2 id⊗h3 id⊗hn

f ′f
f2 ...

f1

Definition 7. For a symmetric monoidal restriction category C, define a category Aux(C):

• objects are those of C;

• morphisms [f ,E] : A→ B are ∼-equivalence classes of morphisms f : A→ B⊗E in C;

• composition of [f ,E] : A→ B and [g,E ′] : B→C is [α ◦ (g⊗ id)◦ f ,E ′⊗E] : A→C;

• identities are [ρ−1, I] : A→ A.

The previous definition differs from [8] only by the additional requirement that f = f ′ if f ∼ f ′.
It follows that the two are the same when C is a trivial restriction category, making Aux a genuine
generalisation.

106 Bennett and Stinespring, Together at Last

Remark 8. Morphisms in Aux(C) are often given by composing chains of morphisms in C, further
quotiented by a nontrivial equivalence relation. This can quickly become unintelligible. Therefore we
will always make the zig-zag path of mediators from Definition 6 explicit in equivalence arguments. To
indicate which part of a diagram in C corresponds to which morphism in Aux(C), we will use squiggly
grey ‘ghost’ arrows:

A B⊗E (C⊗E ′)⊗E

C⊗ (E ′⊗E)

f g⊗id

α[g,E ′]◦[f ,E]

This ghost arrow is not a part of the commutative diagram. It merely indicates that α ◦ (g⊗ id) ◦ f
corresponds precisely to [g,E ′]◦ [f ,E] in Aux(C).

Notation settled, we now set out to show that this actually defines a restriction symmetric monoidal
category. We proceed in three steps: first we show that it is a category; then that it inherits a restriction
structure; and finally that it inherits a symmetric monoidal structure in a way that respects restriction.
The proofs of the following three propositions are deferred to Appendix A as they would distract from
the main development.
Proposition 9. Aux(C) is a category.
Proposition 10. Aux(C) inherits a restriction structure from C with [f ,E] = [ρ−1 ◦ f , I].
Proposition 11. If C is a restriction symmetric monoidal category, then so is Aux(C):

• the tensor unit and tensor product of objects are as in C;

• the tensor product of [f ,E] : A→ B and [f ′,E ′] : A′→ B′ is [ϑ ◦(f ⊗ f ′),E⊗E ′] : A⊗A′→ B⊗B′;
where ϑ is the canonical isomorphism (B⊗E)⊗ (B′⊗E ′)' (B⊗B′)⊗ (E⊗E ′) in C.

Having established that Aux(C) is a restriction symmetric monoidal category, our next goal is to
show that it is the restriction affine completion of C. Again we proceed in steps. First we show that
there is a strict monoidal functor C→ Aux(C). Then we show that the unit in Aux(C) is restriction
terminal, so that the tensor product has total projections. From this we derive a factorisation theorem for
morphisms in Aux(C), which finally lets us institute Aux(C) as the restriction affine completion of C.
Proposition 12. If C is a restriction symmetric monoidal category, there is a strict monoidal restriction
functor E : C→ Aux(C) given by E (A) = A on objects and by E (f) = [ρ−1 ◦ f , I] on morphisms.

Proof. To see E is functorial, compute E (id) = [ρ−1 ◦ id, I] = [ρ−1, I] = id. Composition is preserved
because

E (g)◦E (f) = α ◦ (ρ−1⊗ id)◦ (g⊗ id)◦ρ−1 ◦ f = α ◦ (ρ−1⊗ id)◦ρ−1 ◦g◦ f = g◦ f

= ρ−1 ◦g◦ f = E (g◦ f)

and the diagram below commutes:

B B⊗ I C⊗ I (C⊗ I)⊗ I C⊗ (I⊗ I)

A C⊗ I

B C C⊗ I

f

α

f

g
ρ−1

id⊗id

id⊗ρ

F(g)◦F(f)

F(g◦ f)

ρ−1 g⊗id ρ−1⊗id

C. Heunen & R. Kaarsgaard 107

The functor E preserves restriction idempotents: E (f) = [ρ−1 ◦ρ−1 ◦ f , I] = [ρ−1 ◦ f , I] = E (f). That
it is a strict monoidal functor follows from E (A⊗B) = A⊗B = E (A)⊗E (B), E (I) = I, E (f ⊗ g) =
E (f)⊗E (g) (shown entirely analogously to showing [ρ−1 ◦β , I]⊗ [ρ−1 ◦ φ , I] ∼ [ρ−1 ◦ (β ⊗ φ), I] for
coherences β and φ in Proposition 11, see Appendix A), and the fact that coherence isomorphisms in C
are precisely of the form [ρ−1 ◦β , I] = E (β) for each coherence isomorphism β of C.

Proposition 13. The tensor unit in Aux(C) is restriction terminal.

Proof. First note I is weakly terminal: there is a morphism from each object A into I, namely [λ−1,A].
Furthermore, this morphism is total since [λ−1,A] = [ρ−1◦λ−1, I] = [ρ−1◦ id, I] = [ρ−1, I] = id. Because

I⊗E

A I⊗E I⊗ (I⊗E)

I⊗A

f

λ−1

id⊗λ−1

id⊗ f

λ−1f

any total morphism [f ,E] : A→ I satisfies [f ,E]∼ [λ−1,A].

We will simply write ! for the unique morphism [λ−1,A] : A→ I from now on.

Remark 14. An important property of restriction affine monoidal categories is that they have total maps
π1 : A⊗B→ A and π2 : A⊗B→ B. These can be defined as A⊗B id⊗!−−→ A⊗ I

ρ−→ A and symmetrically,
and are total since ρ ◦ (id⊗!) = (id⊗!) = id⊗ ! = id⊗ id = id, and similarly for the second projection.

These total projections are crucial in showing the following factorisation of morphisms in Aux(C),
based on Hermida and Tennent’s expansion-raw morphism factorisation [8, Lemma 2.8].

Lemma 15. Every morphism [f ,E] : A→ B of Aux(C) factors as π1 ◦E (f). This factorisation is unique
in the sense that if [f ,E]∼ π1 ◦E (f ′) for any f ′, then [f ,E]∼ [f ′,E ′].

Proof. Let [f ,E] : A→ B be a morphism of Aux(C). First, π1 ◦E (f) = E (f) = E (f) = [ρ−1 ◦ f , I] =
[f ,E]. That [f ,E]∼ π1 ◦E (f) then follows by commutativity of the diagram below.

B⊗E (B⊗E)⊗ I B⊗ (E⊗ I)

A B⊗E

B⊗E

f

ρ−1
α

f

id⊗ρ

id⊗id
[f ,E]

π1◦E (f)

Now suppose [f ,E]∼ π1 ◦E (f ′) for some f ′ : A→ B⊗E ′ in C. Similarly as before, [f ′,E ′]∼ π1 ◦E (f ′),
so it simply follows by transitivity that [f ,E]∼ π1 ◦E (f ′)∼ [f ′,E ′].

We have finally arrived at the main theorem of this section.

108 Bennett and Stinespring, Together at Last

Theorem 16. Aux(C) is the restriction affine completion of a restriction symmetric monoidal category
C: given any other restriction affine symmetric monoidal category D and strong monoidal restriction
functor F : C→ D, there is a unique functor F̂ : Aux(C)→ D with F = F̂ ◦E .

C Aux(C)

D

E

F F̂

Proof. Define F̂ : Aux(C)→ D by F̂(A) = F(A) on objects, on a morphism [f ,E] : A→ B by:

F̂(A) = F(A)
F(f)−−→ F(B⊗E) str−→ F(B)⊗F(E) π1−→ F(B) = F̂(B)

where F(B⊗E) str−→ F(B)⊗F(E) is the monoidal strength. This makes the diagram commute since
F̂(E (A)) = F̂(A) = F(A) on objects, and on morphisms

F̂(E (f)) = F̂([ρ−1 ◦ f , I]) = π1 ◦ str◦F(ρ−1 ◦ f) = π1 ◦ str◦F(ρ−1)◦F(f) = F(f)

because
π1 ◦ str◦F(ρ−1) = ρ ◦ (id⊗ !)◦ str◦F(ρ−1) = ρ ◦ρ

−1 = id

by definition of π1 and right unitality of the monoidal strength. The functor F̂ is strong monoidal because
F is, since F̂(A⊗B) = F(A⊗B) ' F(A)⊗F(B) and since all coherence isomorphisms Aux(C) are of
the form E (β) for a coherence isomorphism β of C, so that F̂(β) = F̂(E (β)) = F(β) = β . Also, F̂ is
a restriction functor since F is: F̂([f ,E]) = π1 ◦F(f) = F(f) = F(f) = F̂(E (f)) = F̂([ρ−1 ◦ f , I]) =
F̂([f ,E]).

To see that F̂ is unique, suppose G : Aux(C)→ D is a strong monoidal restriction functor making
the triangle commute. First, F̂ and G agree on objects as G(A) = F̂(E (A)) = F̂(A). If [f ,E] : A→ B is a
morphism of Aux(C), then Lemma 15 guarantees [f ,E]∼ π1 ◦E (f), so:

G([f ,E]) = G(π1 ◦E (f)) = G(π1)◦G(E (f)) = π1 ◦F(f) = F̂([f ,E])

4 Extensionality

Functional extensionality means that two functions are equal if they return the same output on every
input. This may not be the case in intensional type theories. This section concerns the second phase of our
completion: the Ext-construction. It quotients a given category by an equivalence relation related to well-
pointedness to make it extensional, which we will show has a universal property. Combining this with
the Aux-construction of Section 3, the main results of this section will show that Ext(Aux(Isometry))'
CPTP and Ext(Aux(PInj))' Pfn.

Say that a (restriction) category is pointed if it has a (restriction) terminal object, and that it is (re-
striction) well-pointed if additionally f = g as soon as f ◦a = g◦a for all a : 1→ A. Both Pfn and CPTP
are restriction well-pointed.

Definition 17. In a pointed restriction category, define a relation ≈ on parallel morphisms f ,g : A→ B
by setting f ≈ g if and only if f ◦a = g◦a for all a : 1→ A. Write Ext(C) for C/≈.

Lemma 18. The relation · ≈ · is a congruence, and so Ext(C) is a well-defined category.

C. Heunen & R. Kaarsgaard 109

Proof. Suppose that f , f ′ : A→ B and g,g′ : B→ C satisfy f ≈ f ′ and g ≈ g′. Let a : 1→ A. Then
f ◦a = f ′ ◦a, and hence g◦ f ◦a = g′ ◦ f ′ ◦a. So g◦ f ≈ g′ ◦ f ′.

The congruence≈ also respects restriction structure: if f , f ′ : A→ B satisfy f ≈ f ′, then also f ≈ f ′,
by Definition 1(iv), for if a : 1→ A, then f ◦a = a◦ f ◦a = a◦ f ′ ◦a = f ′ ◦a. Therefore Ext(C) is a well-
defined restriction category, and the quotient functor C→ Ext(C) sending a morphism to its equivalence
class is a restriction functor.

However, it is not clear whether ≈ is a monoidal congruence when the category is affine monoidal.
If f ≈ f ′ : A→ C and g ≈ g′ : B→ D, then (f ⊗ g) ◦ x = (f ′⊗ g′) ◦ x for all x : 1→ A⊗B of the form
x = (a⊗b)◦λ

−1
I for a : 1→ A and b : 1→ B. But what about entangled states x : 1→ A⊗B? Luckily,

in the examples below this holds, so Ext(C) is again a well-defined monoidal category, and C→ Ext(C)
a strict monoidal functor.

By construction Ext(C) is well-pointed, and the Ext-construction is universal in accomplishing this.

Definition 19. Call a functor F : C→ D between pointed restriction categories full on points if each
p : 1→ F(A) in D is of the form F(a) for some a : 1→ A in C.

Theorem 20. Ext(C) is the well-pointed completion of the pointed restriction category C: given a well-
pointed restriction category D and restriction functor F : C→ D that is full on points, there is a unique
restriction functor F̂ : Ext(C)→ D that is full on points and makes the triangle commute:

C Ext(C)

D
F F̂

Proof. Set F̂(A) = F(A) on objects and F̂([f]) = F(f) on morphisms. To see that this is well-defined,
suppose f ≈ g, that is f ◦a= g◦a for all a : 1→A in C. Then also F(f)◦ p=F(g)◦ p for all p : 1→F(A)
in D because F is full on points, and so F(f) = F(g) since D is well-pointed.

Moreover, F̂ is a restriction functor since F̂([f]) = F(f) = F(f) = F̂([f]), and it is full on points
since F is. Now F̂ ◦Q = F directly. It remains to show that F̂ is the unique such functor. Suppose
G◦Q = F for a functor G : Ext(C)→ D that is full on points. But then G(A) = F(A), and since Q(f) =
[f], we must also have G([f]) = F(f) = F̂([f]).

When the functor C→ Ext(C) is strict monoidal, as is the case for both Isometry and PInj, it
completes restriction affine monoidal categories to restriction well-pointed monoidal categories.

5 Quantum channels and classical functions as completions

This section instantiates the theory of the previous ones for our main examples. The quantum case is
quickly established thanks to Huot and Staton.

Proposition 21. There is a monoidal equivalence Ext(Aux(Isometry))' CPTP.

Proof. Since Isometry is a trivial restriction category, CPTP' L(Isometry)' Aux(Isometry) by [11,
Corollary 7]. Also, CPTP is already well-pointed, so Ext(CPTP)' CPTP. It is easy to verify that the
equivalence is monoidal.

110 Bennett and Stinespring, Together at Last

Above, the Ext-phase was trivial, but this is not always the case. Consider the (intensional) category
Aux(PInj): objects are sets, and morphisms A→ B are partial injective functions A→ B×E that are
identified f ∼ f ′ when there is a partial injective function h : E → E ′ such that f (x) = (y,e) implies
f ′(x) = (y,h(e)) for all x ∈ A. The environment E is often thought of as the garbage produced by
the function because, being injective, it cannot actually discard any information. However, the Aux-
construction allows it to place instead the garbage off to the side, demarcating it from the desired output.
In reversible computation, such garbage is unavoidable (since not all computable functions, and even not
all interesting such, happen to be injective), so it is important that it is managed properly.

Garbage is ideally extensional: we should be able to compare functions by looking only at their
input-output behavior, even when some of it is designated as garbage. But unless you are careful, this
might not be the case. Consider the successor function n 7→ n+1 on natural numbers. We can consider
many different ways to vary the environment: for example f1 : N→N×{∗} given by n 7→ (n+1,∗); but
also f2 : N→ N×N given by n 7→ (n+1,n). These two functions effect the exact same behaviour when
disregarding garbage. But they are in different equivalence classes as morphisms N→ N in Aux(PInj)
because their garbage is so different.

How to mend this? First notice that points 1→ A in Aux(PInj) correspond to those in Pfn (see
Lemma 22 below). Even though f1 and f2 are different in Aux(PInj), they do agree on each n : 1→ N:
build the partial function hn : N→ 1 defined only on n by hn(n) = ∗; this mediates because f1(n) =
(n+ 1,∗) = (n+ 1,hn(n)) and f2(n) = (n+ 1,n). So, garbage is intensional in Aux(PInj) because the
category is not well-pointed. Because Pfn is well-pointed, it is necessary to identify morphisms when
they agree on all points, which is exactly what the Ext-construction does.

Why was this not an issue in the quantum case? There, extensionality arises from minimal Stinespring
dilations. Minimality gives a unique minimal (up to unitary) auxiliary system we can adjoin to realise
any CPTP-map as conjugation by an isometry, thus taking away the choice of environment E that sparked
the trouble in Aux(PInj).

Lemma 22. The global points 1→ A in Aux(PInj) coincide with those in Pfn.

Proof. Points in Aux(PInj) are partial injective functions x : 1→ A×E modulo identification. However,
any such point can always be identified with one of the form y : 1→ A× 1 since if x(∗) = (a,e) then
the point ∗ 7→ e mediates 1→ E to witness (x,E) ∼ (y,1). If E is the empty set, the nowhere defined
function trivially mediates.

It follows from the previous Lemma that the functor Aux(PInj)→ Ext(Aux(PInj)) is full on points.
So is Aux(Isometry)→ Ext(Aux(Isometry)), but in a trivial way: because Aux(Isometry) ' CPTP
by [11], and CPTP is already well-pointed, this functor is an isomorphism of categories.

Proposition 23. There is a monoidal equivalence Ext(Aux(PInj))' Pfn.

Proof. Define F : Pfn→ Ext(Aux(PInj)) by F(A) = A on objects, and on morphisms f : A→ B by
F(f) = [b f ,A], where b f is the Bennett embedding of f given by b f (x) = (f (x),x).

We argue first that this is functorial: F(id) is bid(x)= (x,x), but the chosen identity is (the equivalence
class of) ρ−1(x) = (x,?). However, on each point p, simply choose p itself to mediate to see bid ≈ ρ−1.
Likewise, whereas F(g◦ f) is bg◦ f (x) = (g(f (x)),x) and F(g)◦F(f) is b′(x) =

(
g(f (x)),(f (x),x)

)
, for

each point x, mediate that point by hx : A→ B×A given by:

hx(a) =

{
(f (x),x) if a = x
undefined otherwise

C. Heunen & R. Kaarsgaard 111

Thus F(g◦ f) ≈ F(g)◦F(f). Since Pfn and Ext(Aux(PInj)) have the same objects, it remains only to
be seen that F is full and faithful.

For fullness, let a partial injective f : A→ B×E represent a morphism in Ext(Aux(PInj)). Since
[f ,E] and [f ′,E ′] are identified if and only if for all x ∈ A there exists a partial injective function hx : E→
E ′ such that f (x) = (y,e) implies f ′(x) = (y,hx(e)), either way π1 ◦ f = π1 ◦ f ′ as partial functions.
Consider now the Bennett embedding of π1 ◦ f , that is, the partial injective function bπ1◦ f : A→ B×A
given by x 7→ (π1(f (x)),x), and compare it to f : A→ B×E. For any x∈ A, it follows that if f (x) = (y,e)
then bπ1◦ f (x) = (π1(f (x)),x) = (π1(y,e),x) = (y,x), so the two agree in the first component. Define a
one-point mediator hx : A→ E for x given by:

hx(a) =

{
e if a = x
undefined otherwise

Thus bπ1◦ f ≈ f and F is full.
Towards faithfulness, suppose F(f)≈F(g), so b f ≈ bg for some f ,g : A→B. Thus b f (x) = (f (x),x)

for some partial function f , and similarly bg(x) = (g(x),x). That b f ≈ bg means that for each a ∈ A there
exists ha : A→A (necessarily the identity) such that b f (a) = (y,a) implies bg(a) = (y,ha(a)) = (y,a). But
since y = f (a) by definition of b f , and since the above holds for all a∈ A, it thus follows that f (x) = g(x)
for all x ∈ A, which in turn implies f = g in Pfn by extensionality. So F is faithful.

It is easy to verify that F is monoidal.

Corollary 24. CPTP is the restriction monoidal completion of Isometry quotiented by well-pointedness,
and Pfn is the restriction monoidal completion of PInj quotiented by well-pointedness.

Proof. Combine Theorems 16 and 20 with Propositions 21 and 23.

6 Cofree reversible foundations

While CPTP and Pfn both arise as completions of ‘reversible’ categories Isometry and PInj, it is diffi-
cult to pinpoint the features which make them reversible. For example, PInj is an inverse category, but
Isometry is not even a dagger category. Following [11], we peel off another layer to reveal the inverse
category underneath using the Inp-construction, the dual to Aux. Thus we can show that both CPTP
and Pfn arise via the same universal constructions on the inverse categories Unitary and PInj. We go
on to show that this amalgamation of constructions is itself invertible by universal means, allowing us to
reconstruct PInj and Unitary from Pfn and CPTP as their cofree (monoidal) inverse categories.

Definition 25. For a symmetric monoidal inverse category C, define Inp(C) = Aux(Cop)op.

Proposition 26. When C is a symmetric monoidal inverse category, Inp(C) is a coaffine symmetric
monoidal restriction category.

Proof. Inverse categories are self-dual, C' Cop, so Inp(C) = Aux(Cop)op ' Aux(C)op. Hence Aux(C)
is an affine symmetric monoidal restriction category, and Inp(C) is a coaffine symmetric monoidal core-
striction category. It is also a symmetric monoidal restriction category under [f ,E]op = [ρ−1 ◦ f †, I],
because in an inverse category C morphisms f have (monoidal) corestriction f †.

The Aux-construction (and, by duality, the Inp-construction) is conservative: if a monoidal category
is already affine, the construction does nothing (up to isomorphism).

112 Bennett and Stinespring, Together at Last

Proposition 27. If C is a restriction affine symmetric monoidal category, there is a monoidal equivalence
Aux(C)' C.

Proof. It suffices to show that each morphism is equivalent to one of the form E (f ′). Let [f ,E] : A→ B
be a morphism of Aux(C). Then E (π1 ◦ f) = E (π1 ◦ f) = E (f) = [ρ−1 ◦ f , I] = [f ,E] and:

B⊗ I

B⊗E B B⊗ I

A B⊗ I

B⊗E

f

π1 ρ−1

f

id⊗!

id⊗id
E (π1◦ f)

[f ,E]

id⊗!
ρ

id

So E (π1 ◦ f)∼ [f ,E].

We can now show that Pfn and CPTP arise as completions of the inverse categories PInj and
Unitary. The quantum case relies on Huot and Staton’s characterisation of Isometry as a comple-
tion of Unitary [12] making initial the unit of the direct sum. We consider PInj and Unitary as inverse
rig categories, using the Inp-construction to make the unit of the direct sum initial, and then the Aux-
construction to make the tensor unit terminal. In this bimonoidal setting, we will use subscripts to clarify
which monoidal structure a construction acts on.

Theorem 28. There are equivalences Ext(Aux⊗(Inp⊕(PInj)))'Pfn and Ext(Aux⊗(Inp⊕(Unitary)))'
CPTP of categories.

Proof. First, that Ext(Aux⊗(Inp⊕(Unitary)) ' Ext(L⊗(R⊕(Unitary))) ' CPTP follows from the fact
that R⊕(Unitary) ' Isometry by [12, III.3] and Proposition 21. Now Ext(Aux⊗(Inp⊕(PInj))) ' Pfn
follows from the unit 0 of the disjoint sum ⊕ in PInj already being (restriction) initial, so Inp⊕(PInj)'
PInj by dualising Proposition 27 and finally Ext(Aux⊗(Inp⊕(PInj)))' Ext(Aux⊗(PInj))' Pfn.

Finally, we show that, at least in these two cases, this construction can be undone by considering
their cofree inverse categories (see Proposition 4). Write Unitaryp for the category of finite-dimensional
Hilbert spaces and equivalence classes of unitary linear maps up to global phase: unitaries f ,g : H→ K
are identified when f = z ·g for some z ∈U(1) [9, 2.1.4].

Theorem 29. There are monoidal equivalences Inv(Pfn)' PInj and Inv(CPTP)' Unitaryp.

Proof. That Inv(Pfn) ' PInj is well known; see for example [3]. With CPTP a trivial restriction cate-
gory, we show that Unitaryp is its cofree groupoid. It suffices to show that isomorphisms in CPTP just
conjugate with a unitary.

Let Λ : B(H)→B(K) be an isomorphism in CPTP, that is, a bijective CPTP map with a CPTP
inverse. Notice first that since Λ is bijective and H and K finite-dimensional, they must in fact have
equal dimension. Second, notice that Λ must then preserve pure states, since if Λ(|φ〉〈φ |) is some
mixed state ∑i αiρi then |φ〉〈φ | = Λ−1(Λ(|φ〉〈φ |)) = Λ−1(∑i αiρi) = ∑i αiΛ

−1(ρi), contradicting purity
of |φ〉〈φ |. But since id⊗Λ is then also an isomorphism, it too preserves pure states, and so the Choi-state
(id⊗Λ)(|Φ〉〈Φ|) for Λ is pure, too. Recall that a Stinespring dilation of a CPTP map can be obtained

C. Heunen & R. Kaarsgaard 113

by purifying its Choi-state, sending the result back through the Choi-Jamiolkowski isomorphism, and
tracing out the auxiliary system [16]. Since the Choi-state (id⊗Λ)(|Φ〉〈Φ|) is already pure, Λ must then
already be conjugation by some isometry V , which must in fact be unitary by surjectivity of Λ.

Acknowledgements We thank Frederik vom Ende for his clarifying comments on Theorem 29, Cole
Comfort for pointing out related work, and Mathieu Huot for useful feedback.

References

[1] H. B. Axelsen & R. Glück (2011): What do reversible programs compute? In M. Hofmann, editor: Proceed-
ings of the 14th International Conference on Foundations of Software Science and Computational Structures
(FoSSaCS 2011), Lecture Notes in Computer Science 6604, Springer, pp. 42–56, doi:10.1007/978-3-540-
70583-3 22.

[2] C. H. Bennett (1973): Logical reversibility of computation. IBM Journal of Research and Development 17(6),
pp. 525–532, doi:10.1147/rd.176.0525.

[3] J. R. B. Cockett & S. Lack (2002): Restriction categories I: Categories of partial maps. Theoretical Computer
Science 270(1–2), pp. 223–259, doi:10.1016/S0304-3975(00)00382-0.

[4] C. Comfort (2020): The ZX& calculus: A complete graphical calculus for classical circuits using spiders.
arXiv preprint 2004.05287.

[5] B. G. Giles (2014): An Investigation of some Theoretical Aspects of Reversible Computing. Ph.D. thesis,
University of Calgary, doi:10.11575/PRISM/24917.

[6] R. Glück & R. Kaarsgaard (2018): A categorical foundation for structured reversible flowchart languages:
Soundness and adequacy. Logical Methods in Computer Science 14(3), doi:10.23638/LMCS-14(3:16)2018.

[7] R. Glück, R. Kaarsgaard & T. Yokoyama (2020): Reversible programs have reversible semantics. In Emil
Sekerinski & Nelma Moreira, editors: FM’19 Workshops, Lecture Notes in Computer Science 12233,
Springer-Verlag, pp. 413–427, doi:10.1016/j.tcs.2015.07.046.

[8] C. Hermida & R. D. Tennent (2012): Monoidal indeterminates and categories of possible worlds. Theoretical
Computer Science 430, pp. 3–22, doi:10.1016/j.tcs.2012.01.001.

[9] C. Heunen (2009): Categorical quantum models and logics. Ph.D. thesis, Radboud University Nijmegen,
doi:10.5117/9789085550242.

[10] C. Heunen & J. Vicary (2019): Categories for Quantum Theory. Oxford University Press,
doi:10.1093/oso/9780198739623.001.0001.

[11] M. Huot & S. Staton (2018): Universal properties in quantum theory. In P. Selinger & G. Chiribella,
editors: Proceedings of the 15th International Conference on Quantum Physics and Logic (QPL 2018),
Electronic Proceedings in Theoretical Computer Science 287, Open Publishing Association, pp. 213–224,
doi:10.4204/EPTCS.287.12.

[12] M. Huot & S. Staton (2019): Quantum channels as a categorical completion. In: 34th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS 2019), IEEE, pp. 1–13, doi:10.1109/LICS.2019.8785700.

[13] R. Kaarsgaard, H. B. Axelsen & R. Glück (2017): Join inverse categories and reversible recursion. Journal
of Logical and Algebraic Methods in Programming 87, pp. 33–50, doi:10.1016/j.jlamp.2016.08.003.

[14] J. Kastl (1979): Inverse categories. In Hans-Jürgen Hoehnke, editor: Algebraische Modelle, Kategorien und
Gruppoide, Studien zur Algebra und ihre Anwendungen 7, Akademie-Verlag, pp. 51–60.

[15] R. Landauer (1961): Irreversibility and heat generation in the computing process. IBM Journal of Research
and Development 5(3), pp. 183–191, doi:10.1147/rd.53.0183.

[16] R. Renner (2011): Quantum Information Theory. Lecture notes.

http://dx.doi.org/10.1007/978-3-540-70583-3_22
http://dx.doi.org/10.1007/978-3-540-70583-3_22
http://dx.doi.org/10.1147/rd.176.0525
http://dx.doi.org/10.1016/S0304-3975(00)00382-0
https://arxiv.org/abs/2004.05287
http://dx.doi.org/10.11575/PRISM/24917
http://dx.doi.org/10.23638/LMCS-14(3:16)2018
http://dx.doi.org/10.1016/j.tcs.2015.07.046
http://dx.doi.org/10.1016/j.tcs.2012.01.001
http://dx.doi.org/10.5117/9789085550242
http://dx.doi.org/10.1093/oso/9780198739623.001.0001
http://dx.doi.org/10.4204/EPTCS.287.12
http://dx.doi.org/10.1109/LICS.2019.8785700
http://dx.doi.org/10.1016/j.jlamp.2016.08.003
http://dx.doi.org/10.1147/rd.53.0183

114 Bennett and Stinespring, Together at Last

[17] M. Soeken, R. Wille, O. Keszocze, D. M. Miller & R. Drechsler (2015): Embedding of large Boolean func-
tions for reversible logic. ACM Journal on Emerging Technologies in Computing Systems (JETC) 12(4), pp.
1–26, doi:10.1016/j.vlsi.2013.08.002.

[18] W. F. Stinespring (1955): Positive functions on C*-algebras. Proceedings of the American Mathematical
Society 6(2), pp. 211–216, doi:10.2307/2032342.

[19] A. Westerbaan & B. Westerbaan (2016): Paschke Dilations. In R. Duncan & C. Heunen, editors: Proceedings
of the 13th International Conference on Quantum Physics and Logic (QPL 2016), Electronic Proceedings in
Theoretical Computer Science 236, Open Publishing Association, pp. 229–244, doi:10.4204/EPTCS.236.15.

A Deferred proofs

Proposition 9. Aux(C) is a category.

Proof. We need to show that composition is associative, unital, and well-defined. Let [f ,E] : A→ B,
[g,E ′] : B→C, and [h,E ′′] : C→D be morphisms of Aux(C). That [h,E ′′]◦ ([g,E ′]◦ [f ,E]) is equivalent
to ([h,E ′′]◦ [g,E ′])◦ [f ,E] follows from

α ◦ (h⊗ id)◦α ◦g⊗ id◦ f = α ◦α ◦ ((h⊗ id)⊗ id)◦g⊗ id◦ f

= ((h⊗ id)⊗ id)◦g⊗ id◦ f

= α ◦ (α⊗ id)◦ ((h⊗ id)⊗ id)◦g⊗ id◦ f

in C and commutativity of the following diagram in C:

B⊗E (C⊗E ′)⊗E C⊗ (E ′⊗E) (D⊗E ′′)⊗ (E ′⊗E)

D⊗ (E ′′⊗ (E ′⊗E))

A D⊗ (E ′′⊗ (E ′⊗E))

D⊗ ((E ′′⊗E ′)⊗E)

B⊗E (C⊗E ′)⊗E ((D⊗E ′′)⊗E ′)⊗E (D⊗ (E ′′⊗E ′))⊗E
g⊗id (h⊗id)⊗id α⊗id

α

f

f

g⊗id α h⊗id

α

[h,E ′′]◦([g,E ′]◦[f ,E])

([h,E ′′]◦[g,E ′])◦[f ,E]

id⊗id

id⊗α

That id◦ [f ,E]∼ [f ,E] follows from α ◦ (ρ−1⊗ id)◦ f = f and commutativity in C of the diagram:

B⊗E (B⊗ I)⊗E B⊗ (I⊗E)

A B⊗E

B⊗E
f

f

ρ−1⊗id α

id◦[f ,E]
id⊗λ

id⊗id
[f ,E]

http://dx.doi.org/10.1016/j.vlsi.2013.08.002
http://dx.doi.org/10.2307/2032342
http://dx.doi.org/10.4204/EPTCS.236.15

C. Heunen & R. Kaarsgaard 115

Similarly [f ,E]◦ id∼ [f ,E]. Finally, we show that composition is well-defined. Suppose [f ,E] : A→B is

equivalent to [f ′,G] : A→ B by a zigzag of mediators E h1−→ E1
h2←− E2

h3−→ ·· · hn←−G. Given [g,E ′] : B→C
and intermediates f1, f2, . . . , fn−1, to show [g,E ′] ◦ [f ,E] ∼ [g,E ′] ◦ [f ′,G] we see first that the diagram
below commutes in C:

A

B⊗E B⊗E1 B⊗E2 . . . B⊗G

(C⊗E ′)⊗E (C⊗E ′)⊗E1 (C⊗E ′)⊗E2 . . . (C⊗E ′)⊗G

C⊗ (E ′⊗E) C⊗ (E ′⊗E1) C⊗ (E ′⊗E2) . . . C⊗ (E ′⊗G)

f f ′

α

g⊗id g⊗id

α

id⊗h1 id⊗h2 id⊗hnid⊗h3

id⊗(id⊗h1) id⊗(id⊗h2) id⊗(id⊗h3) id⊗(id⊗hn)

g⊗id g⊗id

α α

id⊗h1 id⊗hnid⊗h3id⊗h2

f2 ···
f1

There is no room in the diagram above for ghost arrows, but each downward path α ◦ (g⊗ id) ◦ fi cor-
responds to [g,E ′] ◦ [fi,Ei], and likewise for [f ,E] and [f ′,G] instead of fi. We have left to show that
α ◦ (g⊗ id)◦ f = α ◦ (g⊗ id)◦ f ′. Now id⊗h1 ◦ f = f ◦ (id⊗h1)◦ f = f ◦ f1 = f ◦ f = f , so:

α ◦ (g⊗ id)◦ f = (g⊗ id)◦ f = (g⊗ id)◦ id⊗h1 ◦ f = (g⊗ id)◦ (id⊗h1)◦ f

= (g⊗h1)◦ f = g⊗h1 ◦ f = (g⊗h1)◦ f = (g⊗ id)◦ (id⊗h1)◦ f

= (g⊗ id)◦ f1 = α ◦ (g⊗ id)◦ f1

By induction eventually α ◦ (g⊗ id)◦ f = α ◦ (g⊗ id)◦ f ′.
Pre-composition is similarly well-defined, though the condition on restriction idempotents follows

more readily by (g⊗ id)◦ f = (g⊗ id)◦ f = (g′⊗ id)◦ f = (g′⊗ id)◦ f .

Proposition 10. Aux(C) inherits a restriction structure from C with [f ,E] = [ρ−1 ◦ f , I].

Proof. We establish the axioms of Definition 1 in order. That [f ,E]◦ [f ,E] = [f ,E] for each [f ,E] : A→
B in Aux(C) follows by commutativity of the following diagram in C:

B⊗E

A A⊗ I (B⊗E)⊗ I B⊗ (E⊗ I)

A B⊗E

B⊗Ef

f

ρ−1 f⊗id α

id⊗ρ

id⊗id

[f ,E]◦[f ,E]

[f ,E]

f

ρ−1

f

ρ

116 Bennett and Stinespring, Together at Last

To see that [f ,E]◦ [g,E ′] = [g,E ′]◦ [f ,E] for [f ,E] : A→ B and [g,E ′] : A→C in Aux(C):

A A⊗ I A⊗ I (A⊗ I)⊗ I

A A A⊗ (I⊗ I)

A A⊗ (I⊗ I)

A A A⊗ (I⊗ I)

A A⊗ I A⊗ I (A⊗ I)⊗ I

f

g

ρ−1

f

g

ρ−1

f⊗id

ρ−1 g⊗id

ρ−1

ρ−1⊗id

ρ−1⊗id

α

α

[g,E ′]◦[f ,E]

[f ,E]◦[g,E ′]
id⊗id

id⊗id

f
g

g
f

To show [g,E ′]◦ [f ,E] = [g,E ′]◦ [f ,E] for all [f ,E] : A→ B and [g,E ′] : A→C of Aux(C), first compute:

[g,E ′]◦ [f ,E] = [g,E ′]◦ (ρ−1 ◦ f , I) = (α ◦ (g⊗ id)◦ρ−1 ◦ f , I) = (α ◦ρ−1 ◦g◦ f , I)

= (ρ−1 ◦α ◦ρ−1 ◦g◦ f , I) = (ρ−1 ◦g◦ f , I)

Now the diagram below commutes in C because g◦ f = g◦ f :

A

A A⊗ I A⊗ I (A⊗ I)⊗ I A⊗ (I⊗ I)

A A⊗ I

A A⊗ I

f

g◦ f

ρ−1

ρ−1 g⊗id ρ−1⊗id α

id⊗ρ

id⊗id

g ρ−1

[g,E ′]◦[f ,E]

[g,E ′]◦[f ,E]

Finally, for [f ,E] : A→ B and [g,E ′] : B→ C we have [g,E ′] ◦ [f ,E] = [f ,E] ◦ [g,E ′]◦ [f ,E] because
[g,E ′]◦ [f ,E] = [α ◦ (g⊗ id)◦ f , I] = [(g⊗ id)◦ f , I] = [(g⊗ id)◦ f , I] and the diagram below commutes:

B⊗E B⊗E (B⊗ I)⊗E B⊗ (I⊗E)

A B⊗E

A B⊗E (B⊗E)⊗ I B⊗ (E⊗ I)

A⊗ I

f

α

(g⊗id)◦ f

ρ−1 f⊗id

α

id⊗λ

id⊗ρ

f ρ−1

g⊗id ρ−1⊗id

[f ,E]◦[g,E ′]◦[f ,E]

[g,E ′]◦[f ,E]

C. Heunen & R. Kaarsgaard 117

Here (g⊗ id)◦ f = g⊗ id◦ f = f ◦ (g⊗ id)◦ f by the corresponding axiom in C.

Proposition 11. If C is a restriction symmetric monoidal category, then so is Aux(C):

• the tensor unit and tensor product of objects are as in C;

• the tensor product of [f ,E] : A→ B and [f ′,e′] : A′→ B′ is [ϑ ◦ (f ⊗ f ′),E⊗E ′] : A⊗A′→ B⊗B′;

where ϑ is the canonical isomorphism (B⊗E)⊗ (B′⊗E ′)' (B⊗B′)⊗ (E⊗E ′) in C.

Proof. Coherence isomorphisms ρ : A→ B of C lift to Aux(C) as [ρ−1 ◦β , I] : A→ B. For example, the
symmetry γ : A⊗B→ B⊗A in C becomes [ρ−1 ◦γ, I] : A⊗B→ B⊗A in Aux(C). Composing coherence
isomorphisms [ρ−1 ◦β , I] : A→ B and [ρ−1 ◦ φ , I] : B→ C in Aux(C) is equivalent to first composing
them in C and then lifting to Aux(C):

B B⊗ I C⊗ I (C⊗ I)⊗ I C⊗ (I⊗ I)

A C⊗ I

B C C⊗ I

β

ρ−1 φ⊗id ρ−1⊗id α

β

φ ρ−1

id⊗ρ

id⊗id
[ρ−1◦φ◦β ,I]

[ρ−1◦φ ,I]◦[ρ−1◦β ,I]

Similarly, tensoring coherences β and φ in C and then lifting is equivalent to first lifting them individually
and then tensoring them in Aux(C) by

B⊗B′ (B⊗ I)⊗ (B′⊗ I) (B⊗B′)⊗ (I⊗ I)

A⊗A′ (B⊗B′)⊗ I

B⊗B′ (B⊗B′)⊗ I
β⊗φ

ρ−1

id⊗id

id⊗ρ
β⊗φ

ρ−1⊗ρ−1
ϑ

[ρ−1◦β ,I]⊗[ρ−1◦φ ,I]

[ρ−1◦(β⊗φ),I]

In this way, coherence of the monoidal structure in Aux(C) follows from that of C. It remains to show is
that the tensor product of morphisms is well-defined, and that it respects restrictions.

Suppose that [f ,E] ∼ [g,G] via mediators E h1−→ E1
h2←− . . .

hn←− G and intermediates f1, . . . , fn−1 with
f = f1 = · · ·= fn−1 = g. Then

ϑ ◦ (f ⊗ f ′) = f ⊗ f ′ = f ⊗ f ′ = g⊗ f ′ = g⊗ f ′ = ϑ ◦ (g⊗ f ′)

since ϑ is an isomorphism (and so total). Also [f ⊗ f ′,E⊗E ′]∼ [g⊗ f ′,G⊗E ′]:

A⊗A′

(B⊗E)⊗ (B′⊗E ′) (B⊗E1)⊗ (B′⊗E ′) · · · (B⊗B′)⊗ (G⊗E ′)

(B⊗B′)⊗ (E⊗E ′) (B⊗B′)⊗ (E1⊗E ′) · · · (B⊗B′)⊗ (G⊗E ′)

ϑ

f⊗ f ′

ϑ ϑ

g⊗ f ′

id⊗(h1⊗id) id⊗(hn⊗id)

(id⊗hn)⊗id(id⊗h1)⊗id (id⊗h2)⊗id

id⊗(h2⊗id)

f1⊗ f ′ ···

118 Bennett and Stinespring, Together at Last

Similarly [f ′⊗ f ,E ′⊗E]∼ [f ′⊗g,E ′⊗G]. Finally,

[f ,E]⊗ [f ′,E ′] = [ρ−1 ◦ϑ ◦ (f ⊗ f ′), I] = [ρ−1 ◦ f ⊗ f ′, I] = [ρ−1 ◦ (f ⊗ f ′), I]

and the diagram below commutes:

A⊗A′ (A⊗ I)⊗ (A′⊗ I) (A⊗A′)⊗ (I⊗ I)

A⊗A′ (A⊗A′)⊗ I

A⊗A′ (A⊗A′)⊗ I
f⊗ f ′

ρ−1

f⊗ f ′

ρ−1⊗ρ−1
ϑ

id⊗ρ

id⊗id

[f ,E]⊗[f ′,E ′]

[f ,E]⊗[f ′,E ′]

This shows that [f ,E]⊗ [f ′,E ′] = [f ,E]⊗ [f ′,E ′].

	1 Introduction
	2 Restriction categories and inverse categories
	3 The Aux-construction
	4 Extensionality
	5 Quantum channels and classical functions as completions
	6 Cofree reversible foundations
	A Deferred proofs

