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Causal models with unobserved variables impose nontrivial constraints on the distributions over the
observed variables. When a common cause of two variables is unobserved, it is impossible to uncover
the causal relation between them without making additional assumptions about the model. In this
work, we consider causal models with a promise that unobserved variables have known cardinalities.
We derive inequality constraints implied by d-separation in such models. Moreover, we explore the
possibility of leveraging this result to study causal influence in models that involve quantum systems.

1 Introduction

In causal studies, systems of variables are described by causal models [20, 24], which are composed of
two elements: (i) the graphical representation of relationships between variables in a model, encoded in
a directed acyclic graph, and (ii) the mathematical description of conditional probability distribution of
each variable given its causal parents. When a causal model involves hidden (i.e., unobserved) variables,
any characterization of the model verifiable by observations should only include observed variables.
Therefore, one of the objectives of causal inference is to eliminate all hidden variables from inequalities
and equalities that describe the model. In principle, this can be achieved using the Tarski–Seidenberg
quantifier elimination method [13]. However, its complexity is such that only models with few variables
can be solved using this technique, hence the reason for the many attempts to simplify the problem.
For example, one can derive a set of incomplete constraints on probability distributions in latent causal
models [9, 27, 16, 22, 26]. As these models impose highly nontrivial constraints on the probability
distributions, Chaves et al. [6] derive constraints expressed using entropies. Interestingly, the entropic
framework originates from the foundations of quantum mechanics [5, 12]. Furthermore, causal effects
in latent causal structures can be estimated by limiting the causal influence between a confounder and its
children [23, 25]. Unfortunately, these methods only provide the necessary, but not sufficient, constraints
for complete characterization of a causal model.

The field of causal inference is relevant to a wide range of disciplines. Curiously, quantum correla-
tions seem to have no satisfactory explanation via classical causal models. The most famous example is
Bell’s theorem [2]. The underlying causal structure of a Bell experiment was investigated in [28]. It was
shown that it is impossible to explain Bell-inequality violations using a classical causal model without
fine-tuning. As this result only holds for the framework of classical causal inference, it appears that
quantum theory calls for a quantum generalization of this formalism. Many works attempt to describe
causality in quantum systems by generalizing classical concepts to the quantum formalism, for example:
quantum Reichenbach’s principle [1], quantum Bayes’ theorem [18] and quantum randomized trial [21].
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We suggest that studying classical causal models with hidden variables can provide a valuable insight
into quantum causality.

In this work, we analyze causal models with hidden variables that exhibit d-separation relations,
under the assumption that the cardinality of the unobserved variables is known. We derive inequality
constraints on the probability distribution over observed variables in such scenarios. We discuss possible
applications of these constraints, both in classical causal inference and in quantum causality.

Outline

Section 2 reviews the framework of graphical causal models and the definition of nonnegative rank.
Section 3 contains the main results. It begins with description of nonnegative rank as a measure of
dependence. Afterwards, it provides constraints implied by d-separation in causal models with hidden
variables. Section 4 describes applications of constraints derived in Section 3. Section 5 shows that our
constraints are sufficient, but not necessary for identifying direct causal influence. Finally, Section 6 dis-
cusses possible generalisations of our constraints to the quantum formalism. Lastly, Section 7 concludes
the previous sections.

2 Preliminaries

Graphical Causal Models

In this section, we briefly recall basic notions and important results from graph theory and causal infer-
ence.

Consider a system of causally related events. We represent each event by a random variable and we
denote the set of variables that corresponds to the system of events as V. In general, V can contain both
observed and unobserved variables.

The variables in V, and relations between them, can be represented by a graph. Graphs consist of
vertices and edges. We call a graph a causal graph, if the edges that connect the vertices are directed
and correspond to causal relations. For example, a causal graph X → Y indicates that the variable X has
a direct causal influence on Y . Here, X is said to be a parent of Y . We denote all parents of a random
variable V in a graph G by paG (V ).

In causal inference studies, relationships between variables are illustrated by Directed Acyclic Graphs
(DAGs) 1. A causal model consists of a DAG G over a set of variables V and a joint probability dis-
tribution PV. Causal models provide not only a probabilistic, but also a causal interpretation of the
relationships between variables in a system.

Properties of a DAG that represents variables in V imply properties of the distribution PV. The
essential one is the Markov condition which states that PV can be decomposed as

PV = ∏
V∈V

P(V | paG (V )). (1)

Naturally, this condition can be tested only if all variables in V are observed. It means that given a DAG
G and a probability distribution PV, with all variables in V being observed, the Markov condition enables
us to test the compatibility of G and PV. However, when some variables in V are unobserved, testing
compatibility is a hard task, as we already mentioned in the introduction.

1A graph is directed, if all its edges are directed (they point in a certain direction which is marked with a single arrow). A
directed graph is acyclic if there is no directed path from any variable back to itself.
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A different property of DAGs that is important in causal inference studies is d-separation. Before we
formally define it, let us recall the notion of blocking a path.

Let p be a path in a DAG G . We say that p is blocked by a set of vertices Z if and only if

• p contains a fork structure (X ← Z→ Y ) or a chain structure (X → Z→ Y ) in which the middle
vertex Z is in Z, or

• p contains a collider structure (X → Z ← Y ) in which neither the middle vertex Z nor any of its
descendants is in Z.

Definition 1 (d-separation) X and Y are said to be d-separated by a set Z, (X ⊥d Y|Z), if and only if
Z blocks every path from a vertex in X to a vertex in Y.

Any d-separation relation (X ⊥d Y|Z) in G implies that X and Y are conditionally independent
given Z, (X⊥ Y|Z), in the corresponding distribution PXYZ.

Notice that testing whether conditional independence relations implied by G hold is only possible
when all variables in X, Y and Z are observed. When dealing with unobserved variables, conditional
independence relations are sometimes impossible to evaluate.

Nonnegative factorization

We now review the definitions of nonnegative matrix factorization and nonnegative rank as they will play
an important role in our results.

Nonnegative matrix factorization is a group of algorithms used for factorizing a nonnegative matrix
(matrix with no negative entries) into two or more nonnegative matrices. The problem of performing a
nonnegative matrix factorization is not always tractable, nevertheless numerical approximations of this
task exist. This method is used in many fields of science, such as astronomy, bioinformatics and machine
learning, as they study data with positive entries [3, 4, 19]. Furthermore, the nonnegative rank, which we
define below, plays a critical role in communication theory as it characterizes randomized communication
complexity and randomized correlation complexity [15, 29].

Formally, given a nonnegative matrix M∈Rn×m
+ , a nonnegative factorization of M means factorizing

it into
M = UV,

where U ∈ Rn×r
+ and V ∈ Rr×m

+ are nonnegative. The nonnegative rank of M, rank+[M], is the smallest
number r for which such a factorization can be found. Equivalently, the nonnegative rank of M is the
smallest number for which M can be decomposed into a positive sum over r nonnegative rank-1 matrices
[7]. For the purpose of this paper, we formalize the definition of the nonnegative rank in a following way.

Definition 2 (nonnegative rank) Let PXY be a (|X | × |Y |)-dimensional nonnegative matrix. The non-
negative rank of PXY is defined as

rank+[PXY ]≡min{r | ∃(P(1)
X ,P(1)

Y ), . . . ,(P(r)
X ,P(r)

Y ) PXY =
r

∑
z=1

P(z)
X P(z)

Y }, (2)

where P(z)
X is a nonnegative |X |-dimensional row vector and each P(z)

Y is a nonnegative |Y |-dimensional
column vector.

The matrices in the set {P(z)
X P(z)

Y }z have rank 1, hence this definition coincides with the standard
definition of the nonnegative rank.
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3 Rank constraints for causal models

In this section, we explore a relation between the nonnegative rank of a probability distribution over two
variables, and the causal relation between these variables.

Nonnegative rank as a measure of dependence

We start by making a trivial observation that any joint probability distribution over two variables can
be represented as a nonnegative matrix PXY , with entries Pxy = PX=x,Y=y = P(X = x,Y = y). Notice
that although we donote Pxy using the bold font, it is a single element of the matrix PXY . If X and
Y are independent, PXY can be factorized as PXY = PX PY . Then, it follows from Definition 2 that
PXY has nonnegative rank 1. Conversely, as the correlation between X and Y increases, so does the
nonnegative rank of their distribution. It means that the nonnegative rank of a probability distribution
can be interpreted as a measure of dependence between two variables.

Consider an example in which the dependence between X and Y is only due to a third variable,
denoted by Z. Let Z take r different values, i.e., the cardinality of Z is r, which we denote |Z| = r.
Throughout this paper we take r to be the minimum cardinality of Z for which X and Y are conditionally
independent. If X and Y are conditionally independent given Z, the probability distribution must factorize
as:

PXY =
r

∑
z=1

PX |Z=zPY |Z=zPZ=z. (3)

Here, PX |Z=z (PY |Z=z) is a conditional probability distribution over X (Y ) given that Z takes a particular
value Z = z. This factorization is equivalent to the one given in Eq. (2), with rank+[PXY ] = r. We
summarize this result in the following Proposition.

Proposition 1 Let PXY ∈ Rn×m
+ represent a joint probability distribution on random variables X and Y

that have finite cardinalities, |X |= n and |Y |= m. The following are equivalent:

1. There exists a nonnegative factorization of PXY with rank+[PXY ] = r.

2. PXY can be decomposed as in Eq. (3) with |Z|= r.

Proof 1 1 =⇒ 2: Suppose PXY factorizes as in Eq. (2), with P(z)
X and P(z)

Y being unnormalized proba-
bility distributions. Define the sums

Q(z)
X = ∑

x
P(z)

X=x , Q(z)
Y = ∑

y
P(z)

Y=y .

Notice that the set of products {Q(z)
X Q(z)

Y }z form a valid probability distribution. We denote it as

PZ=z = Q(z)
X Q(z)

Y ,

where ∑
z

PZ=z = ∑
x, y, z

P(z)
X=xP(z)

Y=y = ∑
x, y

Pxy = 1.

Further, define the following vectors:

C(z)
X =

P(z)
X

Q(z)
X

, C(z)
Y =

P(z)
Y

Q(z)
Y

.
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We can now decompose PXY as

PXY = ∑
z

P(z)
X P(z)

Y = ∑
z

C(z)
X C(z)

Y (Q(z)
X Q(z)

Y ).

It is now clear that one can define the following conditional probabilities

PX |Z=z ≡ C(z)
X , PY |Z=z ≡ C(z)

Y ,

and decompose PXY as
PXY = ∑

z
PX |Z=zPY |Z=zPZ=z,

which is the factorization from Eq. (3).
2 =⇒ 1: Assume PXY can be factorized as in Eq. (3). Then, since PZ=z is just a positive number, it
follows trivially that rank+[PXY ] = r.
This proposition was also stated in Refs. [14], [17, Appendix 7.5] and [8, Proposition 2].

Recall that we assumed that r is the minimum cardinality of Z for which X and Y are conditionally
independent. The direction (2 =⇒ 1) of Proposition 1 is true due to this assumption. In general, the
cardinality of Z can be greater than rank+[PXY ], which we exploit in the next Subsection.

Restricted cardinality constraints

Consider the example from the previous Subsection, where Z is assumed to be the only source of de-
pendence between X and Y . If Z is an observed variable, it is straightforward to verify whether this
hypothesis holds. However, if Z is unobserved, constraints implied by conditional independence rela-
tions are impossible to directly evaluate. We now show that knowledge about the cardinality of Z is
enough to test conditional independence relations in some cases.

Let us interpret Proposition 1 from the perspective of causal models. If PXY can be factorized as in
Eq. (3), then there exist a hypothetical variable Z, with cardinality |Z|= r, and probability distribution PZ

that makes X and Y conditionally independent. In graphical causal models, the notion of conditional in-
dependence is captured by d-separation. If two variables X and Y are conditionally independent given Z,
a DAG that illustrates the causal structure of X , Y and Z must satisfy the following two properties. First,
there must be no direct causal influence between X and Y (no direct arrow form X to Y , or from Y to X).
Second, Z must d-separate X and Y . Three examples of causal structures that satisfy these properties are
depicted in Figure 1. Circles correspond to observed variables, and dashed circles correspond to unob-
served variables. In Figure 1 (a), Z is a common cause of X and Y . In Figure 1 (b), Z is a causal mediary
between X and Y . Finally, in Figure 1 (c), a d-separating set Z = {Z1,Z2} consists of both a common
cause and a causal mediary. In the first two examples, the cardinalities of the d-separating variables are
given by |Z|. In the third example, the cardinality of the d-separating set is equal to |Z1| × |Z2|.

From Proposition 1, the variable that d-separates X and Y must have at least cardinality r, which is
given by rank+[PXY ]. This result is summarized in the corollary below.
Corollary 1 The nonnegative rank of the matrix PXY whose components are Pxy = P(X = x,Y = y)
constitutes a lower bound for the cardinality of a variable Z that d-separates X and Y,

rank+[PXY ]≤ |Z|. (4)

The constraint given in Eq. (4) enables to verify whether conditional independence relations implied by
a DAG hold, even when the d-separating variable is unobserved. The knowledge about Z required to
evaluate the bound is only its cardinality. In the next section, we give examples that use Corollary 1 to
test conditional independence relations in DAGs with latent variables.
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Z

(a)

X Z Y

(b)

X Z2 Y

Z1

(c)

Figure 1: Examples of d-separating variables.

4 Applications

In this section, we give two applications of Corollary 1. First, we describe its potential to improve causal
discovery algorithms. In particular, we consider a scenario in which our constraint witnesses direct
causal influence between two variables in a presence of a confounder. Second, we reprove two results
from communication theory: characterization of randomized correlation complexity and randomized
communication complexity.

Witnessing Causal Influence

Imagine that two ternary events, X and Y (|X | = |Y | = 3), are observed to exhibit some statistical de-
pendence. Additionally, assume they share an unobserved common cause U which is known to have
cardinality |U | = 2. Two possible hypotheses regarding the causal relations between X , Y and U are
illustrated in Fig. 2. In Fig. 2 (a), one believes the statistical dependence is purely due to a common

X
Y

U

(a)

X
Y

U

(b)

X
Y

U

Z

(c)

X
Y

U

Z

(d)

Figure 2: Witnessing direct causal influence in a presence of a confounder.

cause, whereas in Fig. 2 (b), X additionally has a direct causal influence on Y .
In Fig. 2 (a), U d-separates X and Y . From Corollary 1, we know that

rank+[PXY ]≤ |U |.

Therefore, if rank+[PXY ] > 2, one can discard the hypothesis of Fig. 2 (a) and conclude that there must
be a direct causal influence of X on Y as in Fig. 2 (b).

As an example, suppose PXY is given by the probability distribution from Table 1. In this case, the
nonnegative rank of PXY is equal to 3. One can certify that rank+[PXY ] is greater than |U |, and only the
causal hypothesis of Fig. 2 (b) is compatible with this probability distribution. In this example, observing
rank+[PXY ] = 3 witnesses direct influence between X and Y .



B. Zjawin, E. Wolfe & R.W. Spekkens 125

Y
0 1 2

0 0 1/6 1/6

X 1 1/6 0 1/6

2 1/6 1/6 0

Table 1: An example of a probability distribution PXY , with |X |= |Y |= 3.

The example above shows the essence of Corollary 1. It captures the fact that strong correlation
between high cardinality variables, when no direct influence between them exists, must be explained by
a high cardinality common cause. This dependence was also noticed in Ref. [17, Corollary 1], where
the authors show that the graphs illustrated in Fig. 2 (a) and Fig. 2 (b) may sometimes be distinguished
under the presumption that the confounder has small cardinality, i.e., |U |< min{|X |, |Y |}.

Corollary 1 can also be applied to scenarios where the common cause is partially observed. We
define a partially observed set as a set in which only some variables are observed. An example of a
partially observed common cause C = {Z,U} is illustrated in Fig. 2. In Fig. 2 (c), X and Y share two
common causes: an unobserved one, denoted by U , and an observed one, denoted by Z. In Fig. 2 (d), X
additionally influences Y .

In Fig. 2 (c), Z is an observed variable, and we can condition the values of X and Y on its particular
value, Z = z. Let P(z)

XY denote the probability distribution over X and Y conditioned on a particular value
z of Z, Pz

xy = P(X = x,Y = y|Z = z). After conditioning, U d-separates X and Y (given Z = z) in
Fig. 2 (c). The constraint given by Corollary 1 in this case is

∀z : rank+[P
(z)
XY ]≤ |U |.

Given P(z)
XY for all z, any violation of this condition witnesses direct causal influence between X and Y ,

just like in the example with an unobserved common cause.
Corollary 1 can also be used to solve a converse problem. Suppose a distribution PXY is observed,

where variables X and Y are known to share an unobserved common cause Z (or more generally, are
d-separated by Z). If nothing is known about Z, constraint from Eq. (4) can be used to lower bound its
cardinality.

Distribution generation

Recall a distribution generation protocol that is often discussed in communication theory [29, 15]. Sup-
pose two parties, Alice and Bob, are responsible for generating random variables X and Y respectively,
such that X and Y have a prespecified joint distribution PXY . Our goal is to quantify how much informa-
tion must be communicated or shared to generate PXY .

In the literature about this problem two scenarios have been developed and studied separately. In the
first scenario, Alice and Bob each receive information from a third party before they generate X and Y .
We denote the information they share by Z. In this protocol, no communication between Alice and Bob is
allowed. The information Z distributed this way is often referred to as a random seed. The minimum size
of a seed that must be given to Alice and Bob in order to produce the required distribution PXY is called
the randomized correlation complexity of the joint distribution, and is denoted RCorr[PXY ]. Here, a size
of a seed is the number of bits that is distributed to each party, and is given by log2(|Z|). In the second
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scenario, one-way communication between Alice and Bob is allowed. After generating X , Alice sends
a message to Bob through an intermediary, which we denote M. The minimum number of bits Alice
needs to communicate to Bob such that they can produce the target distribution is called the randomized
communication complexity, and is denoted RComm[PXY ]. The number of bits communicated between
the parties is given by log2(|M|).

It has been shown that RCorr[PXY ] and RComm[PXY ] are equal, and are fully characterized by
log2(rank+[PXY ]) [29]. We now show that given Corollary 1, this result follows trivially from a causal
analysis of the problem. To begin, we note that in the first scenario, the seed Z is distributed to both Alice
and Bob, hence it can affect both X and Y . Graphically, this scenario corresponds to Fig. 1 (a), where
Z is a common cause of X and Y . In the second scenario, the message M can depend on the random
variable X , which in turn affects how Bob generates Y . This scenario is illustrated by a causal structure
in Fig. 1 (b), with M playing the role of Z in the figure.

We now observe that X and Y are d-separated by Z and M respectively in the two scenarios. Corol-
lary 1 implies that

|Z| ≥ rank+[PXY ] and |M| ≥ rank+[PXY ].

It follows that

log2(|Z|)≥ log2(rank+[PXY ]) and log2(|M|)≥ log2(rank+[PXY ]).

Note that RCorr[PXY ] and RComm[PXY ] correspond to the minimum size of a seed and a message, re-
spectively, needed to generate PXY . Therefore, they are given by the lower bound of the above inequal-
ities. Moreover, Corollary 1 does not distinguish a common cause Z from a causal mediary M, as they
both d-separate X and Y in this example. This result yields both the equivalence of RCorr[PXY ] and
RComm[PXY ], and the fact that they are fully characterized by log2(rank+[PXY ]). This example shows
that adopting a causal perspective can simplify results in communication theory.

Finally, we analyze a more involved protocol, in which Alice and Bob share a seed Z1, and Alice can
communicate to Bob through a mediary Z2. This scenario is illustrated in Fig. 1 (c). The cardinality of
the d-separating set Z = {Z1,Z2} is equal to |Z1|× |Z2|. It follows from Corollary 1 that

|Z1|× |Z2| ≥ rank+[PXY ] and log2(|Z1|× |Z2|)≥ log2(rank+[PXY ]).

We can intuitively view the constraint on |Z1|× |Z2| as defining a trade-off between the amount of infor-
mation shared through a seed and the amount transferred using communication. This perspective enables
studying relatively complex problems in which the size of the seed or the capacity of the communication
channel is constrained. Similarly, if one of these cardinalities is unobserved, information about the other
can be used to bound it, using Corollary 1.

5 A Specific Case with Additional Constraints

The inequality given in Corollary 1 gives a sufficient, but not a necessary condition for identifying causal
relations between variables. In this Section, we give an example of a correlation that satisfies the con-
straints implied by the d-separation relations in a model, but nevertheless imposes new constraints that
require additional causal mechanisms.

Let us revisit the causal hypotheses illustrated in Fig. 2 (c) and Fig. 2 (d). Assume X , Y and Z are
binary observed variables, and U is a binary unobserved variable. In this scenario, P(z)

XY is a 2×2 matrix
and the constraint given in Corollary 1 is always satisfied. This is the case because rank+[P

(z)
XY ]≤ 2 and
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|U | = 2. However, this is not enough to conclude that the causal relations between X , Y , Z and U are
those illustrated by Fig. 2 (c). In this Section, we give an example of a probability distribution P(z)

XY that
satisfies the above conditions, and requires a direct causal influence as in Fig. 2 (d). First, we consider
a specific probability distribution P(z)

XY , with |X | = |Y | = |Z| = |U | = 2, under the causal hypothesis of
Fig. 2 (c). Then, we show that the causal structure of Fig. 2 (c) implies some nontrivial constraints that
must be satisfied in order to explain the specific form of P(z)

XY .
We start with a reminder that an intuitive way of describing an outcome of a random variable is with

its expectation value. Let V = {V1, ...,Vn} be a set of n binary variables that each take a value in {−1,1}.
The conversion formula between the probability distribution P(V) = P(V1, ...Vn) and the expectation
values of variables in V can be written as

P(V1, ...Vn) =
1
2n

(
1+

n

∑
k=1

∑
1≤i1<...<ik≤n

vi1 ...vik〈Vi1 ...Vik〉

)
. (5)

Let us consider a special case when X and Y are observed to be perfectly positively correlated for
both possible values of Z,

〈XY |Z = z〉= 1. (6)

Assume that this perfect correlation arises due to the causal mechanism encoded in Fig. 2 (c). Eq. (6)
implies that

(a) 〈X |Z,U〉=±1;and

(b) 〈Y |Z,U〉= 〈X |Z,U〉,
(7)

for both values of Z and U , that is, X and Y need to depend deterministically on Z and U (Eq. (7a)) in
the same way (Eq. (7b)).

Our goal is to derive constraints on 〈X |Z = z〉 that arise due to this condition. If any nontrivial
constraints exist, the causal hypothesis of Fig. 2 (c) explains the perfect correlation between X and Y only
if they are satisfied. Violation of these constraints calls for an additional causal mechanism (additional
to ones in Fig. 2 (c)) that explains the dependence between X and Y .

In order for the constraints on 〈X |Z = z〉 to be verifiable, they can only depend on the observed
variables. We perform a quantifier elimination using the known constraints to eliminate the unobserved
variable from the set of inequalities and equalities. We find that either

〈X |z = 1〉=±〈X |z =−1〉
or Min[〈X |z = 1〉,〈X |z =−1〉] =−1

or Max[〈X |z = 1〉,〈X |z =−1〉] = 1.

It then follows from 〈XY |Z = z〉= 1 that

〈Y |z = 1〉=±〈Y |z =−1〉
or Min[〈Y |z = 1〉,〈Y |z =−1〉] =−1

or Max[〈Y |z = 1〉,〈Y |z =−1〉] = 1.

These constraints show that for the special case being considered, one of the following conditions must
be true for the marginal expectation values of X conditional on Z:
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1. 〈X |Z = z〉 has the same magnitude for z = 1 and z =−1 (it is equal up to a sign); or

2. 〈X |Z = z〉 is deterministic and does not depend on U at all for one value of Z = z.

The same holds for 〈Y |Z = z〉. If any of these conditions on 〈X |Z = z〉 and 〈Y |Z = z〉 are violated,
then we conclude that perfect positive correlation between X and Y cannot be explained by the causal
structure encoded in Fig. 2 (c). An additional causal influence between X and Y is needed to explain the
considered correlation, for example the one in Fig. 2 (d).

This is an example of a correlation between X and Y wherein the constraint induced by Corollary 1
is satisfied for the d-separation relation pertinent to the causal hypothesis of Fig. 2 (c), but nonetheless
this correlation is incompatible with this causal hypothesis.

6 Towards Quantum Causality

We now give a different perspective on the motivation behind studying causal models with hidden com-
mon causes. In this Section, we show that DAGs with unobserved common causes can act as classical
analogues of models in which a quantum common cause is shared.

Consider a scenario in which two parties share a source of entangled quantum systems and use it to
output a classical correlation PAB. The structure of this protocol is illustrated in Fig. 3. The quantum seed
that is distributed to Alice and Bob is denoted by ρC, quantum systems are represented by double wires
and classical variables are represented by single wires. Under the assumption that only one copy of ρC

is available in this protocol, some form of a quantum copy operation must be performed on it before the
distribution. As quantum systems cannot be cloned, the quantum decomposition operation introduced in
[1] is applied. It is represented with the white dot symbol and implies the decomposition of the Hilbert
space HC into a direct sum of tensor products. This operation decomposes ρC into factors on HCB carried
to Bob and HCA carried to Alice. The outputs of this operation are denoted by ρA and ρB. Assume PAB

is generated by one of the two protocols. The first protocol is illustrated in Fig. 3 (a). Here, Bob and
Alice perform measurements MA and MB on their share of the system ρC to generate classical variables A
and B, respectively. The second protocol is encoded in Fig. 3 (b). It allows for classical communication
from Bob to Alice before Alice outputs A. In this protocol, the value of A is an output of a gate UAB that
depends on the value of B.

(a) (b)

B

A

ρB

UAB
MBMA

A B

ρBρA

ρC ρC

ρAMB

Figure 3: Circuit representation of correlation generation protocols.

The main challenge of analyzing these protocols is the restriction on acquiring information about
quantum systems relative to classical systems. Once a quantum state is sharply measured, it is projected
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to a post-measurement state that corresponds to the choice of measurement. This feature of quantum
theory prevents the observer from making passive observations of quantum common causes. However,
the observer can possess some limited information about the quantum system, for example, its dimension.
This situation is analogous to a classical causal model involving an unobserved common cause with
restricted cardinality. In such models, the observer has limited knowledge about the classical common
cause, namely, its cardinality. This perspective on the problem allows to see the similarities between
classical causal models illustrated in Figs. 2 (a) and (b), and circuits in Figs. 3 (a) and (b).

Although Corollary 1 only concerns classical causal models, a similar concept is used in communica-
tion theory [29, 11], where models with a quantum seed can be characterized using positive semidefinite
rank [15]. Therefore, Corollary 1 has the potential to be further extended to models that include quantum
systems. Specifically, knowledge about the dimension of a quantum common cause could play a role
similar to that of the cardinality of a classical common cause. Formally, the minimum dimension of the
local Hilbert space of a shared entangled state needed to generate PAB is defined as quantum correlation
complexity. It is characterized by the positive semidefinite rank of PAB [15], where positive semidefinite
rank is defined as follows. Let dim(ρA) and dim(ρB) be the dimensions of the local Hilbert space of
Alice and Bob, respectively.

Definition 3 (positive semidefinite rank) Let PAB be a dim(ρA)× dim(ρB)-dimensional nonnegative
matrix. The positive semidefinite rank of PAB is defined as

rankPSD[PAB]≡min{r | ∃(E1,F1), ...,(Edim(ρA),Fdim(ρB))

Pab = tr{EaFb} ∀a ∈ {1...dim(ρA)},b ∈ {1...dim(ρB)},
(8)

where Ea and Fb are r× r positive semidefinite matrices.

Assume dim(ρA) = dim(ρB) = d. It follows that for the hypothesis illustrated in Fig. 3 (a) to hold,
the relation

d ≥ rankPSD[PAB]

must be satisfied. This relation enables us to analyse Figs. 3 (a) and (b) in a similar manner to the analysis
of Figs. 2 (a) and (b) we conducted in the subsection Witnessing Causal Influence.

One interesting property of the positive semidefinite rank is that for any matrix M

rankPSD[M]≤ rank+[M].

For example, for the probability distribution PXY defined in Table 1, rank+[PXY ] = 3, while rankPSD[PXY ] =
2 (see Example 2.6 in [10]). It means that the dimension of a quantum resource needed to generate PXY

is smaller than the cardinality of a classical resource needed for this task. Examples of this form have
been studied before [29], and they show an advantage of quantum resources over classical ones.

We finish by noting that a similar approach can be used to analyse a protocol in which a quantum
message is sent from Bob to Alice (the quantum analogue of Fig. 1 (b)). Similarities between classical
and quantum protocols for correlation generation suggest that classical results, like the one given in
Corollary 1, can be used to set the stage for the quantum equivalent of causal analysis.

7 Conclusions

We derived universal constraints for causal models in which the cardinality of an unobserved d-separating
variable is known. While the majority of existing methods of constraining distributions compatible with
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latent causal structures do not use any information about unobserved variables, our result relies on having
knowledge of the cardinality of an unobserved variable. We showed that our result has applications in
causal analysis. Furthermore, we recognized the analogy between classical causal models with hidden
common causes and models that involve quantum systems. As we identify a new way of bounding causal
effects in models with hidden variables, we set the stage for quantum extensions of this formulation.
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