
Eerke Boiten, John Derrick & Steve Reeves (Eds.):
Refinement Workshop 2015 (Refine ’15)
EPTCS 209, 2016, pp. 112–128, doi:10.4204/EPTCS.209.9

c© M. Neovius, L. Petre & K. Sere
This work is licensed under the
Creative Commons Attribution License.

A Theory of Service Dependency

Mats Neovius Luigia Petre Kaisa Sere
Åbo Akademi University, Faculty of Science and Engineering

Turku Centre for Computer Science (TUCS)
Turku, Finland

Service composition has become commonplace nowadays, in large part due to the increased complex-
ity of software and supporting networks. Composition can be of many types, for instance sequential,
prioritising, non-deterministic. However, a fundamental feature of the services to be composed con-
sists in their dependencies with respect to each other. In this paper we propose a theory of service
dependency, modelled around a dependency operator in the Action Systems formalism. We analyze
its properties, composition behaviour, and refinement conditions with accompanying examples.

1 Introduction

Dependency can be of several types, for instance we can think of type and format dependencies between
data producers and data consumers or of signature and semantic dependencies between service providers
and service users. Moreover, when getting serviced by various service providers, we depend on them
in ways not yet formally understood. As our contemporary digital activities (such as online banking or
shopping) are based on service providers, that use in their turn other service providers, we need to better
understand the composition types between all the involved services. More interestingly, composing
services that depend on each other in various ways adds a special flavor to the problem.

In this paper we define dependency via a specific operator and analyze its properties especially in
correlation with previously defined and studied composition operators. Our study is developed in the
Action Systems [6] formal framework. Analysis includes examining basic algebraic properties in the
formal Action Systems framework as well as detailing how refinement applies to dependency.

Action Systems is a state-based formal method for modeling distributed systems. Introduced in
1983, when CSP [17] and CCS [21] where the major modeling formalisms, it differed from them in that
it proposed an overall approach of a system. CSP and CCS are process algebras, modeling the behavior
of the processes of a system, together with their interactions. The basic idea of Action Systems is to
model the overall system behavior, often in an abstract manner. The genericity of such abstractions are
not problematic because Action Systems is built around the concept of refinement: a specification can
be correctly developed from a more abstract to a more concrete form, by following formal rules for such
developments. Nowadays, Action Systems are very resemblant of the Event-B [1] formal method, which
is, in fact, based on it and on the B-method [2]. Notable for Event-B is an associated theorem prover, the
Rodin platform [3], in which one can edit the system models and get automatically the proof obligations
to prove, in order for the models to be correct with respect to various properties. Action Systems remains
to this day much more general and flexible than Event-B, even if it has the downside of missing an
equivallent tool platform. However, we set up our study of dependency in Action Systems, because of its
flexibility. Once we understand all the concepts well, we plan to move our understanding into the Rodin
platform, in form of a theory of actions. This is still very preliminary; we mention some thoughts on this
in the conclusions.

Hence, the contribution of this paper consists in modelling dependency in a state-based formalism
via a dedicated operator. We analyse fundamental properties of this operator, including refinement, and

http://dx.doi.org/10.4204/EPTCS.209.9
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

M. Neovius, L. Petre & K. Sere 113

emphasise various examples relevant to our discussion. We believe this is the beginning of a series of
studies on dependency, as it has become such an intricate phenomenon in our digitalised society.

We proceed as follows. In Section 2 we discuss Action Systems to the extent needed in this paper,
after which in Section 3 we introduce and analyse the dependency operator. Refinement laws for de-
pendency are studied in Section 4, and in Section 5 we outline an example that illustrates some of the
introduced concepts. We conclude the paper with highlights of future work in Section 6.

2 Action Systems - a Revisit

The Action System framework was introduced by Back and Kurki-Suonio in 1983 [6] for modeling dis-
tributed systems. It has been investigated and extensively developed for about two decades, prominently
by Back, Sere, von Wright, Sekerinski, Butler, and colleagues [8, 9, 10, 11, 15, 25, 26, 27, 28, 30]. An
Action Systems overview appears in [23].

In the following we revisit some of the fundamental building blocks of Action Systems that will then
be employed for studying dependency.

2.1 Preliminaries

An action system consists of a state that can be evaluated and modified by a finite set of actions. The
state models the problem domain of the system via a finite set of variables: at any moment, the state
contains the values of these variables. The state can also be described as a predicate understood as the
conjunction of predicates describing the values of the variables, for instance the state can be described as
x = 5∧y = 10, where x and y are the state variables. The value of a variable can be read and modified
by an action. Each action can read and modify a subset of the state variables. An action system is not
necessarily regarded in isolation, but as a part of a more complex system. The rest of the system (the
environment) communicates with the action system using different mechanisms such as global variables
or exported procedures [28].

An action system A has the following form:

A = |[var x •S0 ; do A1 [] . . . []Am od]| y (1)

Here x = x1, . . . ,xn are the variables of the system A , S0 is a statement initializing them, while Ai ,
i = 1, . . . ,m , are the actions of the system. Variables in x may be exported, in the sense that they can be
read, or written, or both read and written by environment actions. We refer to a local variable of A that
is not exported as private. The imported variables y = y1, . . . ,yk are declared in the environment of A .
We assume that x ∩y = /0 and refer to x ∪y as the global variables of A .

Notation-wise, we observe that the boundary of the system A is denoted with brackets |[...]|; the
entities inside the brackets are defined within A while the entities outside the brackets (namely, y) are
not. Inside A we observe the sequence ; with its two parts: the first consists of the variable declaration
and initialisation and the second consists of a do ... od loop containing the actions separated by the non-
deterministic choice operator []. We explain the execution model shortly, upon understanding the form
and semantics of actions.

An action is an atomic statement that can change the values of the local or global variables of the
action system. An action A can be described by the following grammar:

A ::= abort | skip | x : = v | p→A |A []A. (2)

114 A Theory of Service Dependency

Here x is a list of variables, v a list of values, and p a predicate on the state variables. Intuitively, ‘abort’
is the action that always deadlocks, ‘skip’ is the stuttering action, ‘x : = v ’ is a multiple assignment,
‘p→A’ is a guarded action, executable only when p holds, and ‘A1 []A2’ is the nondeterministic choice
among actions ‘A1’ and ‘A2’. We note here that the actions (2) are suitable for specification, being
rather abstract. For instance, the more deterministic sequential and prioritising compositions are missing,
although they are well known for Action Systems. We discuss them shortly.

The semantics of an action A is described in terms of the weakest precondition predicate transformer
wp, in the style of Dijkstra [14]. The weakest precondition predicate transformer relates the state of the
system after an action A has taken place (the postcondition q of A) to the widest possible state of the
system before the action A has taken place (weakest precondition of A with respect to q). In this way, it
completely describes an action by defining from what precondition one should start in order to arrive at
a desired postcondition. Given a postcondition q , the function wp(A,q) is defined below for actions (2):

wp(abort ,q) = false
wp(skip,q) = q
wp(x : = v ,q) = q [x := v]
wp(p→A,q) = (p⇒ wp(A,q))
wp(A1 []A2,q) = wp(A1,q)∧wp(A2,q).

The details of the definition of this function are studied elsewhere [8, 28]. Here we just discuss an
intuitive understanding of this semantical way of defining actions. Consider action skip: it is clear that,
to arrive at a postcondition q by doing nothing in terms of state changes, one should start from the same
precondition q . Consider also the assignment x : = v : what we want to happen when such an assignment
is executed is that the variables x should end up with values v and all the other variables should keep their
values; hence, to arrive at a postcondition q after executing x : = v , we need to replace all occurrences of
x in q with v . The action abort is a special case, denoting an abandonment of computation; to arrive
at postcondition q when such an abandonment takes place is impossible, hence, there is no state from
where one could get to q via abort ; hence, wp(abort ,q) = false . For action p→ A, we execute A to
get to q , but only when p holds; hence, we need to start in a state where wp(A,q) holds when p holds.
When p does not hold, then nothing happens, so one can start from anything; in this case ‘anything’ is
modelled by true . The nondeterministic choice A1 []A2 is perhaps the most interesting of the actions (2),
as it means that either A1 or A2 can take place, but there is no way to know in advance which of them
actually takes place; hence, in order to get to q with A1 []A2 we must be prepared and start from a state
in which both wp(A1,q) and wp(A2,q) hold.

A useful property of the wp predicate transformer is to characterize the termination of an action: if
wp(A, true) = true , then we say that A terminates (also referred to as always terminating [28]). This can
be interpreted so that true is a postcondition describing the state of the system without any restriction:
the variables could have any values. Thus, if for an action A we have that wp(A, true) = true , then we
know nothing about how this action works except that it terminates.

The predicate transformer wp is also conjunctive, as defined below; this property is useful when
doing wp-calculations, as we will see in Section 3.

wp(A,p ∧ q) = wp(A,p)∧wp(A,q) (3)

Equality of actions Based on the wp predicate transformer we can compare various (compositions of)
actions. We are interested only in the input-output behaviour of actions, in terms of state changes, hence

M. Neovius, L. Petre & K. Sere 115

we consider two actions to be equal if they always start from the same weakest precondition in order to
achieve the same postcondition, for all possible postconditions:

A1 =A2 iff for all q : wp(A1,q) = wp(A2,q) (4)

Enabledness An important property of an action is its enabledness, defined via the action’s guard:
we say that an action is enabled when its guard holds. We are interested in ‘functional’ states when
modeling, namely those from where actions achieve useful postconditions; for this, we exclude those
states from which an action establishes postcondition false , which models an impossible state. Hence,
we define the guard of A, denoted g(A), as ¬wp(A, false): this gives those states in which action A
behaves in a functional way. The actions (2) have the following guards:

g(abort) = true
g(skip) = true
g(x : = v) = true
g(p→A) = p ∧ g(A)
g(A1 []A2) = g(A1)∨ g(A2)

(5)

Actions whose guards are always true are called always enabled [28], for instance an assignment or a
skip action are always enabled. The action p→ A is enabled when both p and g(A) hold: ¬wp(p→
A, false) = ¬(p ⇒ wp(A, false)) = ¬(¬p ∨wp(A, false)) = p ∧¬wp(A, false) = p ∧ g(A). A similar
calculation leads to the formula (5) for g(A1 []A2).

When we think of an action A having the guard g(A), the guardless ‘rest’ of the action is syntactically
referred to as the body b(A) of action A, so that g(b(A)) = true . Thus, we can write action A as
A= g(A)→ b(A). The study of action guards appears in the Action Systems literature, for instance in [8,
26, 28], to support various other constructs. As enabledness is very important for service dependency, in
this paper we study guards themselves in more detail. Notation-wise, whenever convenient we write gA
instead of g(A) and similarly we write bA instead of b(A).

Example 1 Lets assume we have a simple road crossing as the one illustrated in Figure 1. We model
the two crossing roads as four segments labelled A, B , C , D . The action system C CB below describes
a simple behavior of a car entering the crossing at segment B .

Figure 1: A simple crossing with one car

116 A Theory of Service Dependency

C CB = |[var light : {green, red}, loc : {A, B , C , D}•
light , loc : = red , B ;

do

(A1) light = red → light : = green

[](A2) light = green→ light : = red

[](A3) loc = B ∧ light = green→ loc : =C [] loc : =D

od]|

The car on segment B can only go through the crossing if the light is green . The state of C CB is
described by two variables light and loc, the first modeling the crossing lights and the second the location
of the car on one of the four segments A, B , C , D . We can see examples of assignments in this small
Action System, as well as of guards and non-determinism. Actions A1 and A2 switch between the lights.
Action A3 models that the location of the car can change from B to C or D only when the car is at
location B (loc = B) and the crossing lights are green (light = green). In this case, the location is
non-deterministically changed to either C or D : loc : =C [] loc : =D .

2.2 The execution model

The execution of an action system A as in (1) is the following. The initialisation S0 sets the variables to
some specific values. Then, from the enabled actions, one is non-deterministically chosen and executed:
this means that the chosen action changes the values of its accessed variables in a way that is determined
by the action body. The variables that are not accessed by that action keep their values unchanged. The
execution of any action is atomic: this means that, once the action is selected for execution, it will execute
without interference from other actions. The computation terminates when no action is enabled. This
means that the state will evolve no more, fixing the final values of the variables forever. The action system
C CB is non-terminating, as the lights will keep switching via actions A1 and A2. Upon initialisation,
after the lights become green , both actions A2 and A3 are enabled: if A2 is chosen for execution, then
the lights change back to red , and then only A1 is enabled. When lights = green and A3 is chosen for
execution, then the car will go straight on, advancing to segment D or to the right, advancing to segment
C .

Such an execution model is similar to Dijkstra’s guarded iteration statement [14], showing Action
Systems can model sequential executions. Parallelism can also be modelled in the framework, by in-
terleaving. In such a parallel execution model, actions that do not access each other’s variables and are
enabled at the same time can be executed in parallel. This is possible because their sequential execution
in any order has the same result. Execution models are detailed in [4, 5, 10].

Execution of any action cannot be guaranteed in the Action System framework. This is due to
assuming no notion of fairness in the model [4]. Fairness [20], as a property that concurrent systems may
have, can be of several forms. One of the most used forms, referred also as strong fairness, means that
an action is infinitely often executed if it is infinitely often enabled. Having no assumptions of fairness
implies that true non-determinism can be modeled with Action Systems. Also, properties proved for a
sequential execution of an action system A as in (1) still hold when a parallel execution is assumed for
A [4, 7]. This feature is important because the theory supporting proofs about sequential executions is
rich, see for example [14, 16].

M. Neovius, L. Petre & K. Sere 117

2.3 More deterministic composition operators

The actions (2) can model abstract specifications, that include non-determinism as an abstraction mech-
anism. We now focus on two action composition operators that enable more determinism in the specifi-
cations. We extend the grammar (2) as follows:

A ::= . . . |A //A |A ; A. (6)

Here ‘A1 //A2’ is the prioritising composition of two actions ‘A1’ and ‘A2’ and ‘A1 ;A2’ is the sequential
composition of two actions ‘A1’ and ‘A2’:

A1 //A2 = A1 []¬gA1→A2
A1 ; A2 = gA1∧wp(bA1,gA2)→ bA1 ; bA2

(7)

Prioritising composition One reason behind defining the // operator between actions if that of coor-
dination. The underlying execution model of Action Systems is non-deterministic, i.e., the scheduling
of certain actions for execution cannot be guaranteed. However, when modeling coordination we need
to enforce the execution of specific actions. The notion of coordination was therefore defined in terms
of prioritising composition for Action Systems in [15, 27]. We say that the action A1 coordinates the
action A2. Essentially, action A1 has a higher priority than action A2: A1 can be executed if it is enabled,
while A2 can be executed if it is enabled and A1 is not enabled.

Example 2 To see an example of prioritising composition, lets think again about a simple crossing,
but this time without the crossing lights and with two cars trying to pass through it, as illustrated in
Figure 2. Assume both cars just want to continue on their roads and so, without crossing lights, we need
to take into account the right-of-way priority: the car coming from the East will have priority over the
car coming from the South. We have the following two actions modeling the desired movement of the
two cars:

Figure 2: A simple crossing with two cars

(A4) loc1 = B → loc1 : =D

(A5) loc2 = C → loc2 : =A

Here, action A4 models the desired movement of the car from the South, while action A5 models the
desired movement of the car from the East. Assuming right-hand traffic, the right-of-way is modeled
by the prioritised composition A5 // A4: action A4 will execute when enabled and when action A5 is
disabled.

118 A Theory of Service Dependency

The weakest precondition with respect to a predicate q and the guard of A1 //A2 are, respectively:

wp(A1 //A2,q) = wp(A1,q)∧ (gA1∨wp(A2,q))
g(A1 //A2) = gA1∨ gA2

(8)

Sequential composition For specifying sequentiality, we use the ; operator. This is, in fact, one of the
fundamental operators in [14], defined as follows: A1 ; A2 behaves as A1 if A1 is enabled, then, when
A1 terminates, as A2 if A2 is enabled; otherwise, the sequence A1 ; A2 is not enabled [11]. The weakest
precondition with respect to a predicate q and the guard of A1 ; A2 are, respectively:

wp(A1 ; A2,q) = wp(A1,wp(A2,q))
g(A1 ; A2) = gA1∧wp(bA1,gA2)

(9)

A useful construct for working with actions is also the assumption [p], where p is a predicate. We
have that wp([p],q) = (p ⇒ q) and that g([p]) = p. The meaning of [p] is that is behaves as skip if
p holds and as abort otherwise. Its usefulness comes from the fact that an action p→ A is defined as
[p] ; A:

p→A = [p] ; A (10)

Based on assumption and sequential composition, we define the following:

A1 enables A2 = wp(A1,gA2) (11)

A1 cannot disable A2 = gA2⇒ wp(A1,gA2) (12)

A1 cannot enable A2 = ¬gA2⇒ wp(A1,¬gA2) (13)

Definition (11) essentially means that action A1 terminates and establishes as postcondition gA2: if A2
was enabled before A1 took place, then A1 did not disabled it and if A2 was disabled before A1 took place,
then A1, via its state changes, enabled A2. Understanding this feature is important for the dependency
operator that we define in the next section. Essentially, A1 enables A2 means that, if A1 is enabled, then
it will execute and enable A2. This is also observable from the following calculation: wp(A1,gA2) =
wp([gA1] ; bA1,gA2)=wp([gA1],wp(bA1,gA2))= (gA1⇒wp(bA1,gA2)). Definition (12) is a stronger
condition than (11), modelling that A2 was enabled before A1 took place and A1 did not disabled it. More
detailed calculations reduce definition (12) to gA1∧ gA2⇒ wp(bA1,gA2). Definition (13) models that,
if A2 was disabled before A1 took place, then A1 did not enabled it. More detailed calculations reduce
definition (13) to gA1∧¬gA2⇒ wp(bA1,¬gA2).

In the context of the above definitions, we rephrase the guard g(A1 ; A2) of A1 ; A2 (9) as follows:
A1 should be enabled and should enable A2 upon its termination. We observe that A2 does not need to
be enabled before A1 terminates.

We present below two more properties of the assumption construct, that are instrumental in this paper.
First, we can split an assumption made of a conjunction of predicates into sequential (and commutative)

M. Neovius, L. Petre & K. Sere 119

assumptions, as described in (14):

wp([a ∧ b],q)
= {weakest precondition of assumption}
a ∧ b⇒ q
= {logic}
¬(a ∧ b)∨ q
= {logic}
(¬a ∨¬b)∨ q
= {∨ is associative}
¬a ∨ (¬b ∨ q)
= {logic}
a⇒ (b⇒ q)

= {weakest precondition of assumption, twice}
wp([a],wp([b],q))

= {weakest precondition of ; twice}
wp([a] ; [b],q))

(14)

Property (14) can be thus written as [a ∧b] = [a] ; [b] and this can also be written as [a ∧b] = [b] ; [a], as
conjunction and disjunction are commutative operators.

Second, we need to discuss what assumption [wp(A,g)] means in a sequential composition. First,
assume wp(A,g) holds. This is then equivallent to [true] ; A ; [g], meaning that, when A is exe-
cuted, it establishes postcondition g . Assume wp(A,g) holds in the following sequential composition:
[wp(A,g)] ; X ; A ; Y . We can then rewrite [wp(A,g)] ; X ; A ; Y as X ; A ; [g] ; Y . We formalize this
in property (15):

[wp(A,g)] ; X ; A ; Y = X ; A ; [g] ; Y (15)

3 The Dependency Operator

Having briefly reviewed the composition operators of actions, we now turn our attention to modelling
dependency. The dependency operator, \\, has already been introduced [22] as follows:

A ::= . . . |A\\A, (16)

where
A1\\A2 = gA1∧ gA2→A1 ; A2 (17)

The weakest precondition with respect to a predicate q and the guard of A1\\A2 are, respectively:

wp(A1\\A2,q) = gA1∧ gA2⇒ wp(A1,wp(A2,q))
g(A1\\A2) = gA1∧ gA2∧wp(bA1,gA2)

(18)

The interpretation of this operator is as follows. We say that A1 depends on A2, because it needs A2
to be enabled before and after its own (A1’s) execution. In its turn, in the simple sequential composition
A1 ; A2 it is only necessary for A2 to be enabled after A1’s execution. To better see this difference
between the two action compositions, we decompose A1 ; A2 and A1\\A2, based on (10), as follows:

A1 ; A2 = [gA1] ; bA1 ; [gA2] ; bA2 (19)

A1\\A2 = [gA1] ; [gA2] ; bA1 ; [gA2] ; bA2 (20)

120 A Theory of Service Dependency

Hence, gA2 acts as an invariant for bA1, as observed in 20: it should hold before and after bA1 takes
place.

Example 3 Let us assume the situation of a customer waiting to be served at a bank. In Finland,
customers get each a queue number from a machine and wait for their number to be displayed on a
screen, with an indication to which cashier to proceed. Once in front of the right cashiers, customers get
serviced and get each a receipt for their service, printed by a printer at the cashier’s desk. Assume we
have three actions for a customer-server provider pair:

• Action A1 = gA1→ bA1, where gA1 models that a customer has a queue number and bA1 models
that the customer waits to be served;

• Action A2 = gA2 → bA3, where gA2 models that the customer’s number is called by a cashier
(displayed on a screen) and bA2 models that the cashier provides the desired service as well as
commands the printing of the receipt;

• Action A3 = gA3 → bA3, where gA3 models that the (service provider’s) printer has paper and
bA3 models that this printer prints the receipt.

We have obviously a sequence between A1 and A2: A1 ; A2 = [gA1] ; bA1 ; [gA2] ; bA2. The condition
gA2 (of the customer’s number being called) does not need to hold before bA1 takes place: it needs to
hold after bA1 took place. However, there is a dependency between A2 and A3: A2\\A3 = [gA2] ; [gA3] ;
bA2 ; [gA3] ; bA3. The condition gA3 that the printer has paper needs to hold before the cashier presses
the ‘print’ button on his screen; if gA3 does not hold before that, then the cashier needs to do some other
actions, for instance replenishing the paper.

We will now study several properties of the dependency operator. We begin by observing the follow-
ing:

A1\\A2
= {definition (17) of \\}
gA1∧ gA2→A1 ; A2
= {definition (7) of ;}
gA1∧ gA2→ gA1∧wp(bA1,gA2)→ bA1 ; bA2
= {assumption definition (10)}
[gA1∧ gA2] ; [gA1∧wp(bA1,gA2)] ; bA1 ; bA2
= {assumption properties, ‘;’ is associative, logic}
[gA1∧ gA2∧wp(bA1,gA2)] ; bA1 ; bA2
= {assumption definition (10)}
gA1∧ gA2∧wp(bA1,gA2)→ bA1 ; bA2

(21)

Hence, we can use either (17), (20) or (21) to express A1\\A2.

Commutativity and Associativity The dependency operator \\ is based on the sequential composi-
tion ;. We know from basic theory that A1 ; A2 = A2 ; A1 only in special cases. In general, ; is not
commutative and correspondingly, \\ is not commutative either.

M. Neovius, L. Petre & K. Sere 121

We now consider associativity of \\. We have the following:

(A1\\A2)\\A3
= {(20)}
([gA1] ; [gA2] ; bA1 ; [gA2] ; bA2)\\A3
= {(20), (21), (14)}
[gA1] ; [gA2] ; [wp(bA1,gA2)] ; [gA3] ; [wp(bA1 ; bA2,gA3)] ; bA1 ; bA2 ; bA3
= {(15)}
[gA1] ; [gA2] ; [gA3] ; bA1 ; [gA2] ; bA2 ; [gA3] ; bA3

By a similar computation, we have:

A1\\(A2\\A3)
= {(20), (21), (14), (15)}
[gA1] ; [gA2] ; [gA3] ; bA1 ; [gA2] ; [gA3] ; bA2 ; [gA3] ; bA3

Since ; is associative, we obtain that \\ is associative only when gA3 is an invariant for A1, i.e., when A1
cannot disable A3 (12):

(A1\\A2)\\A3 = A1\\(A2\\A3) iff gA3⇒ wp(A1,gA3) (22)

Distributivity We now check the distributivity of \\ over ;. We have the following:

A1\\(A2 ; A3)
= {(19)}
A1\\([gA2] ; bA2 ; [gA3] ; bA3)

= {(20)}
[gA1] ; [gA2] ; bA1 ; [gA2] ; ([gA2] ; bA2 ; [gA3] ; bA3)

= {‘;’ is associative, logic}
([gA1] ; [gA2] ; bA1 ; [gA2] ; bA2) ; [gA3] ; bA3
= {(19), (20)}
(A1\\A2) ; A3

Hence, we have that:
A1\\(A2 ; A3) = (A1\\A2) ; A3 (23)

With respect to the distributivity of ; over \\, we have the following calculations:

A1 ; (A2\\A3)
= {(20), (10)}
[gA1] ; bA1 ; ([gA2] ; [gA3] ; bA2 ; [gA3] ; bA3)

= {‘;’ is associative, (14)}
[gA1] ; bA1 ; [gA3] ; [gA2] ; bA2 ; [gA3] ; bA3

(A1 ; A2)\\A3
= {(19), (10)}
([gA1] ; bA1 ; [gA2] ; bA2)\\([gA3] ; bA3)
= {‘;’ is associative, (20), (15)}
[gA1] ; [gA3] ; bA1 ; [gA2] ; bA2 ; [gA3] ; bA3

122 A Theory of Service Dependency

Hence, the associativity of ; over \\ holds only if gA3 and bA1 commute, for instance when gA3 = true
or when bA1 and gA3 have no variables in common. We thus have:

A1 ; (A2\\A3) = (A1 ; A2)\\A3 iff [gA3] ; bA1 = bA1 ; [gA3] (24)

We now check the distributivity of \\ over [] and // . We have the following:

A1\\(A2 []A3)
= {(10), (5)}
([gA1] ; bA1)\\([gA2∨ gA3] ; (A2 []A3))

= {(20)}
[gA1] ; [gA2∨ gA3] ; bA1 ; [gA2∨ gA3] ; (A2 []A3)

(A1\\A2) [] (A1\\A3)
= {(20)}
([gA1] ; [gA2] ; bA1 ; [gA2] ; bA2) [] ([gA1] ; [gA3] ; bA1 ; [gA3] ; bA3)
= {(10), ‘;’ is associative, (14)}
(gA1∧ gA2→ bA1 ; A2) [] (gA1∧ gA3→ bA1 ; A3)

= {properties of→}
gA1→ ((gA2→ bA1 ; A2) [] (gA3→ bA1 ; A3))
= {(10), (14)}
[gA1] ; [gA2∨ gA3] ; bA1 ; [gA2∨ gA3] ; (A2 []A3)

Hence, \\ distributes over [] to the left:

A1\\(A2 [] A3) = (A1\\A2) [] (A1\\A3) (25)

By a similar proof we can show that \\ distributes over [] to the right as well. We do not show here
the proof, for space purposes. Hence, we also have:

(A1 [] A2)\\A3 = (A1\\A3) [] (A2\\A3) (26)

For checking the distributivity of \\ over // , we have the following calculations:

A1\\(A2 //A3)
= {(7)}
A1\\(A2 []¬gA2→A3)

= {(25)}
(A1\\A2) [] (A1\\(¬gA2→A3))

= {(17)}
(gA2→A1\\A2) [] (¬gA2→A1\\¬gA2→A3)

= {(7)}
(A1\\A2) // (A1\\¬gA2→A3)

Hence, \\ distributes over // to the left conditionally, if A1 cannot enable A2 (13):

A1\\(A2 // A3) = (A1\\A2) // (A1\\A3) iff ¬gA2⇒ wp(A1,¬gA2) (27)

M. Neovius, L. Petre & K. Sere 123

For distribution to the right we have:

(A1 //A2)\\A3
= {(7)}
(A1 []¬gA1→A2)\\A3

= {(26)}
(A1\\A3) [] ((¬gA1→A2)\\A3)
= {(17)}
(gA1→A1\\A3) [] (¬gA1→A2\\A3)
= {(7)}
(A1\\A3) // (A2\\A3)

Hence, \\ distributes over // to the right:

(A1 // A2)\\A3 = (A1\\A3) // (A2\\A3) (28)

4 Refinement

We now shortly present the refinement relation v between actions, discuss the relationship between
; and \\ with respect to refinement, as well as some monotonicity properties that are relevant for the
dependency operator \\.

Refinement between actions We say that action A1 is refined by action A2, denoted A1 v A2, if the
weakest precondition of the former implies the weakest precondition of the latter, with respect to the
same postcondition q , for all postconditions q :

A1 vA2 iff for all q : wp(A1,q)⇒ wp(A2,q) (29)

The desired meaning of action refinement is that action A2 is more deterministic than action A1; this can
be expressed as strengthening the guard (gA2 ⇒ gA1) and reducing non-determinism (e.g., A1 []A2 v
A1 //A2).

Sequence is refined by dependency We have that A1 ; A2 v A1\\A2, based on the following calcula-
tions:

wp(A1 ; A2,q)
= {(19)}
wp([gA1] ; bA1 ; [gA2] ; bA2,q)
= {(9), (10)}
gA1⇒ wp(bA1,gA2⇒ wp(bA2,q))

wp(A1\\A2,q)
= {(20)}
wp([gA1] ; [gA2] ; bA1 ; [gA2] ; bA2,q)

= {(18), (10)}
gA1∧ gA2⇒ wp(bA1,gA2⇒ wp(bA2,q))

124 A Theory of Service Dependency

If we denote gA1 by a , gA2 by b, and wp(bA1,gA2 ⇒ wp(bA2,q)) by c, we have to show that (a ⇒
c)⇒ (a ∧ b⇒ c), which holds. Hence, we have that:

A1 ; A2 v A1\\A2 (30)

The reverse relation holds only if gA1⇒ gA2, hence:

A1\\A2 v A1 ; A2 iff gA1⇒ gA2 (31)

Monotonicity Nondeterministic choice [] and sequential composition ; are monotonic with respect to
refinement in both operands:

A1 v A2∧A3 v A4 ⇒ A1 [] A3 v A2 [] A4 and A1 ; A3 v A2 ; A4 (32)

We first check the monotonicity of the dependency operator \\ in its left operand. Assume A1 vA2:

A1\\B
= {(20)}
[gA1] ; [gB] ; bA1 ; [gB] ; bB

= {assumption properties}
[gB] ; [gA1] ; bA1 ; [gB] ; bB

= {(10)}
[gB] ; A1 ; B
v {; is monotonic and A1 vA2}
[gB] ; A2 ; B

= {(20), (10)}
A2\\B

Hence, we have that the dependency operator is always monotonic in its left operand with respect to
refinement:

A1 v A2⇒ A1\\Bv A2\\B (33)

When checking monotonicity for the dependency operator in the right operand, when A1 v A2, we
obtain that:

B\\A1
= {(20)}
[gB] ; [gA1] ; bB ; [gA1] ; bA1

= {assumption properties, (10)}
[gA1] ; B ; A1
v {; is monotonic and A1 vA2}
[gA1] ; B ; A2

B\\A2
= {(20), assumption properties, (10)}
[gA2] ; B ; A2

Hence, we have that the dependency operator is monotonic in its right operand with respect to refinement
conditionally, namely if gA2⇒ gA1:

A1 v A2⇒ B\\A1 v B\\A2 iff gA2⇒ gA1 (34)

M. Neovius, L. Petre & K. Sere 125

5 A Train Example

We now present highlights from a larger case study on token movements on a trajectory. The trajectory
is illustrated in Figure 3. Tokens can move in any direction and can entry and exit at any of the marginal
segments, i.e, {L, B , G , M , N }. For simplicity we assume we only have one token in this paper,
that needs to move from L to N . We discuss the T S Action System below, noting that it is inspired
by a case study on train movements introduced in [1]. Here, we exclude traffic lights, switches and the
possibility of one train occupying several segments, but add the possibility of loops. The T S action
system can be thought of as a one-lane road system or communication network.

A token is an element under transportation in the network of slots connected to each other, realisti-
cally a packet, a car or anything with a ‘reverse gear’. A token enters the network from a slot and exits
the network from another slot, its destination. The token occupies at most one slot in the network at
any given moment. The token is aware of its destination; this is a slot ‘consuming’ the token, like the
IP-address in a TCP/IP packet or the end stop of a bus. Each slot is occupied by a token or is ‘null’,
i.e., not occupied. Moreover, a non-empty subset of the slots may construct a loop that has a direction of
looping, much like a roundabout.

In order for a token to advance from its point of entry towards its point of exit, dependency is crucial.
Advancing from a slot to the next is an atomic action. Here the action relies on a token in the current
slot but depends on the next slot not to be occupied, i.e. being in slot A and advancing to slot B is a
situation where B ’s slot needs to be non-occupied, written A\\B . Thus, only if B can provide the service
of admitting occupancy to the token, may the token be moved. When a token is advancing in the other
direction, the dependency relation is, naturally, inversed: B\\A. For this, each slot is associated with
two actions: fA, when a token is moved from slot A and tA, with a token is moved to slot A. Their
corresponding guards are denoted gfA, gtA and their corresponding bodies are denoted bfA, btA, with f
for ”from” and t for ”to”.

Figure 3: The example trajectory

Consider the set, SLOTS and the string token; SLOTS contains the names of the slots. We use
the convention that slots are identified with capital letters and tokens with non-capital letters. We ini-
tialise these two sets as follows: SLOTS = {L,A,B ,D ,E ,G ,F ,K ,I , J ,M ,H ,N } and token = a .
Here the token occupies the following slots in this order: L,A,B ,D ,K ,J ,X *, N , where X is the loop
I ,K ,F ,E ,D ,K ,J and * stands for 0 to n times parsing the loop. Thus, the token may loop any number
of times, but shall eventually exit the loop at J .

126 A Theory of Service Dependency

T S = |[var SLOTS : P(String), token : String ,at : String → String ,

dest : String → String ,neigh : P(String×String)•
SLOTS : ={L, A, B , D , E , G , F , K , I , J , M , H , N } ;

token : =a ; at : ={L 7→ a,A 7→ null , ...} ;

dest : ={a 7→N } ; neigh : ={(L,A),(A,L), ...}
do

neigh(L,A)→ fL\\tA
[]neigh(A,L)→ fA\\tL
[]neigh(A,B)→ fA\\tB
[]neigh(B ,D)→ fB\\tD
[]...

od]|

We have that fX \\tY has the following form:

fX \\tY = (at(X) = token→ at(X) : =null)\\(at(Y) = null → at(Y) : = token) (35)

We notice that all choices are nondeterministic, implying that a token may loop forever instead of
exiting. For this, the // operator may be used. Thus, we revise the loop exiting action as follows:

dest(token) =N → (fJ\\tN) // (fJ\\tI)

Realistically, this means that if the token destination implies an exit, it will exit the loop if the next slot
is not occupied.

6 Conclusions

In this paper we have initiated a study on a dedicated dependency operator, modeled via the Action
Systems formalism. We have studied its commutativity, associativity, and distributivity over other com-
position operators, as well as its refinement rules. We have illustrated various concepts with several
examples.

Action Systems is a state-based formalism, similar in that to Event-B [1], Z [29], Unity [13] (and
its MobileUnity [24] extension), TLA [18], etc. One of the most popular such state-based formalisms
is Event-B at the moment, justifiably based on the tool support as well as the refinement paradigm it
promotes. Action Systems had an attempt at building a theorem prover tool, namely the Refinement
Calculator [12], but that was a bit ahead of its time and was abandoned due to complexity and low
interactivity. Action Systems are however highly flexible and versatile, also promoting modularity in
a natural manner still not common to Event-B (but out of scope in this paper as well). Being able to
model sequentiality, prioritised composition, dependency and reasoning about their properties is a clear
advantage that Action Systems provide. Now, the next step is to be able to save all these operators and
properties as a theory of actions, for instance via the theory plugin [19] in the Rodin platform, and being
able to reuse such a theory in various contexts.

M. Neovius, L. Petre & K. Sere 127

References
[1] J-R. Abrial, Modeling in Event-B: System and Software Engineering. Cambridge University Press, 2010.

ISBN-13: 978-0521895569

[2] J. R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996. ISBN:0-
521-49619-5

[3] J-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta and L. Voisin. Rodin: An Open Toolset for
Modelling and Reasoning in Event-B. In International Journal on Software Tools for Technology Transfer
(STTT), Vol. 12, No. 6, pp 447-466, Springer, 2010. doi:10.1007/s10009-010-0145-y

[4] R. J. Back. A Method for Refining Atomicity in Parallel Algorithms. In E. Odijk, M. Rem, J.-C. Syre
(eds), Proceedings of PARLE’89 – Parallel Architectures and Languages, Vol. 2: Parallel Languages, pp.
199-216, 1989. doi:10.1007/3-540-51285-3 42

[5] R. J. Back. Refinement Calculus, Part II: Parallel and Reactive Systems. In J. W. de Bakker, W.-P. de Roever,
G. Rozenberg (eds), Proceedings of Stepwise Refinement of Distributed Systems: Models, Formalisms,
Correctness, Lecture Notes in Computer Science, Vol. 430. Springer-Verlag, 1990. doi:10.1007/3-540-
52559-9 61

[6] R. J. Back and R. Kurki-Suonio. Decentralization of process nets with centralized control. In Proceedings
of the 2nd ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pp. 131-142, 1983.
doi:10.1145/800221.806716

[7] R. J. Back and R. Kurki-Suonio. Distributed Cooperation with Action Systems. In ACM Transactions on
Programming Languages and Systems, Vol. 10, No. 4, pp. 513-554, 1988. doi:10.1145/48022.48023

[8] R. J. Back and K. Sere. Action Systems with Synchronous Communication. In E.R. Olderog (ed), Proceed-
ings of PROCOMET’94 – Programming Concepts, Methods, and Calculi, pp. 107-126. IFIP Transactions
A-56, North Holland, 1994.

[9] R. J. Back and K. Sere. From Action Systems to Modular Systems. In Software - Concepts and Tools, Vol.
17, pp. 26-39, Springer-Verlag, 1996. doi:10.1007/3-540-58555-9 83

[10] R. J. Back and K. Sere. Stepwise Refinement of Action Systems. In J. L. A. van de Snepscheut (ed),
Proceedings of MPC’89 – Mathematics of Program Construction, pp. 115-138, 1989. doi:10.1007/3-540-
51305-1 7

[11] M. Butler, E. Sekerinski, and K. Sere. An Action System Approach to the Steam Boiler Problem. In J.-R.
Abrial, E. Börger and H. Langmaack (eds), Formal Methods for Industrial Applications: Specifying and
Programming the Steam Boiler Control. Lecture Notes in Computer Science, Vol. 1165, Springer-Verlag,
1996. doi:10.1007/BFb0027234

[12] M. Butler, J. Grundy, T. Långbacka, R. Ruksenas, and J. von Wright. The Refinement Calculator: Proof
Support for Program Refinement. In L. Groves and S. Reeves (eds), Proceedings of FMP’97 - Formal
Methods Pacific. Discrete Mathematics and Theoretical Computer Science Series, pp. 40-61, Springer-
Verlag, 1997.

[13] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley, 1988. ISBN-13:
978-0201058666

[14] E. W. Dijkstra. A Discipline of Programming. Prentice Hall International, 1976. ISBN-13: 978-
0132158718

[15] E. Hedman, J. N. Kok, and K. Sere. Coordinating Action Systems. In D. Garlan and D. Le Métayer
(eds), Proceedings of Coordination’97 – Coordination Languages and Models, Lecture Notes in Computer
Science, Vol. 1282, pp. 302-319, Springer-Verlag, 1997. doi:10.1007/3-540-63383-9 88

[16] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. In Communications of the ACM, Vol.
12, No. 10, pp. 576-580, 583, 1969. doi:10.1145/363235.363259

[17] C.A.R. Hoare. Communicating Sequential Processes. In Communications of the ACM, Vol. 21, No. 8, pp.
666-677, 1978.

http://dx.doi.org/10.1007/s10009-010-0145-y
http://dx.doi.org/10.1007/3-540-51285-3_42
http://dx.doi.org/10.1007/3-540-52559-9_61
http://dx.doi.org/10.1007/3-540-52559-9_61
http://dx.doi.org/10.1145/800221.806716
http://dx.doi.org/10.1145/48022.48023
http://dx.doi.org/10.1007/3-540-58555-9_83
http://dx.doi.org/10.1007/3-540-51305-1_7
http://dx.doi.org/10.1007/3-540-51305-1_7
http://dx.doi.org/10.1007/BFb0027234
http://dx.doi.org/10.1007/3-540-63383-9_88
http://dx.doi.org/10.1145/363235.363259

128 A Theory of Service Dependency

[18] L. Lamport. The Temporal Logic of Actions. In ACM Transactions on Programming Languages and Sys-
tems, Vol. 16, No. 3, pp. 872-923, 1994. doi:10.1145/177492.177726

[19] I. Maamria, M. Butler, A. Edmunds, and A. Rezazadeh. On an Extensible Rule-based Prover for Event-B.
In ABZ2010, Springer, 2010. doi:10.1007/978-3-642-11811-1 40

[20] Z. Manna and A. Pnueli. How to cook a temporal proof system for your pet language. In Proceedings
of the Tenth ACM Conference on Principles of Programming Languages, pp. 141-154, ACM New York,
1983. doi:10.1145/567067.567082

[21] R. Milner. A Calculus of Communicating Systems. Lecture Notes in Computer Science, Vol. 92, Springer-
Verlag, 1980. ISBN: 978-3-540-10235-9

[22] M. Neovius and K. Sere. Formal Modular Modelling of Context-Awareness. In F. S. de Boer, M. M. Bon-
sangue and E. Madelain (eds), Formal Methods for Components and Objects, 7th International Sympo-
sium, FMCO 2008. Lectures Notes in Computer Science, Vol. 5751, pp. 102-118, Springer-Verlag, 2008.
doi:10.1007/978-3-642-04167-9 6

[23] L. Petre. Modelling with Action Systems. TUCS Dissertations No 69, November 2005. ISBN: 951-29-
4018-3

[24] G.-C. Roman and P. J. McCann. A Notation and Logic for Mobile Computing. In Formal Methods in
System Design, Vol. 20, No. 1, pp. 47-68, 2002. doi:10.1023/A:1012908529306

[25] M. Rönkkö, E. Sekerinski, and K. Sere. Control Systems as Action Systems - A Case Study. In R.
Smedinga, M.P. Spathopoulus, P. Kozák (eds), Proceedings of WODES’96 – Workshop on Discret Event
Systems, IEEE Press, pp. 362-367, 1996.

[26] E. Sekerinski. Deriving Control Programs by Weakest Preconditions. TUCS Technical Reports, No. 4,
1996.

[27] E. Sekerinski and K. Sere, A Theory of Prioritizing Composition. In The Computer Journal, Vol. 39, No 8,
pp. 701-712. The British Computer Society, Oxford University Press, 1996. doi:10.1093/comjnl/39.8.701

[28] K. Sere and M. Waldén. Data Refinement of Remote Procedures. In M. Abadi and T. Ito (eds.), Proceedings
of TACS’97 – International Symposium on Theoretical Aspects of Computer Software, Lecture Notes in
Computer Science, Vol. 1281, pp. 267-294, Springer-Verlag, 1997. doi:10.1007/PL00003935

[29] M. Spivey. The Z Notation: A Reference Manual (Second Edition). Prentice Hall International Series in
Computer Science, 1992.

[30] M. Waldén and K. Sere. Reasoning about Action Systems using the B-Method. In Formal Methods in
System Design, No 13, pp. 5-35. Kluwer Academic Publishers, 1998. doi:10.1023/A:1008688421367

http://dx.doi.org/10.1145/177492.177726
http://dx.doi.org/10.1007/978-3-642-11811-1_40
http://dx.doi.org/10.1145/567067.567082
http://dx.doi.org/10.1007/978-3-642-04167-9_6
http://dx.doi.org/10.1023/A:1012908529306
http://dx.doi.org/10.1093/comjnl/39.8.701
http://dx.doi.org/10.1007/PL00003935
http://dx.doi.org/10.1023/A:1008688421367

	1 Introduction
	2 Action Systems - a Revisit
	2.1 Preliminaries
	2.2 The execution model
	2.3 More deterministic composition operators

	3 The Dependency Operator
	4 Refinement
	5 A Train Example
	6 Conclusions
	8 Bibliography

