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The most general type of measurement in quantum physics is modeled by a positive operator-valued
measure (POVM). Mathematically, a POVM is a generalizationof a measure, whose values are not
real numbers, but positive operators on a Hilbert space. POVMs can equivalently be viewed as maps
between effect algebras or as maps between algebras for the Giry monad. We will show that this
equivalence is an instance of a duality between two categories. In the special case of continuous
POVMs, we obtain two equivalent representations in terms ofmorphisms between von Neumann
algebras.

1 Introduction

The logic governing quantum measurements differs from classical logic, and it is still unknown which
mathematical structure is the best description of quantum logic. The first attempt for such a logic was
discussed in the famous paper [2], in which Birkhoff and von Neumann propose to use the orthomod-
ular lattice of projections on a Hilbert space. However, this approach has been criticized for its lack
of generality, see for instance [22] for an overview of experiments that do not fit in the Birkhoff-von
Neumann scheme. The operational approach to quantum physics generalizes the approach based on pro-
jective measurements. In this approach, all measurements should be formulated in terms of the outcome
statistics of experiments. Thus the logical and probabilistic aspects of quantum mechanics are combined
into a unified description.

The basic concept of operational quantum mechanics is an effect on a Hilbert space, which is a
positive operator lying below the identity. It can be viewedas a probabilistic version of a projection.
The logical interpretation of an effect is a predicate, or equivalently, a measurement with two possible
results. The logic of effects is useful in describing the semantics of quantum programs via weakest
preconditions, as argued in [4]. A more general treatment ofthe logical aspects of effects is given in
[15]. Both references use a duality between effects and convex sets to relate syntax and semantics of the
logic.

More generally, measurements with an arbitrary space of results can be modeled as maps from the
outcome space to the set of effects on a Hilbert space. These maps are called positive operator-valued
measures, or POVMs. This paper presents several equivalentcharacterizations of POVMs, some of them
well-known, and some of them new. The results generalize theduality between effects and convex sets.
Thus they give a foundation for the connection between syntax and semantics for a quantum logic where
the predicates are multivalued instead of two-valued.

The outline of this paper is as follows. Section 2 contains preliminaries about effect algebras, mea-
sure theory, and duality betweenσ -effect modules and algebras for the Giry monad. This is applied in
Section 3 to obtain a categorical rephrasing of the equivalence between POVMs and statistical maps.
This result is already known in the literature, but our systematic use of the abstract duality puts it in a
broader perspective. In Section 4 we will generalize the sequential composition operation on effects to
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POVMs. It will turn out that this only works for a certain class of POVMs, namely those that are differen-
tiable with respect to an ambient measure. This gives a motivation to study these differentiable POVMs
in Section 5. To obtain a duality result for differentiable POVMs, we will view them as morphisms
between von Neumann algebras.

2 Preliminaries

An effect algebra consists of a setX equipped with a partial binary operation⊕, a unary operation(−)⊥

called orthocomplement, and a constant 0∈ X , subject to the following conditions:

• The operation⊕ is commutative, which means that wheneverx⊕ y is defined, alsoy⊕ x is defined
andy⊕ x = x⊕ y.

• The operation⊕ is associative, defined in a similar way.

• x⊕0= 0⊕ x = x for all x ∈ X .

• For everyx ∈ X , x⊥ is the unique element for whichx⊕ x⊥ = 1, where 1 is defined as 0⊥.

• If x⊕1 is defined, thenx = 0.

Effect algebras constitute a categoryEA, in which the morphisms are functions preserving⊕, (−)⊥, and
0. Effect algebras originated in the study of quantum logicsin [7], and can be used to describe both the
probabilistic and the logical aspects of quantum mechanics. An overview of the theory of effect algebras
is given in [6].

The principal example of an effect algebra is the unit interval [0,1]. Addition serves as a partially
defined binary operation, and the orthocomplement is given by x⊥ = 1− x. Another important example
comes from quantum logic. An effect on a Hilbert spaceH is an operatorA : H →H for which 0≤A≤ id.
The setE f (H) of all effects onH forms an effect algebra, in which the partial binary operation is again
addition, and orthocomplement isA⊥ = id−A. Furthermore each Boolean algebraB can be viewed as
an effect algebra, wherex⊕ y is defined if and only ifx∧ y = 0, and in that casex⊕ y = x∨ y. The
orthocomplement is simply the complement inB.

Some effect algebras carry additional structure, which leads to several commonly used subcategories
of EA. First we will consider the subcategoryEMod of effect modules. An effect module is an effect
algebraX endowed with a scalar multiplication· : [0,1]×X → X , such that

• r · (s · x) = (rs) · x.

• If r+ s ≤ 1, then(r+ s) · x = r · x⊕ s · x.

• If x⊕ y is defined, thenr · (x⊕ y) = r · x⊕ r · y.

• 1· x = x.

Effect modules were introduced in [13] under the name ‘convex effect algebras’, and generalized in
[18] to modules over arbitrary effect algebras with a monoidstructure, rather than just over the interval
[0,1]. Morphisms of effect modules are morphisms of effect algebras that additionally preserve the scalar
multiplication. From our three examples of effect algebras, only [0,1] andE f (H) are effect modules.

If X is any effect algebra, then we can define a partial order onX by settingx ≤ y if and only if
x⊕ z = y for somez ∈ X . The algebraX is said to be anσ -effect algebra if each countable chain inX has
a join in X . This gives rise to a subcategoryσEA of EA in which the morphisms also preserve joins of
countable chains. Aσ -effect algebra that is at the same time an effect module is called aσ -effect module,
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and they constitute a categoryσEMod. The unit interval andE f (H) are alwaysσ -effect modules. A
Boolean algebra is aσ -effect algebra if and only if it is aσ -algebra.

Given two effect algebrasX and Y , one can form their tensor productX ⊗Y characterizing the
bimorphisms out ofX ×Y . This tensor product can be used to construct free effect modules: for any
effect algebraX , the tensor product[0,1]⊗X is the free effect module generated byX . The situation is
more subtle forσ -effect algebras, because the tensor product of twoσ -effect algebras need not always
exist. This problem is discussed in [9].

Effect algebras also occur in measure theory. A measurable space consists of a setX together with
a σ -algebra of subsets ofX , denotedΣX . Measurable spaces constitute a categoryMeas, in which the
maps fromX to Y are functionsf : X → Y for which f−1(ΣY ) ⊆ ΣX . As eachσ -algebra is an effect
algebra with countable joins, there is a functorΣ(−) : Meas→ σEAop. Theσ -effect algebraΣX can be
turned into aσ -effect module by taking the tensor product[0,1]⊗ΣX . In [9] it is shown that this tensor
product exists and is isomorphic to the algebraMeas(X , [0,1]) of measurable functions fromX to the
unit interval. In other words,Meas(X , [0,1]) is the freeσ -effect module generated by theσ -algebraΣX .

Giry initiated the categorical approach to measure and integration theory in [8] by defining the Giry
monadG on the categoryMeasasG (X) = σEA(ΣX , [0,1]). Thus the elements ofG (X) are probability
measures. A measurable mapp : X → [0,1] can be integrated along a probability measureϕ ∈ G (X) to
obtain

∫

pdϕ ∈ [0,1], sometimes written as
∫

p(x)dx if ϕ is understood.
In [16] it is shown that there is a dual adjunction between Eilenberg-Moore algebras for the Giry

monad andσ -effect modules:

Alg(G )

Hom(−,[0,1])
--⊥ σEModop

Hom(−,[0,1])

mm (1)

This gives a foundation for probabilistic and quantum logic, since aG -algebra can be considered as the
state space of a system, and the correspondingσ -effect module gives the predicates on that system.

3 Duality for POVMs

Effects on a Hilbert space can be seen as yes-no questions about the physical system represented by
the Hilbert space. It is also possible to consider more general questions, which have answers lying in an
arbitrary measurable space. These can be mathematically modeled by positive operator-valued measures.

Definition 1. Let (X ,ΣX) be a measurable space. Apositive operator-valued measure (POVM) on X is
a morphismΣX → E f (H) of σ -effect algebras. A POVM is aprojection-valued measure (PVM) if its
image is contained inPro j(H).

We will study these POVMs from the viewpoint of categorical logic. The syntax of a logic is obtained
by defining operations on predicates, leading to an algebraic structure. For instance, the predicates in
operational quantum logic are effects on a Hilbert space, and the appropriate operations are theσ -effect
algebra operations. The semantics of a logic is related to the syntax via duality. In our quantum example,
the semantics is given by density matrices, since density matrices and effects are related via the duality
between convex sets and effect algebras, see [17] for details.

In the remainder of this paper, we will try to establish a similar picture for POVMs. This section
considers a generalization of the duality for effects to POVMs. The duality for POVMs will be based on
the adjunction (1), so it is helpful to rephrase the definition of POVMs in terms of morphisms between
modules.



Frank Roumen 135

Lemma 2. There is a bijective correspondence between POVMs ΣX → E f (H) and morphisms of σ -effect
modules Meas(X , [0,1])→ E f (H).

This follows immediately from Gudder’s result thatMeas(X , [0,1]) is the freeσ -effect module on
ΣX , which was briefly mentioned in Section 2. More explicitly, if ϕ : ΣX → E f (H) is a POVM, then the
corresponding mapMeas(X , [0,1])→ E f (H) is given by integration along the POVMϕ , i.e. p 7→ ∫

pdϕ .
The inverse construction is evaluation at an indicator function, that is, a mapΦ : Meas(X , [0,1])→E f (H)
gives a POVMM 7→ Φ(1M).

Lemma 3. There is a functor DM : Hilb isomet → Alg(G ) that maps a Hilbert space H to the set of
density matrices on H. Here Hilb isomet is the category with Hilbert spaces as objects and isometries as
morphisms.

Proof. First we have to endowDM (H) with the structure of a measurable space. The weak operator
topology onB(H) restricts to a subset topology onDM (H). Let ΣDM (H) be the Borelσ -algebra
generated by the topology onDM (H). The resulting measurable space(DM (H),ΣDM (H)) is an algebra
for the Giry monad with algebra mapα : G (DM (H))→DM (H), α(ϕ) =

∫

iddϕ . Here the integration
is defined in such a way that〈ψ |∫ iddϕ |ψ 〉 = ∫ 〈ψ |(−)|ψ 〉dϕ for each vectorψ . The mapα is
measurable by general facts about integration. To show thatthe integral is a density matrix, let(ek) be
an orthonormal basis forH. Then

tr(
∫

iddϕ) = ∑k〈ek |
∫

iddϕ |ek 〉= ∑k
∫

〈ek |(−)|ek 〉dϕ =
∫

∑k〈ek |(−)|ek 〉dϕ =
∫

1dϕ = 1.

Proving thatα is an Eilenberg-Moore algebra is straightforward.
If f : H → K is an isometry between Hilbert spaces, thenf induces a mapDM ( f ) : DM (H) →

DM (K) via conjugation, i.e.DM ( f )(ρ) = f ◦ ρ ◦ f †. The resulting map is aG -algebra homomor-
phism. Before proving this, we first remark that conjugationcommutes with integration in the sense that
∫

( f (−) f †)dϕ = f (
∫

(−)dϕ) f †. This follows because for each vectorψ we have

〈ψ |∫ f (−) f † dϕ |ψ 〉 =
∫ 〈ψ | f (−) f †|ψ 〉dϕ

=
∫ 〈 f †ψ |(−)| f †ψ 〉dϕ

= 〈 f †ψ |∫ (−)dϕ | f †ψ 〉
= 〈ψ | f (∫ (−)dϕ) f †|ψ 〉

Using this we can show thatDM ( f ) is aG -algebra homomorphism:

(α ◦G (DM ( f )))(ϕ) =
∫

iddG (DM ( f ))(ϕ)
=

∫

DM ( f )dϕ
=

∫

f (−) f † dϕ
= f (

∫

(−)dϕ) f †

= DM ( f )(
∫

iddϕ)
= (DM ( f )◦α)(ϕ)

This shows thatDM is a well-defined functor.

The collections of density matrices and effects on a Hilbertspace are related via the adjunction (1),
just like in the discrete probabilistic case.

Proposition 4. Fix a Hilbert space H. Then:

1. The G -algebras σEMod(E f (H), [0,1]) and DM (H) are isomorphic.
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2. The σ -effect modules Alg(G )(DM (H), [0,1]) and E f (H) are isomorphic.

Proof.

1. This is a reformulation of Busch’s theorem in [3].

2. In [18] this result is proven for affine mapsDM (H) → [0,1] instead ofG -algebra maps, so the
statement follows because everyG -algebra map is in particular affine.

Since [0,1] ∼= G (2), measurable maps into[0,1] are the same as morphisms into 2 in the Kleisli
categoryKl (G ). The following diagram summarizes the relations between the logic of measurable spaces
and the logic of Hilbert spaces.

Kl (G )

K

{{①①
①①
①①
①①
①①
①①

HomKl (−,2)

$$❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍

Alg(G )

Hom(−,[0,1])
--⊥ σEModop

Hom(−,[0,1])

mm

Hilb isomet

DM

cc●●●●●●●●●●●●
E f

::✉✉✉✉✉✉✉✉✉✉✉✉✉✉

The functorK is the comparison functor sending an objectX ∈ Kl (G ) to the free algebraG (X). In this
setting we can consider the comma categories(DM ↓ K ) and(E f ↓ HomKl (−,2)). An object of the
category(DM ↓ K ) is a map of the formDM (H)→ G (X). A morphism fromα : DM (H)→ G (X)
to β : DM (K)→ G (Y ) is a commutative diagram

DM (H)
DM (g)

//

α
��

DM (K)

β
��

G (X)
K ( f )

// G (Y )

(2)

where f : X → G (Y ) is a measurable map andg : H → K is an isometry. Since the functorsE f
and HomKl (−,2) have the opposite ofσEMod as codomain, an object of(E f ↓ HomKl (−,2)) is a
morphism HomKl (X ,2) → E f (H) in σEMod, that is, a POVM. A morphism between two POVMs
A : HomKl (X ,2)→ E f (H) andB : HomKl (Y,2)→ E f (K) is given by a diagram

HomKl (X ,2)

A
��

HomKl (Y,2)
(−)◦ f
oo

B
��

E f (H) E f (K)
E f (g)

oo

(3)

in σEMod, for a measurable mapf : X → G (Y ) and an isometryg : H → K.
In [14] it is shown that there is a correspondence between POVMs andG -algebra homomorphisms

DM (H) → G (X), called statistical maps. From a categorical perspective,this can be phrased as an
equivalence between comma categories as follows.
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Proposition 5. The categories (DM ↓ G ) and (E f ↓ HomKl (−,2)) are equivalent.

Proof. An object of (DM ↓ G ) is the same as a morphismDM (H) → σEMod(HomKl (X ,2), [0,1])
since HomKl (X ,2) ∼= Meas(X , [0,1]) is the freeσ -effect module onΣX . By the adjunction (1) and
Proposition 4, this corresponds to a POVM. For morphisms, let f : X → G (Y ) be a measurable map,
g : H → K an isometry, andα : DM (H)→ G (X) andβ : DM (K)→ G (Y ) two statistical maps. Then
the diagram (2) commutes if and only if the corresponding diagram (3) commutes.

4 Sequential composition

Suppose that we want to test two properties of a physical system sequentially. If the properties are
modeled by effectsA andB, then the composite test corresponds to the effect

√
AB

√
A, which is called

the sequential product ofA and B. The properties of this operation are studied in [12, 11, 10]. We
will now define an extension of this operation to POVMs, whichcan be used if we want to measure
two POVMs sequentially. We start by measuring a POVMA : ΣX → E f (H). The outcome of this
measurement is a valuex ∈ X . The second POVM may depend on the outcome of the first measurement,
so we assume that we have a family of measurable spaces(Yx) indexed byx ∈ X with a family of POVMs
B = (Bx : ΣYx → E f (H)). We wish to define a POVM representing the total experiment. For this we need
the additional assumptions that the measurable spaceX is equipped with a finite measureµ : ΣX → R,
and thatA has a Radon-Nikodym derivative with respect toµ . Recall that a Radon-Nikodym derivative
of A with respect toµ is a function dA

dµ : X → Pos(H) for which
∫

M
dA
dµ dµ = A(M) for each measurable

subsetM ⊆ X . HerePos(H) denotes the set of positive operators onH. The derivative, if it exists, is
unique up to equality almost everywhere. Conditions for existence are discussed in e.g. [5]. Here we
will only briefly state the result that we need for the remainder of this paper. The POVMA is called
µ-continuous ifA(M) = 0 wheneverµ(M) = 0. It has bounded variation if

sup
n

∑
i=1

||ϕ(Xi)||< ∞,

where the supremum is taken over all finite partitionsX =
⋃n

i=1 Xi of the spaceX . If the Hilbert spaceH
is finite-dimensional, then the POVMA has a derivative if and only if it isµ-continuous and has bounded
variation, becauseB(H) has the Radon-Nikodym property.

Under the assumption thatA has a Radon-Nikodym derivativedA
dµ , we can define the sequential

composition of the POVMA and the familyB. The total outcome of the experiment consists of a value
x ∈ X together with a valuey ∈ Yx, so our outcome space isY =

⋃

x∈X Yx. The union carries a natural
σ -algebra generated by

⋃

x∈M Nx, whereM is a measurable subset ofX and eachNx is a measurable
subset ofYx. Define the sequential composition by

(A;B) : ΣY → E f (H)

(A;B)

(

⋃

x∈M

Nx

)

=
∫

M

(
√

dA
dµ

(x)Bx(Nx)

√

dA
dµ

(x)

)

dx

Lemma 6. The sequential composition (A;B) is a POVM.
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Proof. Suppose that the measurable sets
⋃

x∈M Nx and
⋃

x∈M′ N ′
x are disjoint. Then their union can be

written as
⋃

x∈M\M′
Nx ∪

⋃

x∈M′\M

N ′
x ∪

⋃

x∈M∩M′
(Nx ∪N ′

x),

whereNx andN ′
x are disjoint whenever both are defined. Applying the mapA;B gives

(A;B)(
⋃

x∈M Nx ∪
⋃

x∈M′ N ′
x) =

∫

M\M′

√

dA
dµ (x)Bx(Nx)

√

dA
dµ (x)dx

+
∫

M′\M

√

dA
dµ (x)Bx(N ′

x)
√

dA
dµ (x)dx

+
∫

M∩M′

√

dA
dµ (x)Bx(Nx ∪N ′

x)
√

dA
dµ (x)dx

=
∫

M\M′

√

dA
dµ (x)Bx(Nx)

√

dA
dµ (x)dx

+
∫

M′\M

√

dA
dµ (x)Bx(N ′

x)
√

dA
dµ (x)dx

+
∫

M∩M′

√

dA
dµ (x)Bx(Nx)

√

dA
dµ (x)dx

+
∫

M∩M′

√

dA
dµ (x)Bx(N ′

x)
√

dA
dµ (x)dx

=
∫

M

√

dA
dµ (x)Bx(Nx)

√

dA
dµ (x)dx

+
∫

M′

√

dA
dµ (x)Bx(N ′

x)
√

dA
dµ (x)dx

= (A;B)(
⋃

x∈M Nx)+ (A;B)(
⋃

x∈M′ N ′
x)

Hence the mapA;B is additive. It is not hard to check that it preserves the unit. Finally, each operator
(A;B)(

⋃

x∈M Nx) is positive, and lies below the identity because(A;B)(
⋃

x∈M Nx)≤ (A;B)(Y ) = id. Thus
A;B is a POVM.

Example 7. We apply the above construction to the spin example from [14]. Consider a system consist-
ing of one spin-12 particle, modeled as the Hilbert spaceC2. The direction of the spin has a value in the
unit sphereS2, and is given by the POVM

D : ΣS2 → E f (C2)

D(M) =
1

4π

∫

M
(id+~n ·~σ)d~n

Here d~n is the usual measure on the unit sphere, and~σ = (σx,σy,σz) is the vector consisting of the Pauli
matrices:

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

.

If we pick a direction~n ∈ S
2, then we can also measure the spin component along the direction ~n.

This measurement has two possible outcomes, which we label by + and−. The corresponding POVM
is S~n : Σ{±} → E f (C2), defined byS~n({±}) = 1

2(id±~n ·~σ). Physically, the probability that the outcome
is + indicates how close the actual spin direction of the particle is to~n.

We perform the following experiment on the system. First we measure the spin direction, which has
outcome~n. Then we measure the spin component along this direction, i.e. we perform the measurement
S~n. Since the spin direction of the particle is in this situation equal to the measurement direction, we
expect that the second measurement always gives outcome+. The outcome space of the composite
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measurementD;S is
⋃

~n∈S2{±} ∼= S
2×{±}. According to the physical interpretation, this composite

measurement is determined by
(D;S)(M ×{−}) = 0

(D;S)(M ×{+}) = D(M)

We can also verify this using the sequential composition formula. From the definition of the POVM
D it is immediate that its Radon-Nikodym derivative is

dD
d~n

(~n) =
1

4π
(id+~n ·~σ).

Then the ‘minus’ case of the sequential composition formulabecomes:

(D;S)(M ×{−}) =
∫

M

√

dD
d~n (~n)S~n({−})

√

dD
d~n (~n)d~n

= 1
8π
∫

M

(√
id+~n ·~σ (id−~n ·~σ)

√
id+~n ·~σ

)

d~n

= 1
8π
∫

M(id+~n ·~σ)(id−~n ·~σ)d~n
= 1

8π
∫

M(id− (~n ·~σ)2)d~n

For the third equality sign, we used that a square root
√

A commutes with every operator that commutes
with A. A well-known property of the Pauli matrices is that(~n ·~σ )2 = id for each unit vector~n. From this
it follows that(D;S)(M ×{−}) = 0. An analogous computation shows that(D;S)(M×{+}) = D(M).

5 Characterization of continuous POVMs

In Section 4 we saw that we need continuity conditions on POVMs in order to define sequential com-
position. Therefore we will now study continuous POVMs in more detail and provide a few equivalent
characterizations. It will turn out that in the continuous case von Neumann algebras form a more natural
setting than effect algebras. Our main examples of von Neumann algebras are constructed from Hilbert
spaces and measure spaces. IfH is a Hilbert space, thenB(H) will denote the von Neumann algebra
of bounded linear operators onH. Recall that a measure space is a measurable space together with a
measure. For a measure space(X ,µ), let L∞(X ,µ) be the algebra ofµ-essentially bounded functions
from X to C, modulo equality almost everywhere. We will assume throughout this section thatX arises
from a compact Hausdorff space and thatµ(X) is finite.

The duality for non-continuous POVMs boiled down to the duality between states and effects. For
continuous POVMs we will replace this by the interplay between a von Neumann algebra and its normal
states, or its predual. To describe this in more detail, we will use several categories of von Neumann alge-
bras. The standard notion of morphism between C*-algebras is a∗-homomorphism, which is a bounded
linear map preserving multiplication, unit, and involution. For von Neumann algebras we usually im-
pose an additional condition: a map between von Neumann algebras is called normal if it preserves
joins of countable increasing chains. This is equivalent topreservation of countable sums of orthogo-
nal projections, see e.g. [19] for details. The category of unital von Neumann algebras with normal
∗-homomorphisms will be denotedvN. Sometimes it is more appropriate to use a weaker notion of mor-
phism. The category with von Neumann algebras as objects andnormal linear maps preserving positivity
and the unit as morphisms is denotedvNPU.

The predualA# of a von Neumann algebraA consists of all normal linear functionals fromA to C.
If A is unital, then the predual is equipped with a canonical trace mapτ : A# → C, given by evaluation
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at the unit. For example, the predual ofB(H) is the collection of trace-class operatorsT (H), and the
canonical trace map is the ordinary trace tr :T (H)→ C. The predual ofL∞(X ,µ) is L1(X ,µ), i.e. the
measurable functionsf : X → C such that the integral

∫

X | f |dµ is finite. In this case, the trace map is
integration

∫

X(−)dµ .
The structure of a predual can be captured abstractly by basenorm spaces, see e.g. [1, 21]. LetV

be an ordered vector space, andτ : V → C a positive linear functional. A convex subsetC of V is called
linearly bounded ifC∩L is bounded for every lineL through the origin. LetK = τ−1(1) ⊆ V ; the pair
(V,τ) is said to be a base norm space if the convex hull ofK∪−K is linearly bounded. Base norm spaces
form a categoryBNS in which a morphism from(V,τ) to (V ′,τ ′) is a positive linear mapf : V →V ′ for
which τ ′ ◦ f = τ .

The following result shows how to view continuous POVMs as morphisms between von Neumann
algebras.

Proposition 8. There is a bijective correspondence between:

• POVMs ΣX → E f (H) that are µ-continuous and have bounded variation;

• Normal positive unital maps L∞(X ,µ)→ B(H).

Proof. Let ϕ : ΣX → E f (H) be a POVM. Define a mapψϕ : L∞(X ,µ) → B(H) by ψϕ( f ) =
∫

X f dϕ .
This integral is well-defined sincef is essentially bounded. To verify that the mapψϕ is well-defined,
we have to check that it maps functions that are zero almost everywhere to the zero operator. If an
indicator function1M is zero almost everywhere, thenµ(M) = 0, so fromµ-continuity of ϕ it follows
that

∫

1M dϕ = ϕ(M) = 0. For general functions inL∞(X ,µ) this follows from linearity and continuity of
the integral. Furthermore the mapψϕ is positive and unital. It preserves joins of countable chains since
ϕ is a POVM. Every positive map between von Neumann algebras isbounded, see [20, Prop. 1.3.7] for
a proof.

In the other direction, given a mapψ : L∞(X ,µ) → B(H), defineϕψ : ΣX → E f (H) by ϕψ(M) =
ψ(1M). Thenϕψ(M) is positive becauseψ preserves positivity, andϕψ(M) ≤ ψ(1X) = id, soϕψ(M)
is an effect. The mapϕψ is a morphism ofσ -effect algebras sinceψ is linear, normal, and unital.
To establishµ-continuity of ϕψ , suppose thatµ(M) = 0. Then1M is zero almost everywhere, hence
ϕψ(M) = ψ(1M) = ψ(0) = 0. Finally,ϕψ has bounded variation because

sup∑i ||ϕψ(Xi)||= sup∑i ||ψ(1Xi)|| ≤ sup∑i ||ψ ||µ(Xi) = ||ψ ||µ(X)< ∞.

It is easy to see that both constructions are inverses.

Observe that the construction of the map between von Neumannalgebras from a POVM did not use
the fact that the POVM has bounded variation. Thus we obtain the following consequence.

Corollary 9. Every µ-continuous POVM has bounded variation.

Therefore we can simply work withµ-continuous POVMs from now on, ignoring the condition
on the variation. It is also possible to characterize projection-valued measures as maps between von
Neumann algebras, by restricting the above correspondence.

Corollary 10. There is a bijective correspondence between:

• PVMs ΣX → Pro j(H) that are µ-continuous;

• Normal ∗-homomorphisms L∞(X ,µ)→ B(H).
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Proof. Let ψ : L∞(X ,µ) → B(H) be a normal∗-homomorphism. By Proposition 8, it gives aµ-
continuous POVMϕ : ΣX → E f (H). We have to check that eachϕ(M) is a projection:

ϕ(M)2 = ψ(1M)2 = ψ((1M)2) = ψ(1M) = ϕ(M),

where we used thatψ preserves multiplication in the second equality sign.
Conversely, aµ-continuous PVMϕ gives a normal positive unital mapψ : L∞(X ,µ) → B(H). To

show thatψ preserves multiplication, we start by considering indicator functions:

ψ(1M1N) = ψ(1M∩N) = ϕ(M∩N) = ϕ(M)ϕ(N) = ψ(1M)ψ(1N)

The third equality sign is a property that characterizes theprojection-valued measures. All essen-
tially bounded functions fromX to C can be written as a countable join of sums of indicator func-
tions, modulo equality almost everywhere. Sinceψ preserves sums and countable joins, it follows that
ψ( f g) = ψ( f )ψ(g) for all f andg.

The characterization of continuous POVMs as maps between the von Neumann algebrasL∞(X ,µ)
andB(H) is in line with the Heisenberg picture of quantum mechanics.There is also a characterization
from the Schrödinger point of view, analogous to considering POVMs as maps betweenG -algebras.

Proposition 11. There is a bijective correspondence between:

• Normal positive unital maps L∞(X ,µ)→ B(H);

• Maps T (H)→ L1(X ,µ) of base norm spaces.

Proof. Let ϕ : L∞(X ,µ) → B(H) be normal positive unital. The predualL∞(X ,µ)# of L∞(X ,µ) is
isomorphic toL1(X ,µ), so to define a mapT (H)→ L1(X ,µ), we can also define a mapΦϕ from T (H)
into the normal functionals onL∞(X ,µ). For this we takeΦϕ (T )( f ) = tr(T ϕ( f )). The assignment
f 7→ tr(T ϕ( f )) lies in L∞(X ,µ)#, becauseϕ is normal. The mapΦϕ is positive sinceϕ is. To check that
Φϕ commutes with the maps intoC, use that the integration map

∫

X(−)dµ : L∞(X ,µ)→C corresponds
to the mapL∞(X ,µ)# → C given byψ 7→ ψ(1). From this it follows thatΦϕ is a map of base norm
spaces.

Now we will show how to assign a mapL∞(X ,µ)→ B(H) to a mapΦ : T (H)→ L1(X ,µ). First
define a mapϕΦ : L∞(X ,µ)→ T (H)∗ by ϕΦ( f )(T ) =

∫

X f (x)Φ(T )(x)dx. This integral exists sincef is
bounded andΦ(T ) is integrable. Since the dual of the Banach spaceT (H) is isomorphic to the space of
bounded operators onH, this gives a mapL∞(X ,µ)→ B(H), also denotedϕΦ. Positivity ofϕΦ follows
from positivity of Φ. To show thatϕΦ is unital, note that the unit ofL∞(X ,µ) is the constant function
with value 1, and the unit ofT (H)∗ is the trace. Then unitality ofϕΦ follows sinceΦ is a morphism of
base norm spaces:

ϕΦ(1)(T ) =
∫

X Φ(T )(x)dx = tr(T ).

The mapϕΦ is normal because integrals are continuous. The constructions above are clearly inverses.

Again we can rephrase the duality result above as an equivalence between comma categories. First
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we will establish the following diagram of categories and functors.

Measure

L1

||②②
②②
②②
②②
②②
②②

L∞

$$❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍

BNS (vNPU)
op

Hilb isomet

T

bb❉❉❉❉❉❉❉❉❉❉❉❉❉
B

;;✈✈✈✈✈✈✈✈✈✈✈✈✈

The functorsT andB act on morphisms via conjugation. Formally,B( f )(A) = f †A f andT ( f )(T ) =
f T f †.

The categoryMeasurehas measure spaces as objects. A morphism from(X ,µ) to (Y,ν) is a measur-
able mapf : X →Y such that the measureµ ◦ f−1 onY is ν-continuous, in other words,ν(N)= 0 implies
µ( f−1[N]) = 0. We have seen the action ofL∞ andL1 on objects before. Letf : (X ,µ) → (Y,ν) be a
morphism inMeasure. DefineL∞( f ) : L∞(Y,ν)→ L∞(X ,µ) by L∞( f )(ϕ) = ϕ ◦ f . If ϕ is ν-essentially
bounded, thenϕ ◦ f is µ-essentially bounded becauseµ ◦ f−1 is ν-continuous. It is clear thatL∞( f ) is a
morphism invNPU. To defineL1( f )(ϕ) for ϕ ∈ L1(X ,µ), we first introduce a new measureλ onY via
λ (N) =

∫

f−1[N] ϕ dµ . This λ is ν-continuous, so we can defineL1( f )(ϕ) to be its derivativedλ
dν . Thus

L1( f )(ϕ) is the unique function satisfying
∫

N L1( f )(ϕ)dν =
∫

f−1[N] ϕ dµ . ClearlyL1( f )(ϕ) is integrable,

andL1( f ) is a morphism inBNS.

Corollary 12. The categories (T ↓ L1) and (B ↓ L∞) are equivalent.

Proof. On objects, this was established in Proposition 11. On morphisms, this amounts to proving
naturality of the correspondence in the Proposition. Pick any isometryf : H → K and letϕ : L∞(X ,µ)→
B(K) be a normal positive unital map. Then we have to show thatΦB( f )◦ϕ = Φϕ ◦T ( f ). This holds
because

ΦB( f )◦ϕ(T )(g) = tr(T f †ϕ(g) f ) = tr( f T f †ϕ(g)) = (Φϕ ◦T ( f ))(T )(g).

Finally we have to prove thatΦϕ◦L∞( f )(T ) = (L1( f )◦Φϕ)(T ) for f : (X ,µ)→ (Y,ν). This is equivalent
to showing that the integrals

∫

N Φϕ◦L∞( f )(T )dν and
∫

N(L
1( f ) ◦ Φϕ)(T )dν are equal for eachN. If

we identify elements ofL1(Y ) with normal functionals onL∞(Y ), then integration overN amounts to
plugging in the functional1N . Hence the first integral is equal to tr(T ϕ(1N ◦ f )), and the second integral
is equal to tr(T ϕ(1f−1[N])), thus the integrals are the same.

6 Conclusion

We have established bijective correspondences between thefollowing representations of POVMs:

• Morphisms ofσ -effect algebrasΣX → E f (H);

• Morphisms ofσ -effect modulesMeas(X , [0,1])→ E f (H);

• Morphisms ofG -algebrasDM (H)→ G (X).

In the situation where the spaceX is compact and equipped with a finite measureµ , we obtain corre-
spondences between the following:
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• POVMsΣX → E f (H) that areµ-continuous;

• Normal positive unital mapsL∞(X ,µ)→ B(H);

• MapsT (H)→ L1(X ,µ) of base norm spaces.

These correspondences can be phrased as equivalences between comma categories. The object part of
these equivalences gives the bijective correspondences above, and since we have shown that there is also
an equivalence between the morphisms of the comma categories, the above correspondences are natural.

Many POVMs occuring in physics are covariant with respect toa symmetry group or groupoid, as
discussed in [20, 22]. For future research, it would be interesting to see how our results can be extended
to the covariant setting using convolution algebras. Another possible direction would be to study the
sequential composition for POVMs in more detail, for example by finding an axiomatization generalizing
the one for effects in [11].
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