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Abstract. Open quantum walks (OQWs) are a new type of quantum walks which are entirely driven
by the dissipative interaction with external environments and are formulated as completely positive
trace-preserving maps on graphs. A generalized quantum optical scheme for implementing OQWs
that includes non-zero temperature of the environment is suggested. In the proposed quantum optical
scheme, a two-level atom plays the role of the "walker", and the Fock states of the cavity mode cor-
respond to the lattice sites for the "walker". Using the small unitary rotations approach the effective
dynamics of the system is shown to be an OQW. For the chosen set of parameters, an increase in the
temperature of the environment causes the system to reach the asymptotic distribution much faster
compared to the scheme proposed earlier where the temperature of the environment is zero. For this
case the asymptotic distribution is given by a steady Gaussian distribution.

1 Introduction

The complete description of any realistic quantum system includes the unavoidable effects of the inter-
action with the environment [1]. Such systems are characterized by the presence of decoherence and
dissipation and are treated as an “open” quantum system. The influence of interaction with an environ-
ment plays a fundamental role in moving from the quantum to the classical domain. However, it has been
reported that the interaction with the environment can not only create complex entangled states [2–4], but
also allows for universal quantum computation [5]. One of the well established approaches to formulate
quantum computing algorithms is in the language of quantum walks (QWs) [6, 7], the quantum version
of classical random walks (CRWs). QWs were introduced in two forms, namely, continuous [7] and
discrete [6] in time, and can be used to perform universal quantum computation [8]. QWs have also been
used to analyze energy transport in biological systems [9].

Remarkably, taking into account decoherence and dissipation effects in QWs reduces its applicability
for quantum computation [10]. Although in very small amounts decoherence has been found to be useful;
hence, it is therefore worthwhile to come up with a framework that includes these environmental effects
as an ingredient. This framework will be based on the non-unitary dynamics induced by the environment,
perhaps, this will lead to new interesting quantum behaviors [11, 12].

More recently, a new type of QWs called open QWs (OQWs) were proposed by Attal et al. [11,
13] with the aim of incorporating dissipation and decoherence effects [1]. OQWs are formulated as
a quantum Markov chain on lattices or graphs. Unlike unitary quantum walks (UQWs) [6, 8] where
dissipation and decoherence effects need to be minimised or eliminated when dealing with quantum
systems [10,14], in OQWs, these effects are naturally included into the description of the dynamics of the
open quantum “walker”. OQWs deal with density matrices instead of pure states. Mathematically they
are formulated as completely positive trace-preserving maps (CPTP maps) on graphs [1, 15]. In OQWs
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the transition between the nodes is driven purely by the dissipative interaction with local environments
and the probability to find the quantum walker on a particular node depends not only on the structure
of the underlying graph, but also on the inner state of the walker. Also, OQWs are not exploiting the
interference between different positions of the quantum walker as do UQWs [6].

The framework of OQWs appears to be very useful and can be used to perform efficient dissipative
quantum computation and state engineering [11, 12]. For recent developments on OQWs the reader is
referred to [16] and references cited therein. In particular [17–19] have shown that the asymptotic be-
havior of OQWs leads to a central limit theorem. And in general, for large times, the position probability
distribution of OQWs converges to Gaussian distributions [17, 18].

Not so long ago, Sinayskiy and Petruccione suggested two possible approaches to implement OQWs:
first, they suggested a quantum optics implementation of OQWs by using an effective operator formalism
[20], second, they followed the traditional theory of open quantum systems and derived OQWs based on
the microscopic system-bath setup [21, 22]. In the quantum optical implementation of OQWs, [20] used
an example of the two-level system in the cavity in the dispersive regime. This was done by considering
a composite quantum optical system. For this case, an interaction between a two-level atom with a
quantized mode of the electromagnetic field at zero temperature. More precisely, [20] considered a
particular system in a regime in which the OQW formalism becomes a natural way of describing the
system effective dynamics.

The state of the two-level system corresponds to an inner degree of freedom of the “walker”, and the
Fock states correspond to the lattice sites for the “walker”. By using the method of small unitary rotations
[23–25], the effective dynamics of the system were shown to be an OQW. The only dissipative process
considered for obtaining an OQW was the spontaneous emission in the system. Although this scheme
leads to OQW, the dynamics of the walker is relatively poor in comparison to traditional microscopic
approaches [22]. The aim of this paper is to generalize the simple case which was developed earlier
by [20] to include external driving of the atom and non-zero temperature of the environment.

This paper is structured as follows: In Sec. 2, we briefly review the formalism of OQWs. In Sec.
3, we apply the method of the small unitary rotations to the quantum master equation describing the
dynamics of the system. After that, we obtain a generalized master equation. The time discretization of
the generalized master equation leads to OQW formalism. Finally, in Sec. 4, we conclude.

2 Formalism

OQWs are defined as quantum walks on graphs [11, 13], where the transitions between the nodes are
driven by the dissipative interaction with an environment. This process is realized through repeated
application of a specific completely positive trace-preserving (CPTP) map. In order to describe OQWs,
we consider a walk on a graph with the set of vertices V and directed edges {(i, j) : i, j ∈ V}. Here the
set V of vertices may be finite or countably infinite. The dynamics on the graph are described by the
space of states K=CV with orthonormal basis {|i〉}i∈V indexed by V. We describe an internal degree of
freedom of the walker e.g., spin, polarization or n-energy levels, by attaching a separable Hilbert space
HS to each node of the graph, such that any state of the walker is described by a density matrix ρ on the
directed product of the Hilbert spaces HS⊗K.

Now, to describe the dynamics of the walker for each edge (i, j) we introduce bounded operators Bi
j

on HS. These operators represents the change in the internal degree of freedom of the walker due to the
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effect of passing from vertex i to vertex j (see Fig. 1). By assuming that for each node j,

∑
i

Bi†
j Bi

j = I, (1)

we make sure that for each node j ∈V there is a corresponding CPTP map M j in the Kraus representation
on the space of operators on HS,

M j(τ) = ∑
i

Bi
jτBi†

j . (2)

The transition operators Bi
j act only on the internal state Hilbert space HS and do not perform transitions

from node i to node j. They can be easily dilated to operators Mi
j acting on the total Hilbert space HS⊗K

as Mi
j = Bi

j⊗ |i〉〈 j|. Hence, it is clear that if condition (1) is satisfied, then ∑i, j Mi†
j Mi

j = I [13]. This
condition defines a CPTP map for density matrices on HS⊗K, i.e.,

M(ρ) = ∑
i

∑
j

Mi
jρMi†

j . (3)

At this point it is worth mentioning that the CPTP map M defines the discrete-time OQW [11, 13]. As
an example, lets suppose that the state of the walker at any time-step is given by,

ρ
[t] = ∑

k
ρ
[t]
k ⊗|k〉〈k|, (4)

where ρ
[t]
k is the positive operator on the Hilbert space of the walker describing the state of the in-

ner degree of freedom of the walker at lattice site k, satisfying the probability conservation condition
∑k Trρ [t]

k =1. The superscript [t] denotes the time-step t. The basis vector in a Hilbert space correspond-
ing to the graph of the OQW is given by |k〉. The OQW is obtained by the iteration of the CPTP map as
in (3). For the OQWs on the line, the general form of the iteration is given by,

ρ
[t+1]
k = Bk

kρ
[t]
k Bk†

k +Bk
k−1ρ

[t]
k−1Bk†

k−1 +Bk
k+1ρ

[t]
k+1Bk†

k+1. (5)

The schematics of an OQW on Z is given by Figure 1. The completely positivity and trace preservation
of the map (5) is guaranteed by the normalization condition,

∀k, Bk†
k Bk

k +Bk+1†
k Bk+1

k +Bk−1†
k Bk−1

k = I. (6)
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Fig. 1: The above figure is an illustration of the OQW on Z. The operators Bi
j represent the transition of

the “walker” jumping from node (i) to node ( j).

Equation (6) denotes the conservation of the probability and is related to a generalization of the classical
Markov chain approach in the quantum domain [26, 27].
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3 Model

The open quantum system that we consider here was initially proposed by [20] using a dissipative out-
of-resonance cavity quantum electrodynamics setup. In this scheme, the Fock states of the cavity mode
correspond to the nodes of the “walker”, and the state of the two-level system corresponds to an inner
degree of freedom of the “walker”. In this paper we propose a generalized version of the previous scheme
by including the temperature of the environment. By introducing the above, the dynamics of the system
is now governed by the quantum master equation of the following form [1, 28, 29]:

d
dt

ρ =−ı [Hint,ρ]+ γ (nth +1)L [σ−,σ+]ρ + γnthL [σ+,σ−]ρ, (7)

where ρ is density operator, Hint is the Hamiltonian that describes the interaction between the cavity
mode and the two-level atom, γ is the spontaneous emission rate, nth = (eβ h̄ω − 1)−1 is the average
thermal photon number, where β is the inverse temperature of the environment β = (kBT )−1, and kB is
the Boltzmanns constant. L denotes the standard dissipative superoperator in the Gorini-Kossakowski-
Sudarshan Lindblad (GKSL) form [30, 31]. The atom-field interaction Hamiltonian within the rotating-
wave approximation (RWA) is given by (in units of h̄ = 1),

Hint = ∆a†a+g
(
aσ++a†

σ−
)
. (8)

In the Eq. (8) ∆ = ω f −ωa is the detuning between the cavity mode and transition frequency in a
two-level atom. Also, ω f is the frequency of the cavity field and ωa is the atomic transition frequency.
The operators, a and a† are the corresponding photon annihilation and creation operators of the electro-
magnetic field, respectively, satisfying commutation relations

[
a,a†

]
= 1. The constant g stands for the

atom-field coupling strength, which was introduced by Jaynes and Cummings [32] to study the interac-
tion between a two-level atom and a quantized single mode field. The Pauli raising and lowering spin
operators are denoted by σ±, where σ+ = |e〉〈g|, and σ− = |g〉〈e|, |e〉 being the excited state and |g〉 the
ground state of the two-level atom. These operators σ+, σ− and σz (generators of su(2) group) obey the
commutation relations, [σz,σ±] = ±2σ± and [σ+,σ−] = σz. In Eq. (7) the superoperator L [σ−,σ+]ρ
together with ‘1’ term describes the spontaneous emission of the two-level atom, and the nth one is due
to the stimulated process. The last term in (7) describes the process in which the two-level atom absorbs
photons from the field. The action of the superoperator L [n,m] is defined as:

L [n,m]ρ = nρm− 1
2
{mn,ρ}, (9)

where {·, ·} stands for the anti-commutator. Despite its simplicity, the Hamiltonian (8) can not be di-
agonalized exactly. This will be further discussed in the next few lines. Also, at this point, it is worth
mentioning that the dynamics described by Eq. (7) is not yet in the OQWs form. In order to generate
the effective dynamics we move our system into the dispersive media by considering the limit where
ε = g

∆
� 1. The main purpose of this step is to obtain the effective Hamiltonian and effective master

equation using the method of small unitary rotations [23–25]. This technique allows for the approximate
diagonalization of nonlinear Hamiltonians. To illustrate this method, we consider some physical system
whose interaction Hamiltonian is given by,

Hint = ∆A3 +g(A++A−) . (10)



A.R. Zungu, I. Sinayskiy & F. Petruccione 87

Here also g is a coupling constant, ∆ is a detuning between frequencies of different subsystems. The
operators A± and A3 satisfy the following commutation relations,

[A3,A±] =±A±, and [A+,A−] = P(A3,Ni) . (11)

In Eq. (11) P(A3,Ni) refers to a polynomial function of the diagonal operator A3 with coefficients de-
pending on some integrals of motion Ni. These commutation relations correspond to a polynomial of
deformation of su(2) [23–25]. As mentioned earlier, we consider a physical system where for some
physical reason, the ratio between the coupling constant g and the detuning ∆ is a small parameter
ε = g

∆
� 1. In this case the interaction Hamiltonian Hint can be approximately diagonalized by applying

the small unitary rotation operator U = exp [ε (A+−A−)] as Heff = UHintU†: hence, the master equa-
tion transforms as ρeff =UρU†. Using the usual expansion eABe−A = B+[A,B]+ 1

2! [A, [A,B]]+ · · · and
keeping terms up to order ε2, one gets the Hamiltonian that is diagonal in the basis of the operator A3,
defined by,

Heff = ∆A3 +
g2

∆
P(A3,Ni) . (12)

For the problem considered in this paper the appropriate operator of the small unitary rotation has the
following form,

U = exp
[
ε
(
a†

σ−−aσ+

)]
. (13)

After some calculations, we obtain the effective master equation of the following form,

d
dt

ρeff =−ı [Heff,ρeff]+ γ (nth +1)
[
L [σ−,σ+]ρeff +

g
∆
L [aσz,σ+]ρeff +

g
∆
L
[
σ−,a†

σz
]

ρeff

+
g2

∆2L
[
aσz,a†

σz
]

ρeff−
g2

∆2L
[
σ−,

(
a†a+1

)
σ++2a†2

σ−
]

ρeff

− g2

∆2L
[(

a†a+1
)

σ−+2a†2
σ+,σ+

]
ρeff

]
+γnth

[
L [σ+,σ−]ρeff−

g
∆
L [σ+,aσz]ρeff

− g
∆
L
[
a†

σz,σ−
]

ρeff +
g2

∆2L
[
a†

σz,aσz
]

ρeff−
g2

∆2L
[
σ+,

(
a†a+1

)
σ−+2a2

σ+

]
ρeff

− g2

∆2L
[(

a†a+1
)

σ++2a†2
σ−,σ−

]
ρeff−

g2

∆2L [σ+,σ−]ρeff

]
, (14)

where the effective Hamiltonian Heff reads,

Heff = ∆a†a− g2

∆

(
a†aσz +

σz

2
+

1
2

)
. (15)

From (15), the diagonal operator A3 corresponds to a†a. The total excitation number N = a†a+σz is
a constant of motion. All terms in the master equation (14), which depend on non-equal powers of
the photon annihilation and creation operators a and a†, will oscillate rapidly and do not contribute to
the system dynamics. After performing the rotating wave approximation (RWA) the effective master
equation takes the form,
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d
dt

ρeff = ı
g2

∆

[
a†aσz +

σz

2
+

1
2
,ρeff

]
+ γ (nth +1)

[
L [σ−,σ+]ρeff +

g2

∆2L
[
aσz,a†

σz
]

ρeff

− g2

∆2L
[
σ−,

(
a†a+1

)
σ+

]
ρeff−

g2

∆2L
[(

a†a+1
)

σ−,σ+

]
ρeff

]
+γnth

[
L [σ+,σ−]ρeff +

g2

∆2L
[
a†

σz,aσz
]

ρeff−
g2

∆2L
[
σ+,

(
a†a+1

)
σ−
]

ρeff

− g2

∆2L
[(

a†a+1
)

σ+,σ−
]

ρeff−
g2

∆2L [σ+,σ−]ρeff

]
. (16)

From this point, one can see that the above master equation (16) conserves the typical form of the
OQWs introduced earlier (4). By writing the density matrix of the reduced system from Eq. (16), as
ρ = ∑k ρk⊗|k〉〈k|, where |k〉 is a Fock state of the cavity mode and ρk is a positive operator describing
the state of the two-level system, the quantum master equation (16) reduces to the system of differential
equations for the operators ρk:

d
dt

ρk = ı
g2

∆

[
kσz +

σz

2
+

1
2
,ρk

]
+ γ (nth +1)

g2

∆2

[
(k+1)σzρk+1σz− kρk

]
+γ (nth +1)

[
1− 2g2

∆2 (k+1)
]
L [σ−,σ+]ρk

+γnth

[
(1− g2

∆2 (2k+3))L [σ+,σ−]ρk +
g2

∆2 (kσzρk−1σz− (k+1)ρk)

]
. (17)

The system of differential equations (17) defines the continuous-time OQWs [33]. In order to obtain
a discrete-time OQW in the form (3), we construct the explicit form of the transition operators Bi

j by
introducing discretized time steps. To do this, we discretize the system of differential equations by
replacing the time derivatives by the finite difference with a small time step δ t,

d
dt

ρk(t)→
ρk(t +δ t)−ρk(t)

δ t
. (18)

The above substitution leads to the following jump operators:

Bk
k =

√
γ(nth +1)δ t

(
1− 2g2

∆2 (k+1)
)

σ−, Bk
k+1 =

√
γ(nth +1)g2δ t(k+1)

∆2 σz,

B′kk =

√
γnthδ t

(
1− g2

∆2 (2k+3)
)

σ+, Bk
k−1 =

√
γnthg2δ tk

∆2 σz, (19)

B′′kk =1+ ı
g2δ t

∆

(
kσz +

σz

2
+

1
2

)
− γ(nth +1)g2δ tk

2∆2 − 1
2

γ(nth +1)δ t
(

1− 2g2

∆2 (k+1)
)

σ+σ−

− γnthδ t
2

(
1− g2

∆2 (2k+3)
)

σ−σ+−
γnthg2δ t(k+1)

2∆2 .

Hence, the iteration formula for the discrete-time OQW is given by,

ρ
[t+1]
k = Bk

kρ
[t]
k Bk†

k +B′kkρ
[t]
k B′k†

k +B′′kkρ
[t]
k B′′k†

k +Bk
k−1ρ

[t]
k−1Bk†

k−1 +Bk
k+1ρ

[t]
k+1Bk†

k+1. (20)
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The generalized scheme shows that the OQW is driven by two jump operators, for the left and right
movements, namely, Bk

k−1 (to the left) and Bk
k+1 (to the right). And also the other three jump operators

which act on sites Bk
k, B′kk and B′′kk do not contribute to the either movements. Hence, this seems to

agree very well with the iteration formula (5). One can easily verify the normalization condition (6) by
dropping terms of order δ t2 in Eq. (19). The jump operators Bi

j (19) depend on the number of the nodes
k which defines an inhomogeneous OQW on the line [20]. As mentioned earlier, the set of nodes for
the walk corresponds to the different Fock states and jumps between the different nodes correspond to
the action of the annihilation and creation operator on the Fock states. Figure 2 shows the dynamics of
different observables for the OQW. The occupation probability distribution for the “walker” P[t](k) =
Tr
[
ρ
[t]
k

]
for different numbers of time steps is shown in Fig. 2(a), (b) and (c).
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Fig. 2: (Color online) Open quantum walk (OQW) observables. Figure (a), (b) and (c) shows the occupation
probability distribution for the “walker” in the generalized quantum optical implementation of OQW at different
temperatures of the environment, nth = 0.5, 1, and 5, respectively; with iteration formula given by Eq. (20). The
markers, namely, circles, squares, pentagon and triangles corresponds to probability distribution after 0.2×104,
104, and 5×104 steps. Figure (d) shows the dependence of the “speed” Vµ and “spread” Vσ of the Gaussian
given by Eq. (21) and Eq. (22) as function temperature of the environment after 104 steps. The initial state is
ρ [0] = |0〉〈0| ⊗ |20〉〈20|, where |20〉 is the initial 20-photon Fock state used as initial state of the cavity mode,
which corresponds to an initial lattice site for the OQW. Other parameters used were, g = 0.02, ∆ = 1, γ = 0.2,
and δ t = 0.02.
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One can see that increasing the temperature of the environment (from Fig. 2(a) to Fig. 2(c)) the Gaussian
distribution describing the occupation probability of the position of the “walker” moves faster to the left
and in very low temperatures of the environment the average position of “walker” remains near the initial
node 20. Also, it is very clear that for the parameters chosen, it takes at least 5×104 steps (Fig. 2(a),
triangles) for the “walker” to reach the asymptotic distribution. But this is strongly dependent on the
temperature of the environment, as can be seen from Fig. 2(c), the asymptotic distribution is reached
much earlier at 2×104 steps. As we increase the number of time steps (for 2×104 and 5×104 in Fig.
2(c)) at higher temperatures the width of the Gaussian distributions seems to be the same. In order to
understand this, one needs to analyse the mean µ(t) and variance σ2(t) of the position of the “walker”
using the following equations,

Vµ =
µ(t)

t
where µ(t) = ∑

k
kP[t]

k , (21)

and,

Vσ2 =
σ2

t
where σ

2(t) = ∑
k
(k−µ(t))2P[t]

k . (22)

Fig. 2(d) shows the dependence of the “speed” Vµ and “spread” Vσ of the Gaussian for different tem-
peratures of the environment on a logarithmic scale. This figure illustrate the dynamics of the Gaussians
corresponding to Nsteps = 10000 steps shown on Fig. 2(a) to Fig. 2(c). One can see that the biggest
change in the velocity is happening for the temperature corresponding to the average number of photons
in the environment between 3 (log10(nth) = 0.5) and 100 (log10(nth) = 2). The dependence of the “spread”
of the Gaussians as a function of temperature (Fig. 2(d)) is sharply decreasing. A similar behavior has
been reported in the previous study by [22] where increasing the temperature of the environment, causes
the “spread” to grow to a certain point and decreases afterward.

4 Conclusion

In this paper, we proposed a generalized quantum optical implementation of the OQW. This was done by
including non-zero temperature of the environment to the scheme suggested earlier by [20]. The master
equation describing the effective dynamics of the system was derived using the method of small unitary
rotation approach. However, the resulting master equation defines a continuous time OQW. This master
equation conserves the diagonal in position form of the reduced density matrix. A discrete-time version
corresponding to the CPTP maps was obtained using a discretization procedure.

In summary, we demonstrated that the “walker” reaches the asymptotic distribution. The temperature
of the environment plays an important role in OQWs because it allows the system to reach a steady
Gaussian distribution faster. Future work will show how to implement a more diverse OQW by using a
microscopic maser setup [34–36]. This scheme will be based on a quantum-non-demolition method to
measure the number of photons stored in a high-Q cavity.

Acknowledgements

This work is based upon research supported by the South African Research Chair Initiative of the De-
partment of Science and Technology and National Research Foundation. AZ acknowledge support in
part by the National Research Foundation of South Africa (Grant No. 118892).



A.R. Zungu, I. Sinayskiy & F. Petruccione 91

References
[1] Heinz-Peter Breuer and Francesco Petruccione. The Theory of Open Quantum Systems. Oxford University

Press, 2002.
[2] Sebastian Diehl, A Micheli, A Kantian, B Kraus, HP Büchler, and P Zoller. Quantum states and phases in
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[3] Barbara Kraus, Hans P Büchler, Sebastian Diehl, Adrian Kantian, Andrea Micheli, and Peter Zoller.

Preparation of entangled states by quantum markov processes. Physical Review A, 78(4):042307, 2008.
doi:10.1103/PhysRevA.78.042307.

[4] Michael James Kastoryano, Florentin Reiter, and Anders Søndberg Sørensen. Dissipative prepa-
ration of entanglement in optical cavities. Physical review letters, 106(9):090502, 2011.
doi:10.1103/PhysRevLett.106.090502.

[5] Frank Verstraete, Michael M Wolf, and J Ignacio Cirac. Quantum computation and quantum-state engineering
driven by dissipation. Nature physics, 5(9):633, 2009. doi:10.1038/nphys1342.

[6] Julia Kempe. Quantum random walks: an introductory overview. Contemporary Physics, 44(4):307–327,
2003. doi:10.1080/00107151031000110776.

[7] Yakir Aharonov, Luiz Davidovich, and Nicim Zagury. Quantum random walks. Physical Review A,
48(2):1687, 1993. doi:10.1103/PhysRevA.48.1687.

[8] Andrew M Childs. Universal computation by quantum walk. Physical review letters, 102(18):180501, 2009.
doi:10.1103/PhysRevLett.102.180501.

[9] Masoud Mohseni, Patrick Rebentrost, Seth Lloyd, and Alan Aspuru-Guzik. Environment-assisted quan-
tum walks in photosynthetic energy transfer. The Journal of chemical physics, 129(17):11B603, 2008.
doi:10.1063/1.3002335.

[10] Viv Kendon. Decoherence in quantum walks–a review. Mathematical Structures in Computer Science,
17(6):1169–1220, 2007. doi:10.1017/S0960129507006354.
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