
J. Derrick , E.A. Boiten, S. Reeves (Eds.):
Refinement Workshop 2011.
EPTCS 55, 2011, pp. 20–36, doi:10.4204/EPTCS.55.2

Bigraphical Refinement∗

Gian Perrone Søren Debois Thomas Hildebrandt

Programming, Logic and Semantics Group
IT University of Copenhagen

Copenhagen, Denmark
{gdpe,debois,hilde}@itu.dk

We propose a mechanism for the vertical refinement of bigraphical reactive systems, based upon a
mechanism for limiting observations and utilising the underlying categorical structure of bigraphs.
We present a motivating example to demonstrate that the proposed notion of refinement is sensible
with respect to the theory of bigraphical reactive systems; and we propose a sufficient condition for
guaranteeing the existence of a safety-preserving vertical refinement. We postulate the existence of
a complimentary notion of horizontal refinement for bigraphical agents, and finally we discuss the
connection of this work to the general refinement of Reeves and Streader.

1 Introduction

Refinement is the process of gradually developing a specification towards a suitable implementation,
through a series of steps in which more concrete entities are shown to be as acceptable as the more
abstract entities preceding it in the chain of refinement steps, based upon what may be observed of
these entities. The utility of this method has been demonstrated through many years of application in
academic and industrial settings. In this paper we attempt to bring these well-studied benefits to a new
class of systems — namely, bigraphical reactive systems. We focus primarily on vertical refinement [3],
where the aim is to relate models constructed with respect to different semantics.

A bigraphical reactive system [21, 19] (BRS) is a model construction paradigm proposed by Milner
and colleagues that aims to enable modelling of interactive systems within a cohesive theoretical frame-
work. While the primary long-term focus of bigraphs is on models of ubiquitous and context-aware
systems [1], they have demonstrated value in other areas such as biological applications [15, 5, 6] and
business processes [12, 25]. Bigraphical reactive systems also capture the syntactic and semantic struc-
ture of many formalisms associated with process modelling, providing a unifying meta-calculus within
which to relate many of these well-developed theories. Already encodings into various bigraphical re-
active systems have been demonstrated for amongst others the λ -calculus [20], CCS [19], the Mobile
Ambients calculus [14], several variants of the π-calculus [14, 4, 8], Fusion Calculus [10] and Petri Nets
[16].

Bigraphical reactive systems consist of two graphs (hence the name bigraph) modelling the orthog-
onal notions of locality and connectivity which together capture the static structure of a system, and a
set of reaction rules that may selectively rewrite portions of the bigraph in order to capture the dynamic
behaviour of that system. We will introduce bigraphs and bigraphical reactive systems (assuming no
prior knowledge) in Section 2.
∗This work funded in part by the Danish Research Agency (grant no.: 2106-080046) and the IT University of Copenhagen

(the Jingling Genies project). The first author would like to thank Prof. Steve Reeves and Dr. David Streader for hosting him
as a visiting researcher at the University of Waikato during the early stages of this work, and for helpful discussions during this
time.

http://dx.doi.org/10.4204/EPTCS.55.2

G. Perrone, S. Debois & T. Hildebrandt 21

(a) Place Graph (b) Link Graph

Figure 1: The constituent place (1a) and link (1b) graphs that form a particular bigraph.

The usual notion of “observation” in a BRS is derived from the above notion of dynamic behaviour: a
BRS gives rise to an LTS, the labels of which are simply the least context enabling reaction. The present
effort towards refinement takes this connection between static structure and dynamic behaviour to heart,
and attempts to short-circuit the LTS in favour of a more directly structural mechanism of refinement.
This makes sense uniquely for bigraphs exactly because of the close correspondence between structure
and dynamics. The primary contribution of this paper is to introduce such a mechanism as a small step
towards bringing the well-established benefits of refinement to models constructed within the bigraph
formalism. Additionally, we give a sufficient condition for an abstraction functor (Section 4) to give rise
to a safe refinement, and show that this notion of refinement corresponds with (and indeed, in part is an
instance of) the general refinement of Reeves and Streader [23, 24].

1.1 Structure of the paper

The remainder of this paper is structured as follows: We review bigraphs (assuming no prior knowledge)
in Section 2. In Section 3 we introduce a running example that will be used to illustrate all of the concepts
presented. In Section 4 we present our definition of vertical refinement for bigraphical reactive systems
and show that the proposed refinement preserves safety properties with respect to the abstraction functor
upon which it is parametrised. Additionally, we present a sufficient condition for an abstraction functor
to give rise to a safe refinement. Finally, in Section 5 we discuss a candidate horizontal refinement
mechanism for bigraphical agents, derived from the general refinement of Reeves and Streader [23, 24],
and discuss the connection of this work to general refinement.

2 Bigraphical Reactive Systems

Bigraphical reactive systems is a graphical formalism emphasising the orthogonal notions of locality
and connectivity. A BRS is a category of bigraphs and a set of reaction rules that may be applied to
rewrite these bigraphs. We provide here a short, informal introduction to the anatomy of a BRS without
assuming any prior knowledge. For a complete treatment of bigraphs and BRSs, readers are referred to
[21, 19].

22 Bigraphical Refinement

Figure 2: The bigraph resulting from the combination of the place and link graphs in Fig. 1a and Fig.
1b. This bigraph is an agent of the BRSnoti f y example BRS with signature Σ = {Z,U,F,N} that we will
introduce in Section 3.

2.1 Static Structure

The most basic construction within the static fragment of bigraphical reactive systems is the node. This
follows from normal definition of a node within graph theory. To nodes we assign controls, which are
drawn from a signature Σ, the set of controls. We sometimes use a convenient shorthand such that we
may refer to a node as being an “X node”, by which we really mean a node that has been assigned the
control X. Nodes may be nested to arbitrary depth to form a tree that is known as the place graph (Fig.
1a). We represent this nesting by containment, as shown in Fig. 2. We distinguish between controls
of two kinds: active and passive ones; we shall see later how active controls admit dynamic behaviour
beneath them whereas passive controls do not. Every tree of nodes is contained by a region (the dotted
border in Fig. 2). Bigraphs permit multiple regions (a place forest).

To controls (and therefore nodes) we assign a fixed arity, which defines the number of ports that a
given node possesses. A port is a connection point on a node; it must always be connected to other such
connection points by the link graph. The link graph (Fig. 1b) is an undirected hypergraph over the ports
of the nodes of the place graph. A single (hyper) edge may connect arbitrarily many ports on different
nodes.

Within the place graph, in addition to regions and nodes, there may also exist holes (known as sites
in some bigraphs literature), which are expressed visually as shaded grey nodes (as in Fig. 3a). A hole is
a location into which a region of another bigraph may be inserted by composition. It may be helpful to
think of bigraphs with holes as “contexts” and those without as “processes” or “terms”.

Present also within Fig. 3 are names that represent (named) points at which edges of the link graph
may be fused to form a single (hyper) edge. In the intuition of contexts and terms, names of bigraphs
roughly correspond to unstructured names, as in the π-calculus. By convention, outer names are drawn
upwards, and inner names are drawn downwards. Outer names are analogous in the link graph to regions
in the place graph, while inner names are analogous to holes. Through composition of link graphs, sets
of inner and outer names that agree are matched and joined.

Definition 1 (Interface). An interface is a pair 〈 j,X〉 where 0 ≤ j, indicating the number of holes or
regions, and X is a set of (inner or outer) names.

Definition 2 (Bigraph). A bigraph is a 5-tuple:

(V,E,ctrl, prnt, link) : 〈k,X〉 → 〈m,Y 〉

G. Perrone, S. Debois & T. Hildebrandt 23

(a) A : 〈2,{x,y}〉 → 〈1, /0〉 (b) B : 〈0, /0〉 → 〈2,{x,y}〉 (c) A◦B : 〈0, /0〉 → 〈1, /0〉

Figure 3: The composition of two bigraphs A and B with their respective interfaces

Here V is the set of nodes, E is the set of hyperedges, ctrl is the control map that assigns controls (and
therefore arities) to nodes, prnt is the parent map that defines the tree structure in the place graph and
link is a link map that defines the link structure. The inner interface 〈k,X〉 indicates that the bigraph has
k holes, and a set of inner names X. The outer interface 〈m,Y 〉 indicates that the bigraph has m regions
and a set of outer names Y .

Definition 3 (Composition). Bigraphs are composed separately in the place and the link graphs. The
interfaces of the bigraphs must be compatible in order for composition to be defined, i.e., the sets of
names and the number of regions/holes must be the same. Fig. 3 illustrates the composition A ◦B of
bigraphs A and B. In the place graph, we insert contents of the left-most region of B into hole 0 of A, and
the contents of the right-most region of B into hole 1 of A. Regions are numbered left-to-right: we insert
the contents of region 0 into hole 0 etc. In the link graph, links are spliced together where there is name
agreement between the inner and outer names of the bigraphs being composed. We may refer to A in this
case as being a context into which B is inserted.

Definition 4 (Tensor Product). There exists an additional way in which to combine bigraphs, namely
the tensor product A⊗B, where A and B are bigraphs. Where A and B do not share any inner or outer
names, this just involves juxtaposing their place graphs, taking the union of their names, and increasing
the indices of holes in B to make them unique with respect to A. This definition obscures some technical
details. It is recommended that readers interested in following the proofs in Section 4.1 refer to [21] for
a precise definition.

2.2 Notation

We introduce a rudimentary term language for representing bigraphs that should be familiar to most
readers accustomed to the notation for process algebras. The present language is not complete, i.e.,
it cannot express every bigraph, but it can express the ones we will use in examples. It is a subset
of a complete such language [18]. We will use this term language in conjunction with the graphical
representation used in Fig. 2.

Definition 5 (Bigraph Term Language).

p ::= κ(n1, . . . ,nar(κ)).p | p| p | −i | nil

Where κ ∈ Σ.

24 Bigraphical Refinement

(a) κ(n1, . . . ,nar(κ)).p (b) a.−0 (c) a.nil|b.nil

Figure 4: Example bigraph terms with their associated graphical representation

The term language requires some explanation — κ(n1, . . . ,nar(κ)).p is prefixing (Fig. 4a), indicating
a node assigned the control κ . The arity of κ is given by ar(κ). The sequence n1, . . . ,nar(κ) are the ports
of the node. Finally, the suffix p is the term that is nested inside this node. p| p is juxtaposition of terms
(Fig. 4c), placing them as siblings within the place graph. −i is a hole (Fig. 4b), indexed by some integer
0≤ i. Finally, nil is the nil terminator which is simply the empty graph in the graph representation.

2.3 Dynamics

Having introduced the basic structure of bigraphs, the static portion of a BRS, we now introduce the
reactive portion of a BRS that imbues a system with dynamic behaviour. This relies on reaction rules
that define rewriting that may be applied to a bigraph. A reaction rule (R,R′,η) consists of a redex R,
a reactum R′ and an instantiation map η , where the redex is a bigraph to be matched and the reactum
is the bigraph with which the matched portion of the bigraph should be replaced. The instantiation map
indicates how parameters matched by holes in the redex should manifest in the reactum after matching.
Where the instantiation map is unambiguous (e.g., it is the identity map), we may just write R→ R′.
Definition 6 (Reaction). Matching of a particular reaction rule (R,R′,η) against a particular bigraph G
and rewriting it into some other bigraph G′ proceeds by decomposition of the bigraph into a context C,
a match R (the redex), and a set of parameters d (for portions of the bigraph that are matched by holes
in the redex). This decomposition is then reassembled with the reactum R′ replacing the matched portion
of G, with select parts of d substituted into the holes of R′, forming the resulting bigraph G′.

G =C ◦R.d→C ◦R′.η(d) = G′

We require further that the context C be active, that is, that every control above holes of C are active (see
CCS example below).

We have suppressed details of the handling of names here by using the notation “R.d”; we have also
suppressed details in the phrase “with select parts of d” and not explained the use of the map η . We refer
the reader to [21] or [19] for details. The present paper can be read without understanding these details,
as reaction in our examples always take the form of the following special case:

a =C ◦R◦d→C ◦R′ ◦d .

Definition 7 (Bigraphical Reactive System). We use the notation BG(Σ,R) to denote a bigraphical
reactive system with a signature Σ (the set of constituent controls), and a set of reaction rules R. More
formally, BG(Σ,R) is an spm category [21] in which the objects are interfaces and the arrows are
bigraphs (which we refer to as agents of BG(Σ,R)), equipped with a set of reaction rules R.

G. Perrone, S. Debois & T. Hildebrandt 25

Figure 5: The process send(a).recv(b).nil| recv(a).send(b).recv(a).nil

Figure 6: The RCCS reaction rule

As an example, we introduce a very simple calculus in the style of the Calculus of Communicating
Systems (CCS) [17], where we first give an encoding of the terms as bigraphs, and then define a reaction
rule that imbues these terms with dynamic behaviour. Interested readers are referred to [21] for a real
encoding of CCS.

Our calculus defines sequencing (t.P), parallel composition (t | t), and sending and receiving on
a named channel (“x!” and “y?”, respectively, where x and y are channel names). The encoding of
these constructs into the bigraphical term language in Definition 5 is straightforward — these primitives
are already defined in terms of the bigraphical term language, except for “send” and “receive” which
we straightforwardly encode as nodes with controls send and recv, each with arity 1. Fig. 5 gives
a graphical representation of the process send(a).recv(b).nil| recv(a).send(b).recv(a).nil. According
to our encoding, sequencing is represented by prefixing, parallel composition by juxtaposition, actions
(such as send and recv) by passive controls, and channels by outer names. This is by no means the only
encoding possible, but this technique is one of the most straightforward.

Having developed the encoding of our calculus within bigraphs, we can give a reaction rule RCCS

that will (through repeated rewriting) reduce the term as far as possible based upon agreement between
parallel processes as to which action should be taken next:

RCCS
def
= recv(x).−0|send(x).−1→−0|−1

This rule is presented graphically in Fig. 6. It essentially “peels off” the outer layers of the terms
where a send and a recv action are linked to the same channel name, rewriting the entire bigraph to the
juxtaposition of whatever was nested inside those send and recv controls (i.e. the parts of the bigraph
matched by the holes in the redex). As an example, the CCS reaction a!.b?|a?.c!→ b?|c! becomes the

26 Bigraphical Refinement

bigraphical reaction

send(a).recv(b).nil| recv(a).send(c).nil→ recv(b).nil|send(c).nil

3 Example

Aside from their role as a meta-calculus for the study of process modelling formalisms, bigraphical
reactive systems are intended to provide a basis upon which to construct models of the kinds of context-
aware and ubiquitous systems that are becoming increasingly popular. Consequently, we introduce an
example based on modelling a context-aware social network notification system, such that a user is
notified whenever a friend is in the same physical location.

We will give this example without using the link-graph part of bigraphs to keep it simple. We em-
phasise that the example generalises to a more interesting one in which connectivity counts — where
notification is dependent not only on physical co-location but also on whether or not users and friends
are virtually connected through their laptops and phones.

We will subsequently extend this to a system in which not all friends, but rather only particular
designated “special friends”, trigger notifications, and show that (and in what sense) the latter system is
a refinement of the former.

The example system captures the dynamics of some physical environment (consisting of discrete
zones within which we can detect the presence of a user by some mechanism that is outside the scope of
this model) in which a user’s friends move from zone to zone. When one of the user’s friends is present
in the same zone as the user, a notification is given, modelled by adding a “notification” node to the zone.

3.1 The abstract system: BRSnoti f y

We first define controls Z (Zone), U (User), F (Friend), N (Notification) and S (Special friend marker).
Every control has arity 0 and every control is active; altogether we have a signature

ΣN = Z,U,F,N

The bigraphs of our systems are thus arbitrary trees over these controls. We shall of course be interested
only in those where Z are inner nodes and the remaining controls are leaves.

With these particular bigraphs in mind, we give reaction rules reconfiguring a bigraph by allowing
nodes with control F — friends — to move between nested zones as follows. These rules are illustrated
graphically in Fig. 7.

M1 = Z.(F|−0)|Z.−1 → Z.−0|Z.(F|−1)

M2 = Z.(Z.(F|−0)|−1) → Z.(Z.−0|F|−1)

M3 = Z.(Z.−0|F|−1) → Z.(Z.(F|−0)|−1)

Reaction rules are here given on the form “R→ R′” rather than the more precise (R,R′,η); recall from
the above introduction to bigraphs that we use the former form whenever η is inconsequential (in this
case, it is the identity map).

We extend the movement rules M with an additional rule R1 for notifications to be issued when a U
(user) and F (friend) node exist within the same zone. This reaction rule is illustrated in Fig. 8.

ΣN = ΣM ∪{U,N}
R1 = Z.(U|F|−0) → Z.(U|F|N|−0)

G. Perrone, S. Debois & T. Hildebrandt 27

(a) M1

(b) M2

(c) M3

Figure 7: Reaction rules M1, M2 and M3 that allow f riend nodes to move between zones.

Let BRSnoti f y be the bigraphical reactive system formed by the addition of the reaction rule R1 to the
set of movement rules M:

BRSnoti f y = BG(ΣN ,M∪{R1})

3.2 The concrete system: BRSselective

We now create a second bigraphical reactive system, this one refining (both intuitively and in a sense to
be made precise) the system BRSnoti f y just introduced. In this new system, instead of simply notifying
whenever any friend is present in the same zone as the user, we wish only to issue a notification in the

Figure 8: Reaction rule R1

28 Bigraphical Refinement

Figure 9: Reaction rule R2

presence of a particular designated friend, distinguished by the presence of an S (special friend marker)
inside the friend node in question. Consequently, we define the set of controls ΣS for BRSselective to
include (in addition to the controls of ΣN) the S control. The modified reaction rule R2 is presented
graphically in Fig. 9.

ΣS = ΣN ∪{S}
R2 = Z.(U|F.S|−0)→ Z.(U|F.S|N|−0)

BRSselective = BG(ΣS,M∪{R2})

At an intuitive level, this BRS refines the one of the previous sub-section. In the following section, we
shall define exactly in what sense this is the case.

4 Vertical BRS Refinement

We recall the distinction here between horizontal and vertical refinement. Vertical refinement is con-
cerned with moving between differing levels of abstraction, or indeed completely independent modelling
languages, whereas horizontal refinement instead aims to relate models specified at the same fundamen-
tal level of abstraction, and within the same modelling setting. When we refer to the refinement of a
BRS, we mean a vertical refinement, indeed, this is the only meaningful interpretation, as a BRS is the
category consisting of (infinitely) many actual agents of the same general shape. We will later return
(briefly) to what it would mean for an agent to be refined, that is, to a horizontal refinement between two
agents of the same BRS (each of which would be bigraphs, representing — for example — two CCS
processes).

To summarise the distinction between horizontal and vertical refinement in the setting of BRSs: In
the former case, we are talking about what we can observe of all such agents, whereas in the latter we are
referring to what we can observe of the behaviour of a single agent. In the present section, we consider
vertical refinement; we comment on horizontal refinement in the subsequent section.

4.1 Safe refinements

First, what observations can you make of bigraphical agents? While the notion of a trace is familiar
within refinement literature, within bigraphical reactive systems it is unclear exactly what might corre-
spond to an action within the usual definition of a trace. Consequently, we formulate a trace of a BRS
such that each element of the trace is a bigraphical agent (i.e., a bigraph of that BRS). Therefore the no-
tion of trace is not one of a system exhibiting behaviour in the form of some observable actions, rather,
it is the entire state of the model as it changes over time such that every element of the trace is a bigraph,
related to the next element of the trace by the application of some reaction rule. While this may seem

G. Perrone, S. Debois & T. Hildebrandt 29

very crude at first glance, it is important to remember that the dynamic behaviour of a bigraph is derived
from reaction rules and the structure in a perhaps more direct manner than in many other calculi. As
such, it makes sense to consider the abstract specification to comprise, by itself, an entire observation —
cf. the structure of agents of BRSnoti f y above.

If an observation is a complete agent of the abstract specification, what then is an observation of an
agent of the concrete system? We leave that to the system constructor, merely insisting that the observa-
tions one makes of concrete implementation agents must somehow be a function of their structure. Thus,
observations of concrete agents are given by a structure-preserving map from concrete agents to abstract
ones. In the parlance of category theory, this is called a “functor”, a functor that we shall in this instance
call an abstraction functor.

Definition 8 (Trace, observation). For a given BRS A, a trace is a (possibly infinite) sequence of bi-
graphs (agents) 〈a1,a2, . . .〉, such that for each ai and ai+1 in the sequence there is a reaction ai →
ai+1. If s = 〈s1, . . . ,sn〉 and t = 〈t1, . . .〉 are traces and sn → t1, we may form the composite trace
s; t = 〈s1, . . . ,sn, t1, . . .〉. In this case we say that t is an extension of s. We write Tr(A) for the set of
all traces of a given BRS A. If F : A→ A′ is a functor and 〈a1,a2, . . .〉 ∈ Tr(A) is a trace of A, we apply
F pointwise to obtain a trace F(t) = 〈F(a1),F(a2), . . .〉.

Note that Tr(x) is by definition prefix-closed; that is, for any trace t ∈ Tr(x), every prefix t ′ of t is
also in Tr(x).

Of course, not just any functor will do: to have a refinement, the dynamic behaviour of the concrete
implementation must be allowed by the dynamic behaviour the abstract specification allows on its agents,
the observations. Altogether, our notion of refinement follows from the usual trace equality, however,
because a BRS tends to permit too much observation, our bigraphical notion of refinement requires as a
side condition that there exist an abstraction functor F : C→ A such that for any trace 〈c0,c1, . . .〉, F gives
rise to a trace 〈F(c0),F(c1), . . .〉. We present vertical refinement as the conjunction of two constituent
definitions, separating the preservation of orthogonal safety and liveness properties through refinement.

Definition 9 (Safe Vertical Refinement).

A
safe

vF C def
= F(Tr(C))⊆ Tr(A)

This definition satisfies the “reduction of nondeterminism” role of refinement, in that it is always
valid to simply pick one alternative and implement it in C when presented with nondeterministic choice
in A.

Lemma 1. Safe Vertical Refinement is transitive and reflexive for the identity functor.

Proof. Reflexivity is trivial. Suppose A
safe

vF C and C
safe

vG D. Then FG(Tr(D))⊆ F(Tr(C))⊆ Tr(A).

We proceed to illustrate safe refinement using the two BRSs above, then give a sufficient condition
for an abstraction functor to yield a safe refinement.

Recall our claim that BRSselective, which issues notifications upon co-location with “special friends”
is a refinement of BRSnoti f y, which does so upon co-location with any friend. The latter employs an
additional control S. This indicates that our abstraction functor must (at the very least) ensure that all
nodes of control S must be hidden, renamed or removed so as to ensure that the codomain of F is
BRSnoti f y (i.e. that F can transform any agent of BRSselective into a valid agent of BRSnoti f y).

By this reasoning, we arrive at an abstraction functor “pattern” that is likely applicable to many other
BRSs. We call this the hiding functor. Its essential function is to simply hide, for a given signature Σ,

30 Bigraphical Refinement

all nodes that have been assigned controls from some particular set of controls H. This includes joining
any children of nodes that will be hidden to parents that will remain visible after the application of the
hiding functor. For our example, the hiding set H = {S} (i.e. the designated “special” friend control).

Definition 10 (Hiding Functor). We define an abstraction functor FΣ,H : BG(Σ)→ BG(Σ \H) for hid-
ing, parametrised by Σ, the signature of the “implementation” BRS, and H, a set of controls to be
hidden. On objects, this functor is the identity. On arrows, its action is FΣ,H((V,E, prnt,ctrl, link)) def

=
(V ′,E,ctrl′, prnt ′, link), where

– V ′ = {v ∈V |ctrl(v) /∈ H}
– ctrl′ = ctrl �V ′, and

– prnt ′(l) def
=

{
prnt(l) where ctrl(prnt(l)) /∈ H
prnt ′(prnt(l)) otherwise

This “hiding functor” is an abstraction functor for our example system. Recalling the definition of a
bigraphical agent (and therefore of an arrow in the category BRSnoti f y or BRSselective) given in Definition
2, the purpose of this hiding functor is to exclude any nodes that have a control that is in the set of
hidden controls H, exclude these controls from the control map ctrl, and recursively recreate the parent
map prnt such that any children of a node with a control in H is attached to its most immediate place-
graph ancestor that is not marked with a control in H. We call the abstraction functor for our example
notification system A f riend , which is defined as the hiding functor above, instantiated with H = {S}.

While the hiding functor has the flavour of a forgetful functor — it dispenses with structure — it
cannot reasonably be called so as it is not faithful. Many distinct configurations (e.g. special-friend
controls) will map to the same bigraph. This is a technical distinction only; we use “hiding” in no special
sense, except as a name for abstraction functors of this general shape.

It is easy to prove that with A f riend as abstraction functor, BRSselective is indeed a safe refinement of
BRSnoti f y. However, instead of proving so directly, we shall instead provide a general theorem about
abstraction functors: When they preserve reaction, and in particular, when they preserve just reaction
rules, they give rise to safe refinement.

Theorem 1. Let F : C→ A be an abstraction functor. If F preserves reaction, that is, if c→ c′ implies

F(c)→ F(c′), then A
safe

vF C.

Proof. Immediate from Definition 9 of safe refinement.

From this theorem it becomes apparent that an abstraction functor may be any functor at all that
obeys this property.

The terminology deceives, here: The guarantee that the concrete system has no more behaviour than
the abstract one is in fact upheld by the abstraction functor preserving behaviour.

Of course, proving that a functor preserves reaction need not at all be easy. Fortunately, we can
exploit the connection between static structure and dynamic behaviour of bigraphs: a functor which
preserves the reaction rules, structurally, will also preserve (dynamic) reaction, and will thus be a safe
refinement.

Theorem 2 (Safe Abstraction Functors). Let A = BG(Σ,R) and C = BG(Σ′,R ′) be BRSs. A functor

F : C→ A yields a safe vertical refinement A
safe

vF C if it satisfies the following conditions.

1. It preserves and respects tensor.

2. It preserves active contexts.

G. Perrone, S. Debois & T. Hildebrandt 31

3. It preserves reaction rules: For any reaction rule (R,R′,ρ) ∈R ′ (a) the F-image (F(R),F(R′),ρ)
is a rule in R; and (b) for any parameter d of that rule, ρ(F(d)) = F(ρ(d)).

Proof. Suppose c1, . . . ,cn is a trace of C. It is sufficient to prove that for each i < n, there is a reaction
F(ci)→ F(ci+1). We know that ci→ ci+1, so there is some reaction rule (R,R′,ρ) ∈R ′, context E of C,
and some set of names Z s.t.

ci = E ◦ (R⊗1Z)◦d → E ◦ (R′⊗1Z)◦ρ(d) = c′i

Where ρ(d) is the instantiation of parameters (see [21] for details). But then, because (F(R),F(R′),ρ)
is a rule of R, we compute and find ai = F(ci) = F(E ◦ (R⊗1Z)◦d) = F(E)◦ (F(R)⊗1F(Z))◦F(d)→
F(E)◦(F(R′)⊗1F(Z))◦ρ(F(d))=F(E)◦(F(R′)⊗1F(Z))◦F(ρ(d))=F(E ◦(R′⊗1Z)◦ρ(d))=F(c′i)=
a′i

We remark that the three conditions of this Theorem appear to be good candidates for a definition of
a morphism of parametric reactive systems, as suggested in the forthcoming [7].

It is straightforward to verify that for our example BRSs, BRSselective and BRSnoti f y, the hiding functor
does in fact satisfy the three conditions of this Theorem. Thus we have the following corollary:

Corollary 1. BRSselective is a sound refinement of BRSnoti f y with respect to the abstraction functor A f riend ,
that is,

BRSnoti f y
safe

vA f riend BRSselective

The
safe

v relation captures safety properties of the system being refined (i.e. it does not permit a
refined model any undesirable extra behaviour, provided that the abstraction functor does not hide any
“undesirable” behaviour). However, it does not guarantee that the system does anything at all (i.e. an
empty trace is a safe refinement of any system). To guarantee that some additional liveness properties
are preserved by refinement, it is necessary to extend our definition.

4.2 Live refinements

In order to guarantee that a given concrete system actually exhibits any of the desirable behaviour of
the abstract system that it refines, we must define a notion of liveness. Whereas in a process algebraic
setting it might be possible to rely on the presence of a particular output (or all possible outputs) to define
“desired” observable behaviour, within a bigraphical setting the lack of any primitive notions of “input”
or “output” (it is up to the system designer to define what these concepts mean with respect to a particular
model) means that it is necessary to explicitly choose such “desirable” behaviours.

In the absence of an intrinsic notion of desirable behaviour, we further parametrise our notion of live-
ness, already parametric in terms of the abstraction functor F , on the admissible traces. This parametri-
sation on the notion of admissibility is akin to those used in [13, 11].

Definition 11 (Live Vertical Refinement). Let F : C→ A be an abstraction functor, let C ⊆ Tr(C) be
the admissible traces for C, and let similarly A ⊆ Tr(A), the admissible traces of A. We then say that
(C,C) is a live refinement of (A,A) iff for every trace s of Tr(C), whenever F(s) has an extension t ′ to an
admissible trace F(s); t ′ ∈ A, then there exists an extension s′ of s to an admissible trace s;s′ ∈ A with
F(s′) = F(t ′). In this case we write:

(A,A)
live

vF (C,C) .

32 Bigraphical Refinement

If we wish to take the admissible traces A of the abstract system A as canonical, we can define C as
those traces whose F-images are admissible.

Lemma 2. Live Vertical Refinement is transitive.

Proof. Suppose (A,A)
live

vF (C,C) and (C,C)
live

vG (D,D), and suppose FG(t);u′ ∈ A. Then u′ has a pre-
image s′ with G(t);s′ ∈ C; but then s′ has a pre-image t ′ with t; t ′ ∈ D.

Let us provide a suitable set of admissible traces for our running example, BRSnoti f y. For this BRS,
the obvious notion of admissibility (think “successful”) is when notification has occurred. So we define
the set of admissible traces as simply those finite traces in which the user has been notified, that is, in
which the final agent contains the notification control next to the user and his friend:

Snoti f ied
def
= {〈a1, . . . ,an〉 ∈ Tr(BRSnoti f y) | ∃C. an =C ◦ (U|F|N)}

For BRSselective, we transfer the notion of admissiblity:

Sselective
def
= {t ∈ Tr(BRSnoti f y) | F(t) ∈ Snoti f ied}

The selective system BRSselective under these notions of admissibility is in fact not a live refinement of
the original one BRSnoti f y. One might think so: After all, one can extend a trace to admissibility simply
by moving the special friend next to the user. Unfortunately, there need not be a special friend, and even
if there were, the abstract system might extend to admissibility by moving a (non-special) friend next to
the user. We will now show this in detail, thus proving of the following proposition:

Proposition 1. (BRSnoti f y,Snoti f y) 6
live

vA f riend (BRSselective,Sselective).

Proof. Consider an agent Z.(U|F) of BRSselective. Applying A f riend we find simply A f riend(Z.(U|F)) =
Z.(U|F), which succeeds after just one reaction

Z.(U|F)→ Z.(U|F|N)

by reaction rule R1. Now, if we actually had a live refinement, we should be able to match this reaction
in BRSselective. A simple inspection of the rules however prove that this is not possible.

This is, however, not a show-stopper, rather it is a welcome demonstration of the utility of such a
vertical refinement mechanism. We could remedy this situation by introducing into BRSselective an addi-
tional reaction rule that spontaneously adds the designated friend marker S to any friend F. However, this
seems to contradict the intuition of the model, so in this instance it is perhaps better to leave BRSselective
unmodified and accept that there are (known) conditions under which this BRS cannot progress to a
successful state.

Having defined our two separate (live and safe) refinement relations, we can complete the definition
of safe and live vertical refinement:

Definition 12 (Safe and Live Vertical Refinement).

(A,A)vF (C,C)
def
= A

safe

vF C ∧ (A,A)
live

vF (C,C)

G. Perrone, S. Debois & T. Hildebrandt 33

5 Discussion & related work

Having introduced our notion of vertical BRS refinement and shown the conditions under which it is safe
and live with respect to the chosen abstraction functor, we now discuss potential approaches to horizontal
refinement and related work. As it happens, both topics take us to the general refinement of Reeves and
Streader [23, 24].

General horizontal refinement recognises three components to refinement: entities E, i.e., the spec-
ifications and implementations being refined; contexts Ξ, which are the environment within which the
entities interact; and a user, which defines the possible observations O(−) that can be made of an entity
within a particular context. Refinement is then the relation

AvΞ,O C def
= ∀x ∈ Ξ.O([C]x)⊆ O([A]x) ,

where Ξ is the set of contexts, O is a map assigning observations to entities in contexts, and [−]x inserts
an entity into context x.

Interestingly, our proposed notion of bigraphical vertical refinement falls under the umbrella of gen-
eral horizontal refinement. Entities would be BRSs (like BRSnoti f y and BRSselective); contexts Ξ would
be just the trivial context, which leaves the entity unchanged. Finally, the observation map O is in our
case simply Tr(−), the map that takes a BRS to the traces observable of it. We do not think this is a
coincidence. It seems intuitive that horizontal refinement of an entire class of agents would correspond
to vertical refinement.

What about general vertical refinement, then? The definition of vertical refinement within the general
refinement framework [24] relies upon a notion of layers, representing a level of abstraction in terms of
(EL,ΞL,OL), where EL is a set of entities, ΞL is a set of contexts and OL is an observation function.
Vertical refinement is then defined in terms of a Galois-connection that interprets high-level entities as
low-level ones and vice versa.

The analogy of this notion with our use of an abstraction functor F : C → A should be apparent:
If we could find that functor F to be one of an adjoint pair, we would be in an analogous situation.
Unfortunately, it remains unclear if such an adjunction would retain the intuition behind the Galois-
connection of general vertical refinement: morphisms (i.e., bigraphs) do not measure approximation;
they represent the agents under investigation. In particular, the hiding functors used for the example in
the present paper do not appear to be part of adjoint pairs.

Leaving vertical refinement behind, what is then a good notion of horizontal refinement for bigraphs?
Returning to general horizontal refinement, bigraphs actually do come with a notion of entity, context,
and observation, namely agents (roughly, bigraphs with no holes/inner names), bigraph contexts (bi-
graphs with holes/inner names), and an LTS (given a BRS). We have in the present paper by-passed the
LTS as the notion of observation, following the bigraphical connection by structure and dynamics to its
extreme conclusion, using the structure of the abstract specification as the observations.

For horizontal refinement, this approach appears not sensible: We would after all be relating agents
of the same BRS. Important examples (like CCS-process refinement) cannot be expressed within this
particular approach, which should guide the development of other horizontal refinement strategies for
bigraphical agents. One obvious choice seems now to be the LTS intrinsic to BRSs. We have yet to
pursue this option; we caution that while BRS LTSs have been successful in recovering semantics of
various process algebras and other models of concurrency, it has been less successful in providing useful
semantics for pervasive systems, one of our key interests.

However, even leaving the question of suitable observations open, we would likely find a notion

34 Bigraphical Refinement

inside general horizontal refinement by taking

avO c def
= ∀x ∈ Ξ.O(x◦ c)⊆ O(x◦a) ,

where a and c are agents of some BRS B; Ξ is the set of contexts of that BRS, and O is some notion
of the semantics of agents of B, perhaps traces of the LTS of B, or perhaps some other notion. Indeed,
early indications are that this approach would be promising in recovering (for example) CCS process
refinement, contingent upon an appropriate notion of observation.

5.1 Related Work

Restricting the set of controls admissible under a certain control, or requiring a control to be present
is well-studied in bigraphs (e.g., [2, 21, 19, 22]). However, that study has invariably focused on en-
suring that the bigraphical LTS theory is retained under such additional constraints, and are thus only
superficially related to the present paper.

Goldsmith & Creese [9] explore an approach to refinement within bigraphs (and particularly within
Spygraphs, a specialisation of bigraphs). They observe the ease with which one may derive an LTS for
a BRS that is labeled exclusively by the trivial context id (equivalent to a τ action in a process algebraic
setting). These kinds of contextual labels are not helpful for analysis, as they capture no behaviour. Sim-
ilarly, the LTS semantics of bigraphs share the same intentionality inherent in the graphical presentation.
While Goldsmith & Creese suggest (to good effect in a CSP setting) that it may be appropriate to perform
hiding at a process-level before considering a transition into bigraphs, this would seem inappropriate for
many modelling situations (e.g., those which have no convenient term or process representation). While
the transformation on bigraphical reactive systems proposed by that work may give rise to a refinement
that is appropriate for some situations, we aim instead in this present work to work directly within the
structure of bigraphs so as to ensure generality. As bigraphs attempt to be both a modelling formalism
and a general meta-calculus for existing process calculi, it seems appropropriate that the notion of refine-
ment we introduce should be similarly general, in the hope that we may recover calculus-specific notions
of refinement within this general setting.

6 Conclusion

We have presented a vertical refinement mechanism for bigraphical reactive systems that adds refine-
ment to the toolbox of model builders working within a bigraphical setting. The addition of a sufficient
condition for safe abstraction functors, and the accompanying observation that it is the preservation of
behaviour with respect to reaction that guarantees that a refinement exhibits no undesirable behaviour,
provides a firm foundation from which to explore the limits and utility of this kind of vertical refinement.

We have pointed out a clear connection to the existing work on generalising refinement across many
modelling formalisms, and therefore it seems appropriate (given the application of BRSs as a meta-
calculus) that our notion of vertical refinement is also in some sense general. We leave for future work
the exploration of further mechanisms for horizontal refinement within a bigraphical setting, noting that
such a notion would very likely fall within the model of general refinement, and thus likely generalise
well to other modelling formalisms encoded within bigraphical reactive systems.

G. Perrone, S. Debois & T. Hildebrandt 35

References

[1] L. Birkedal, S. Debois, E. Elsborg, T. Hildebrandt & H. Niss (2006): Bigraphical models of context-
aware systems. In: Foundations of Software Science and Computation Structures, Springer, pp. 187–201,
doi:10.1007/11690634 13.

[2] L. Birkedal, S. Debois & T. Hildebrandt (2008): On the construction of sorted reactive systems. In: CONCUR
2008, Springer, pp. 218–232, doi:10.1007/978-3-540-85361-9 20.

[3] T. Bolusset & F. Oquendo (2002): Formal refinement of software architectures based on rewriting logic. In:
International Workshop on Refinement of Critical Systems: Methods, Tools and Experience, Grenoble.

[4] M. Bundgaard & V. Sassone (2006): Typed polyadic pi-calculus in bigraphs. In: Proceedings of the 8th ACM
SIGPLAN international conference on Principles and practice of declarative programming, ACM, pp. 1–12,
doi:10.1145/1140335.1140336.

[5] T.C. Damgaard, V. Danos & J. Krivine (2008): A Language for the Cell. Technical Report TR-2008-116, IT
University of Copenhagen.

[6] T.C. Damgaard & J. Krivine (2008): A Generic Language for Biological Systems based on Bigraphs. Tech-
nical Report TR-2008-115, IT University of Copenhagen.

[7] S. Debois: Computation in the Informatic Jungle. To appear. Draft available at http://www.itu.dk/
people/debois/pubs/computation.pdf.

[8] E. Elsborg, T. Hildebrandt & D. Sangiorgi (2009): Type Systems for Bigraphs. In Christos Kaklamanis &
Flemming Nielson, editors: Proceedings of the 4th International Symposium on Trustworthy Global Comput-
ing (TGC 2008), Lecture Notes in Computer Science 5474, Springer-Verlag, pp. 126–140, doi:10.1007/978-
3-642-00945-7 8.

[9] M. Goldsmith & S. Creese (2010): Refinement-Friendly Bigraphs and Spygraphs. In: 2010 8th
IEEE International Conference on Software Engineering and Formal Methods, IEEE, pp. 203–207,
doi:10.1109/SEFM.2010.25. Available at http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=5637430.

[10] D. Grohmann & M. Miculan (2007): Reactive Systems over Directed Bigraphs. In Luı́s Caires & Vasco Thu-
dichum Vasconcelos, editors: Proceedings of the 18th International Conference on Concurrency Theory
(CONCUR’07), Lecture Notes in Computer Science 4703, Springer-Verlag, pp. 380–394, doi:10.1007/978-
3-540-74407-8 26.

[11] M. Hennessy & C. Stirling (1985): The power of the future perfect in program logics. Information and
Control , pp. 23–52.

[12] T. Hildebrandt, H. Niss & M. Olsen (2006): Formalising Business Process Execution with Bigraphs and
Reactive XML. In Paolo Ciancarini & Herbert Wiklicky, editors: Proceedings of the 8th International Confer-
ence on Coordination Models and Languages (COORDINATION’06), Lecture Notes in Computer Science
4038, Springer-Verlag, pp. 113–129, doi:10.1007/11767954 8.

[13] T.T. Hildebrandt (1999): Categorical Models for Fairness and a Fully Abstract Presheaf Semantics of SCCS
with Finite Delay. In: CTCS’99, LNCS, doi:10.1016/S1571-0661(05)80311-1.

[14] O.H. Jensen (2006): Mobile Processes in Bigraphs. Available at http://www.cl.cam.ac.uk/~rm135/
Jensen-monograph.pdf.

[15] J. Krivine, R. Milner & A. Troina (2008): Stochastic bigraphs. Electronic Notes in Theoretical Computer
Science 218, pp. 73–96, doi:10.1016/j.entcs.2008.10.006.

[16] J. Leifer & R. Milner (2006): Transition systems, link graphs and Petri nets. Journal of Mathematical
Structures in Computer Science 16(6), pp. 989–1047, doi:10.1017/S0960129506005664.

[17] R. Milner (1980): A calculus of communicating systems. Springer-Verlag.

[18] R. Milner (2005): Axioms for Bigraphical Structure. Journal of Mathematical Structures in Computer Science
15(6), pp. 1005–1032, doi:10.1017/S0960129505004809.

http://dx.doi.org/10.1007/11690634_13
http://dx.doi.org/10.1007/978-3-540-85361-9_20
http://dx.doi.org/10.1145/1140335.1140336
http://www.itu.dk/people/debois/pubs/computation.pdf
http://www.itu.dk/people/debois/pubs/computation.pdf
http://dx.doi.org/10.1007/978-3-642-00945-7_8
http://dx.doi.org/10.1007/978-3-642-00945-7_8
http://dx.doi.org/10.1109/SEFM.2010.25
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5637430
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5637430
http://dx.doi.org/10.1007/978-3-540-74407-8_26
http://dx.doi.org/10.1007/978-3-540-74407-8_26
http://dx.doi.org/10.1007/11767954_8
http://dx.doi.org/10.1016/S1571-0661(05)80311-1
http://www.cl.cam.ac.uk/~rm135/Jensen-monograph.pdf
http://www.cl.cam.ac.uk/~rm135/Jensen-monograph.pdf
http://dx.doi.org/10.1016/j.entcs.2008.10.006
http://dx.doi.org/10.1017/S0960129506005664
http://dx.doi.org/10.1017/S0960129505004809

36 Bigraphical Refinement

[19] R. Milner (2006): Pure Bigraphs: Structure and Dynamics. Information and Computation 204(1), pp. 60–
122, doi:10.1016/j.ic.2005.07.003.

[20] R. Milner (2007): Local Bigraphs and Confluence: Two Conjectures: (Extended Abstract). In Roberto
Amadio & Iain Phillips, editors: Proceedings of the 13th International Workshop on Expressiveness
in Concurrency (EXPRESS 2006), Electronic Notes in Theoretical Computer Science 175, Elsevier,
doi:10.1016/j.entcs.2006.07.035.

[21] R. Milner (2009): The space and motion of communicating agents. Cambridge University Press.
[22] S. Ó Conchúir (2009): Kind Bigraphs. In Anthony Seda, Menouer Boubekeur, Ted Hurley, Micheal Mac an

Airchinnigh, Michel Schellekens & Glenn Strong, editors: Proceedings of the Irish Conference on the Math-
ematical Foundations of Computer Science and Information Technology (MFCSIT 2006), Electronic Notes
in Theoretical Computer Science 225, Elsevier, pp. 361–377, doi:10.1016/j.entcs.2008.12.086.

[23] S. Reeves & D. Streader (2008): General refinement, part one: interfaces, determinism and special refine-
ment. Electronic Notes in Theoretical Computer Science 214, pp. 277–307, doi:10.1016/j.entcs.2008.06.013.

[24] S. Reeves & D. Streader (2008): General refinement, part two: flexible refinement. Electronic Notes in
Theoretical Computer Science 214, pp. 309–329, doi:10.1016/j.entcs.2008.06.014.

[25] M. Zhang, L. Shi, L. Zhu, Y. Wang, L. Feng & G. Pu (2008): A Bigraphical Model of WSBPEL. In: Second
Joint IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering (TASE’08), IEEE Computer
Society, pp. 117–120.

http://dx.doi.org/10.1016/j.ic.2005.07.003
http://dx.doi.org/10.1016/j.entcs.2006.07.035
http://dx.doi.org/10.1016/j.entcs.2008.12.086
http://dx.doi.org/10.1016/j.entcs.2008.06.013
http://dx.doi.org/10.1016/j.entcs.2008.06.014

	1 Introduction
	1.1 Structure of the paper

	2 Bigraphical Reactive Systems
	2.1 Static Structure
	2.2 Notation
	2.3 Dynamics

	3 Example
	3.1 The abstract system: BRSnotify
	3.2 The concrete system: BRSselective

	4 Vertical BRS Refinement
	4.1 Safe refinements
	4.2 Live refinements

	5 Discussion & related work
	5.1 Related Work

	6 Conclusion

