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All computing devices, including quantum computers, must exhibit that for a given input, an output
is produced in accordance with the program. The outputs generated by quantum computers that
fulfill these requirements are not temporally correlated, however. In a quantum-computing device
comprising solid-state qubits such as superconducting qubits, any operation to rest the qubits to their
initial state faces a practical problem. We applied a statistical analysis to a collection of random
numbers output from a 20-qubit superconducting-qubit cloud quantum computer using the simplest
random number generation scheme. The analysis indicates temporal correlation in the output of some
sequences obtained from the 20 qubits. This temporal correlation may be not related to the relaxation
time of each qubit.

1 Introduction

The unpredictable output of random number generators (RNGs) is essential for secure communications
and is a key cryptographic assumption when proving the security of encrypted communications from
an information-theoretical viewpoint. While several statistical tests like the NIST Test Suites [3] and
TestU01 [12] are used in practice, passing these tests is a necessary but not sufficient condition to confirm
the unpredictability of an RNG. For a digital programmable computer, the outcome of a computation is
deterministically computed from the code and the input. While many randomized algorithms have been
used to compensate for the deterministic nature of digital programmable computers, these algorithms
can only ever yield pseudo-RNGs, which means that although their outputs are hard to distinguish from
true RNGs under some computational-hardness assumption, they are theoretically computable from the
inputs. Pseudo-RNGs are functions that produce an output number given an input, the latter of which
is called the seed. Pseudo-RNGs are ultimately predictable because of this seed. Given that pseudo-
RNGs are predictable, physical RNGs have been proposed and implemented for commercial use. How-
ever, physical RNGs are also theoretically predictable when they are based on classical physics, because
all particles dynamics are predictable if all input parameters are known. In macroscopically described
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theories such as thermodynamics or statistical physics, statistical descriptions are used to simplify the
treatment of a huge number of particles. Even with unlimited computational capability, any macroscopic
description must be consistent with the microscopic dynamics of all particles involved. Therefore, clas-
sical physical phenomena are, in principle, predictable. On the other hand, quantum random number
generators (QRNGs) may overcome the problem of predictability because the measurement outcomes in
quantum mechanics are associated with the quantum state only in terms of probabilities. This is called
the Born rule, and serves as one of the mathematical axioms of quantum mechanics. For the practical
application of RNGs, rapid and reliable operation is required. QRNGs are often implemented in quantum
optics, as seen in recent review papers [8, 13]. Currently available quantum computing devices consist
of a small number of fully controllable integrated qubits. A quantum computer can therefore serve as
an unbiased QRNG. The gate operation and measurements in such a computer may be deterministic, but
the outcome will be probabilistic. Unbiased output sequences can be obtained from an equal-weight su-
perposition of all qubits in the computer. This kind of computer does not require any input randomness,
and can therefore be regarded as a seedless RNG. A QRNG is an application of a quantum computer
that requires only one qubit. This computer cannot be implemented with conventional digital computers
because conventional digital computers are fundamentally incapable of performing truly random number
generation.

To acquire long random output sequences, a quantum circuit needs to be repeated many times. Be-
cause the measurement changes the quantum state of a qubit, a reset operation is required after every
measurement to recover the initial state. This challenge also arises when running quantum algorithms
on a quantum computer, as almost all algorithms require the same quantum circuit to be run multiple
times [10]. The initial state should be reset to for any runs of algorithms. It is necessary that none
of the output sequences is temporally correlated. According to Landauer’s principle, the memory reset
operation, in principle, has an energy cost [11]. This principle only holds, however, in case that com-
putation has no energy cost [9]. The preceding outcome can be predicted when the additional energy
cost required for the reset operation is associated with the state. When the initial state has each qubit
in its ground state, the simplest reset operation is simply waiting for the qubits to return to their initial
states. In solid-state qubits such as a superconducting qubit, the relaxation time (T1) is typically used as
the timescale for the reset operation. To let the system relax near to the ground state, the waiting time is
set to more than 10 times the value of T1. Also, the relationship between relaxation and the coherence
time has been discussed [15]. Fast and efficient protocols for the reset operation have been demonstrated
recently [2, 6, 14, 16, 19].

This paper aims to uncover the relationship between the temporal correlation of output random num-
ber sequences and the relaxation time of each qubit. Another possible source of temporal correlation in
the output sequences is hardware-correlated noise. Regarding hardware system identification, a compre-
hensive review [7] lists several methodologies. Methods that use quantum random number generation
and statistical random-number analysis cannot be used to identify the source of systematic noise.

2 Quantum Random Number Generation in Quantum Computers

The simplest procedure for quantum random number generation in a quantum computer is explained be-
low. First, we prepare the initial state |0〉. Second, we apply a Hadamard gate to the initial state, creating
the superposed state 1√

2
(|0〉+ |1〉). Third, we measure this superposed state in the computational basis

|0〉 and |1〉. According to the mathematical axiom of quantum mechanics, the measurement outcome
should be uniformly random. Otherwise, the probabilistic structure of quantum mechanics would be
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unnecessary. Because the randomness-generation process relies on the fundamental axiom of quantum
mechanics, quantum random number generation is controlled in the same way every time. Therefore,
such random number generator is seedless. This procedure is repeated to yield a random-number se-
quence. When each step of the procedure is independent, the generated output sequence is independent
identically distributed (i.i.d.). For a quantum computing device with several qubits, each qubit can gen-
erate output sequences in parallel with the same quantum circuit.

Several implementations of QRNGs on programmable quantum computers have been tested [17,18].
Since none of the generated output sequences are ideal random numbers without applying information
processing, programmable quantum computers available today give noisy results. Therefore, the out-
put sequences of the quantum-circuit based QRNGs include information about the quantum-computing
device, such as the stability of the operation [18].

3 Autocorrelation Test

An ideal RNG is equivalent to a random variable {Xt} (t = 1,2, · · · ,n) that produces independent and
uniform bits. TestU01 is a collection of empirical statistical tests for RNGs that indicate whether an
RNG is ideal [12]. The autocorrelation test in TestU01 checks whether pairs of bits that are l bits apart
within a bit sequence are independent of each other. The test statistic for an obtained binary sequence
x1,x2, · · ·xn is defined as

Al(x1,x2, · · ·xn)≡
n−l

∑
i=1

xi⊕ xi+l. (1)

By setting l = 1, the autocorrelation test becomes a test for independence between neighboring bits.
Given that the test statistic Al follows the binomial distribution where the number of trials is n− l and
the probability of obtaining the output “1” is p̃, Al is approximately normal when n− l is large [12]. The
test statistic Al is converted to A′l so that it follows the standard normal distribution as

A′l ≡
Al−2 p̃(1− p̃)(n− l)√

2 p̃(1− p̃)(n− l)(1−2 p̃(1− p̃))
. (2)

Under the assumption of identical random variables {Xt} (t = 1,2, · · · ,n) with the probability p̃
obtaining the output “1”, the null hypothesis H0 is set as

H0: {Xt} (t = 1,2, · · · ,n) is independent, that is, not correlated.

Since A′l approximately follows the standard normal distribution, the one-sample, two-sided z-test is
applied to obtain the p-value for the null hypothesis H0 as

p-value = erfc
(

A′l√
2

)
, (3)

where the complementary error function is defined as

erfc(x)≡ 2√
π

∫
∞

x
e−t2

dt. (4)

When the p-value is less than α = 0.01, all l-separated bits within the sequence are regarded as correlated.
Otherwise, the sequence is regarded as independent. α is called the level of significance, and it is the
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Figure 1: T1 time of each qubit provided by Qiskit [1].

minimum p-value of a sample that we accept as likely to have been produced by an ideal RNG. Here, the
level of significance is set at α = 0.01, which is the standard setting among statistical tests for RNGs. The
failure of this test H0 indicates that the biased sequence {Xt} (t = 1,2, · · · ,n) has temporal correlation.
As one expects an ideal RNG to produce a sample with a p-value under the level of significance with
probability α , the proportion of p-values equal to or greater than α provides a more comprehensive
indicator of the behavior of an RNG than a single p-value does.

4 Temporal Correlation Detection in Quantum Computer

As a state-of-the-art experiment, we applied this QRNG procedure to the 20-qubit superconducting qubit
device called the IBM Q Poughkeepsie which is connected via the cloud service [18]. The sequences ana-
lyzed in this paper were the same as those in Ref. [18]. The data were taken from the device by generating
8192 bits per job and repeating the process. All jobs were sent during the time span from 2019/05/09
11:24:27 (GMT) to 2019/05/12 23:24:58 (GMT). The calibration time can be seen in Ref. [18, Table 6].
579 jobs were run over the course of five days. The T1 time of each qubit was measured and provided as
device information using an open-source framework for working with noisy quantum computers at the
level of pulses, circuits, and algorithms, known as Qiskit [1]. This analysis tool is illustrated in Fig. 11.
In reality, T1 fluctuates, according to a report about a different device [4].

1We cannot directly evaluate the reset time due to system regulation and cannot guess whether the T1 of a qubit affects
temporal correlation. According to private communications with IBM Q Network Support team, each single circuit is operated
at the usual 1 kHz repetition rate, which means 1/repetition rate = 1 ms for one circuit execution. On IBM Q Poughkeepsie
device, a single circuit execution consists of one initialization step, the quantum gates, the measurement and the relaxation time
(dead time before reaching 1/repetition rate). Moreover, four calibration circuits are executed between each circuit execution
which takes around 4 ms.
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Figure 2: Failure ratio of the autocorrelation test for each qubit along with the average T1. The label of
the point represents the qubit number. The time change of the T1 time is seen in Fig. 1.

Let us apply the autocorrelation test in TestU01 as explained in Sec. 3 to the output sequence gener-
ated by each qubit. The value of p̃ at Eq. (2)2 is estimated to be a frequency probability for each job and
each qubit3. Figure 2 displays the number of failures under the 1% confidence level of the autocorrela-
tion test in the case of l = 1 along with the average T1 for each qubit and shows no apparent relationship
between the failure ratio of the autocorrelation test and T1. Therefore, the temporal correlation of the
output sequences does not come from an imperfection in the reset operation. This result suggests the
existence of hardware imperfections or systematic error in the quantum computing device. Also, 81.0%
of the jobs pass the autocorrelation test for qubits simultaneously. The summary of all p-values of the
autocorrelation test for each qubit are listed in Fig. 3.

5 Conclusion

A quantum random number generator is an essential component for ultimate secure encryption. Since a
QRNG is a seedless RNG, it is crucial that the costs of repeated operations be independent of the out-
come. As a one-qubit application of a quantum computer, we connected to a superconducting quantum
computer via the cloud to execute the simplest quantum random number generation scheme. Statistical
analysis of the results showed that the random number sequences output by the computer were biased
and that some sequences had temporal correlation. This temporal correlation, combined with the insta-
bility of the quantum computer [18], shows that the quantum random number generation by the quantum

2It is noted that for ideal quantum device, the value of p̃ at Eq. (2) is the unbiased 1/2 as aforementioned before, but we
allow the value of p̃ to be biased considering the noisy quantum devices.

3The ideal distribution per a qubit is assumed for the samples within the job. This means that a quantum device to obtain
the generated 8192 samples within the same job per a qubit is stably operated and is not changed on the hardware information
within the same job. The min-entropy calculated from the value of p̃ is seen in Ref. [18, Fig. 2].
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Figure 3: p-values of the autocorrelation test for each qubit (x-axis) at each job performed (y-axis) .
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computing device is far from the ideal one. Further research on how much quantum algorithms are af-
fected by temporal correlations is needed. These correlations should be eliminated or negligible small
for large-scale quantum computation.
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