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To derive a program for a given specification R means to find an artifact P that satisfies two condi-

tions: P is executable in some programming language; and P is correct with respect to R. Refinement-

based program derivation achieves this goal in a stepwise manner by enhancing executability while

preserving correctness until we achieve complete executability. In this paper, we argue that it is

possible to invert these properties, and to derive a program by enhancing correctness while preserv-

ing executability (proceeding from one executable program to another) until we achieve absolute

correctness. Of course, this latter process is possible only if we know how to enhance correctness.

1 Introduction: Correctness Preservation vs Correctness Enhancement

To derive a program from a specification R means to find an artifact P that satisfies two conditions: P is

executable in some target programming language; and P is correct with respect to R. Refinement-based

program derivation achieves this goal in a stepwise manner by enhancing executability (substituting the

specification notation by programming notation) while maintaining correctness until we achieve com-

plete executability. In this paper we consider an orthogonal approach, where these two properties are

inverted: We enhance correctness with respect to R while maintaining executability (all intermediate

artifacts are executable programs) until we achieve absolute correctness. Figure 1 illustrates how these

two iterative processes differ.

Program derivation by correctness enhancement was introduced in [7]. In this paper we build on

the discussions of [7] by: Considering more sample examples of program derivation by correctness

enhancement (this is the subject of section 3); in light of our experience with these sample examples,

sketching the first outlines of a methodology of correctness enhancement; considering the concept of

projection, and its impact on the discipline of program derivation by correctness enhancement; using

Paradigm Correctness Preservaation Correctness Enhancement

Initial Condition P = R P = abort

Invariant Assertion P is correct P is executable

Variant Function Enhance Executability Enhance Correctness

Exit Condition P is Executable P is Correct

Figure 1: Orthogonal Derivation Processes

http://dx.doi.org/10.4204/EPTCS.282.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


40 Programming Without Refinement

empirical evidence to analyze the evolution of program reliability through the correctness enhancement

process.

In section 2 we introduce some elements of relational mathematics, then we discuss the basic con-

cepts that we need in this paper. In section 3 we present a number of sample program derivations by

correctness enhancement, and in section 4 we analyze the reliability growth of the programs generated

in each example, using a simple experimental set-up. In section 5 we take stock of the experience gained

through the examples of section 3 to sketch the outlines of a programming methodology that is adapted to

correctness enhancement, and discuss the contrast between correctness enhancement and related proper-

ties. Finally, in section 6 we summarize and assess our findings, and sketch directions of future research.

2 Mathematics for Correctness

2.1 Relational Mathematics

We assume the reader familiar with elementary relational mathematics [4], and will merely present some

definitions and notations. We represent sets in a program-like notation by writing variable names and

associated data types; if we write S as: {x: X; y: Y;}, then we mean to let S be the cartesian

product S = X ×Y ; elements of S are denoted by s and the X - (resp. Y -) component of s is denoted by

x(s) (resp. y(s)). When no ambiguity arises, we may write x for x(s), and x′ for x(s′), etc. A relation R

on set S is a subset of S×S. Special relations on S include the universal relation L = S×S, the identity

relation I = {(s,s)|s ∈ S} and the empty relation φ = {}. Operations on relations include the set theoretic

operations of union, intersection, difference and complement; they also include the converse of a relation

R defined by R̂ = {(s,s′)|(s′,s) ∈ R}, the domain of a relation defined by dom(R) = {s|∃s′ : (s,s′) ∈ R},

and the product of two relations R and R′ defined by: R ◦R′ = {(s,s′)|∃s′′ : (s,s′′) ∈ R∧ (s′′,s′) ∈ R′};

when no ambiguity arises, we may write RR′ for R◦R′.
A relation R is said to be reflexive if and only if I ⊆ R, symmetric if and only if R = R̂, antisymmetric

if and only if R∩ R̂ ⊆ I, asymmetric if and only if R∩ R̂ = φ and transitive if and only if RR ⊆ R. A

relation R is said to be total if and only if I ⊆ RR̂ and deterministic if and only if R̂R ⊆ I (we then say that

R is a function). A relation R is said to be a vector if and only if RL = R; vectors have the form R = A×S

for some subset A of S; we use them as relational representations of sets. In particular, note that RL can

be written as dom(R)×S; we use it as a representation of the domain of R.

2.2 Program Semantics

Given a program p on space S, we define the function of p (denoted by P) as the set of pairs (s,s′) such

that if program p starts execution in state s it terminates in state s′; when no ambiguity arises, we may

refer to a program and its function by the same name, P.

Definition 1 Given two relations R and R′, we say that R′ refines R (abbrev: R′ ⊒ R or R ⊑ R′) if and

only if RL ⊆ R′L∧RL∩R′ ⊆ R.

This is the relational form of the usual interpretation of refinement as having a weaker precondition and

a stronger postcondition.

Definition 2 A program p on space S is said to be correct with respect to specification R on S if and only

if its function P refines R.

This definition is identical (modulo differences of notation) to traditional definitions of total correctness

[2, 10, 12, 14].
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Figure 2: P′ ⊒R P, Deterministic Programs

2.3 Relative Correctness

Definition 3 Due to [16]. Given a specification R and two deterministic programs P and P′, we say

that P′ is more-correct (resp. strictly more-correct) than P with respect to R, denoted as P′ ⊒R P (resp.

P′
⊐R P) if and only if (R∩P′)L ⊇ (R∩P)L (resp. (R∩P′)L ⊃ (R∩P)L).

To contrast relative correctness with correctness, we may refer to the latter as absolute correctness. We

refer to (R∩P)L (or dom(R∩P)) as the competence domain of P with respect to R. See Figure 2 for an

illustration of relative correctness. We have: (R∩P) = {(1,2),(2,3)}, hence (R∩P)L = {1,2}×S. On

the other hand, (R∩P′) = {(1,0),(2,1),(3,2)}, hence (R∩P′)L = {1,2,3}×S.

How do we know that our definition is any good? In [16], we find that relative correctness satisfies

the following properties:

• Ordering Properties. Relative correctness is reflexive and transitive, but not antisymmetric. Two

programs P and P′ may be equally correct yet distinct.

• Relative Correctness and Absolute Correctness. A (absolutely) correct program is more-correct

than (or as correct as) any candidate program. A deterministic program P is (absolutely) correct

with respect to R if and only if its competence domain is dom(R).

• Relative Correctness and Reliability. The reliability of a program P on space S is defined with

respect to a specification R on S and a discrete probability distribution θ() on dom(R). We measure

it by the probability that the execution of P on a random state s of dom(R) selected according to

θ() terminates successfully in a state s′ such that (s,s′)∈R; in other words, it is the probability that

a randomly selected element of dom(R) following the probability distribution θ() falls within the

competence domain of P with respect to R. From this definition, and from definition 3, we infer

that if P′ is more-correct than P, then P′ is more reliable than P for any probability distribution

θ().

• Relative Correctness and Refinement. Program P′ refines program P if and only if P′ is more-

correct than P with respect to any specification R.

For illustration, we present below a specification and ten programs, ranked by relative correctness, as

shown in Figure 3; correct programs are shown at the top of the graph. We let R be the specification

defined on space S = nat by: R = {(s,s′)|s2 ≤ s′ ≤ s3}, and we consider the following programs, where

with each program we indicate its function, and its competence domain:

p0: {abort}. P0 = φ . CD0 = /0.

p1: {s=0;}. P1 = {(s,s′)|s′ = 0}. CD1 = {0}.

p2: {s=1;}. P2 = {(s,s′)|s′ = 1}. CD2 = {1}.

p3: {s=2*s**3-8;}. P3 = {(s,s′)|s′ = 2s3 −8}. CD3 = {2}.
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Figure 3: Ordering Candidate Programs by Relative Correctness

p4: {skip;}. P4 = I. CD4 = {0,1}.

p5: {s=2*s**3-3*s**2+2;}. P5 = {(s,s′)|s′ = 2s3 −3s2 +2}. CD5 = {1,2}.

p6: {s=s**4-5*s;}. P6 = {(s,s′)|s′ = s4 −5s}. CD6 = {0,2}.

p7: {s=s**2;}. P7 = {(s,s′)|s′ = s2}. CD7 = S.

p8: {s=s**3;}. P8 = {(s,s′)|s′ = s3}. CD8 = S.

p9: {s=(s**2+s**3)/2;}. P9 = {(s,s′)|s′ = s2+s3

2
}. CD9 = S.

The following definition applies to non-deterministic programs.

Definition 4 Due to [5]. Given a specification R and two programs P and P′. We say that P′ is more-

correct than P with respect to R if and only if:

(R∩P′)L ⊇ (R∩P)L∧ (R∩P)L∩R∩P′ ⊆ P.

2.4 Program Projection

We consider a space S defined by two integer variables x and y, and we let R be the following specifica-

tion: R = {(s,s′)|x′ = x+ y}. We let p be the following candidate program:

{while (y!=0) {x=x+1; y=y-1;}}.

The function of p is: P = {(s,s′)|y ≥ 0∧ x′ = x+ y∧ y′ = 0}.

When we consider this function, we find that it has clauses (e.g. x′ = x+ y) that are mandated by the

specification R and clauses (e.g. y′ = 0) that are not mandated by R but stem instead from the design

of P. In [6], we introduce an operator ΠR(P), called the projection of P over R, which represents the

functionality of P that is mandated by R. In the example above, we want the projection of P over R to be:

ΠR(P) = {(s,s′)|y ≥ 0∧ x′ = x+ y}.

Indeed, P delivers (y′ = 0) but R does not require it; and R mandates (x′ = x+ y) for negative y but P

does not deliver it.

Definition 5 Due to [6]. Given a specification R on space S and a program P on S, the projection of P

over R is the relation denoted by ΠR(P) and defined as (R∩P)L∩ (R∪P).
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The importance of projections is reflected in the following proposition ([6]).

Proposition 1 Given a specification R and two programs P and P′, P′ is more-correct than P with respect

to R if and only if ΠR(P
′) refines ΠR(P).

Since the projection of a program on a specification reflects the functionality of the program that is rele-

vant to the specification, it is only normal that it be the only part of P that determines relative correctness

with respect to the specification.

3 Sample Examples

3.1 Fermat Decomposition

This example, due to [7], uses a specification due to [8]. We let space S be defined by natural variables

n, x and y, and we let specification R be defined as:

R = {(s,s′)|n = x′2 − y′2 ∧0 ≤ y′ ≤ x′}.
The domain of R is the set of states s such that n(s) is either odd or a multiple of 4. Hence we write:

RL = {(s,s′)|n mod 2 = 1∨ n mod 4 = 0}. Whereas Dromey [8] presents a sequence of designs that

are increasingly more concrete, we present a sequence of programs that are increasingly more-correct.

Starting from the initial program P0 =abort, we resolve to let the next program P1 find the required

factorization for y′ = 0:

void p1()

{nat n, x, y; x=0; y=0;

{nat r; r=0; while (r<n) {r=r+2*x+1; x=x+1;}}}

The function of this program is:

P1 = {(s,s′)|n′ = n∧ y′ = 0∧ x′ = ⌈√n ⌉}.
Whence we compute the competence domain of P1 with respect to R:

(R∩P1)L = {(s,s′)|∃x′′ : n = x′′2}.

In other words, P1 satisfies specification R whenever n is a perfect square. We now consider the case

where r exceeds n by a perfect square, making it possible to fill the difference with y2:

void p2() {nat n, x, y; // input/output variables

x=0; y=0; {nat r; r=0; while (r<n) {r=r+2*x+1; x=x+1;}

if (r>n) {while (r>n) {r=r-2*y-1; y=y+1;}}}}

The function of this program is:

P2 = {(s,s′)|n′ = n∧ x′ = ⌈√n ⌉∧ y′2 = x′2 −n∧ y′ ≥ 0}.
The competence domain of P2 with respect to R is:

(R∩P2)◦L = {(s,s′)|∃y′′ : y′′2 = ⌈√n ⌉2 −n}.

The competence domain of P2 is the set of states s such that the difference between n(s) and the square of

the ceiling of the square root of n(s) is a perfect square. This is a superset of the competence domain of

P1, hence P2 is more-correct than P1. The next program is derived from P2 by resolving that if the ceiling

of the integer square root of n does not exceed n by a perfect square, then we try the next perfect square,

etc. We know that this process converges for any state s for which n(s) is odd or a multiple of 4. Hence,

void p3() {nat n, x, y; // input/output variables

{nat r; x=0; r=0; while (r<n) {r=r+2*x+1; x=x+1;}

while (r>n) {int rsave; y=0; rsave=r;

while (r>n) {r=r-2*y-1; y=y+1;}

if (r<n) {r=rsave+2*x+1; x=x+1;}}}}
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If we let µ(n) be the smallest number whose square exceeds n by a perfect square, we write the function

of P3 as follows:

P3 = {(s,s′)|n′ = n∧ x′ = µ(n)∧ y′ =
»

µ(n)2 −n}.
We compute the competence domain of P3 with respect to R and we find: (R∩P3)◦L = RL. Hence P3 is

correct with respect to R hence it is more-correct than P2 with respect to R. Hence we do have:

P0 ⊑R P1 ⊑R P2 ⊑R P3.

Furthermore, we find that P3 is correct with respect to R.

3.2 The Ceiling of the Square Root

This example, due to Reinfelds [21], consists in computing the non-negative integer square root of a

non-negative integer n; its space is defined by variables n and x of type integer, and its specification is

written as:

R = {(s,s′)|x′2 ≤ n < (x′+1)2 ∧ x′ ≥ 0}.
In [21] Reinfelds offers two solutions to this problem; both solutions focus on the derivation of a while

loop, and both start by deriving a loop invariant from the post-condition. We let the first program be p0:

abort, whose competence domain (CD0) is the empty set, and for the next program, we choose:

p1: {int x, n; x=0;}.

The function of this program and its competence domain are given as:

P1 = {(s,s′)|x′ = 0∧n′ = n}
CD1 = (R∩P1)L = {(s,s′)|0 ≤ n < 1∧ x′ = 0∧n′ = n}L = {(s,s′)|n = 0}.

This program satisfies the specification only for n = 0. For the next program, we want to satisfy R

whenever n is a perfect square.

p2: {int x,n;x=0; {int x2=0; while(x2<n){x2=x2+2*x+1;x=x+1;}}}.

We compute the function of the while loop using invariant relations, as we discuss in [19], and we find

the following function and competence domain for P2:

P2 = {(s,s′)|(x′−1)2 < n ≤ x′2 ∧ x′ ≥ 0∧n′ = n}.

CD2 = {(s,s′)|∃x′ : n = x′2},

which means that n is a perfect square. For the fourth program, we want to satisfy specification R even

when n is not a perfect square. We consider the following program:

p3: {int x, n; x=0;

{int x2=0; while(x2<n){x2=x2+2*x+1;x=x+1;} if (x2>n) {x=x-1;}}}
The function of program P3 can be obtained from that of P2 by multiplying it on the right by the function

of the if-then statement, which is:

F = {(s,s′)|x2 > n∧ x′ = x−1∧n′ = n}∪{(s,s′)|x2 = n∧ s′ = s}.

By computing the product, then simplifying the terms, we find:

P3 = {(s,s′)|x′2 ≤ n < (x′+1)2 ∧ x′ ≥ 0∧n′′ = n}.
The competence domain of P3 is: CD3 = {(s,s′)|n ≥ 0}. This is equal to the domain of R, hence P3 is

correct with respect to R.

3.3 Analyzing a String

This example is due to [9], and aims to scan a sequence q and count the number of letters, digits and

other symbols. We let S be the space defined by a variable q of type string and integer variables let, dig,

and other; and we let R be defined as:

R = {(s,s′)|q ∈ list〈αA ∪αa ∪ϑ ∪σ〉∧
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let ′ = #a(q)+#A(q)∧dig′ = #ϑ (q)∧other′ = #σ (q)}
where list〈T 〉 denotes the set of lists of elements of type T , and #A, #a, #ϑ and #σ denote the functions that

to each list l assign (respectively) the number of upper case alphabetic characters, lower case alphabetic

characters, numeric digits and symbols. We generate the following programs:

p0: {abort}. CD0 = φ .

p1: {i=0; let=0; dig=0; other=0; l=strlen(q);

while (i<l) {c=q[i];i++; if (’A’<=c && ’Z’>=c) let+=1;}}

CD1 = {(s,s′)|q ∈ list〈αA〉}.

p2: {i=0; let=0; dig=0; other=0; l=strlen(q);

while (i<l) {c = q[i]; i++;

if (’A’<=c && ’Z’>=c) let+=1;

else if (’a’<=c && ’z’>=c) let+=1;}}

CD2 = {(s,s′)|q ∈ list〈αA ∪αa〉}.

p3: {i=0; let=0; dig=0; other=0; l=strlen(q);

while (i<l) {c = q[i]; i++;

if (’A’<=c && ’Z’>=c) let+=1;

else if (’a’<=c && ’z’>=c) let+=1;

else if (’0’<=c && ’9’>=c) dig+=1;}}

CD3 = {(s,s′)|q ∈ list〈αA ∪αa ∪ν〉}.

p4: {i=0; let=0; dig=0; other=0; l=strlen(q);

while (i<l) {c = q[i]; i++;

if (’A’<=c && ’Z’>=c) let+=1;

else if (’a’<=c && ’z’>=c) let+=1;

else if (’0’<=c && ’9’>=c) dig+=1;

else other+=1;}}

CD4 = {(s,s′)|q ∈ list〈αA ∪αa ∪ν ∪σ〉}.

Since CD0 ⊆CD1 ⊆CD2 ⊆CD3 ⊆CD4, we do have P0 ⊑R P1 ⊑R P2 ⊑R P3 ⊑R P4; also, we find CD4 =
RL, hence P4 is absolutely correct with respect to R.

3.4 Word Wrap

The specification of this problem is borrowed from [15, 20]; for the sake of readability and brevity, we

present the English text of the specification (due to [17]), but not the relational representation.

”The program accepts as input a finite sequence of characters and produces as output a sequence of

characters satisfying the following conditions:

• If the input sequence contains MaxPos+1 consecutive non-break characters then a boolean flag

(longWord) is set to true.

• Else,

– LongWord is set of false.

– All the words of the input appear in the output, in the same order, and all the words of the

output appear in the input.

– Furthermore, the output must must satisfy the following conditions:
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∗ It contains no leading or trailing breaks, nor consecutive breaks, where a break is a blank,

or a newline or the end-of-file.

∗ Any sequence of MaxPos+1 consecutive characters includes a newline.

∗ Any subsequence made up of no more than MaxPos characters and embedded between

the head of the sequence or a new line on the left, and the tail of the sequence or a break

on the right contains no newline.”

Due to space limitations, we do not compute the function of each program in our sequence of so-

lutions, but content ourselves with presenting their competence domains. We generate the following

sequence of programs for this specification, starting from p0: abort, whose competence domain is

empty. The first program merely echos the input to the output; we generate it to pin down the mechanics

of file transfer in C++.

p1: #include <fstream> using namespace std;

const int MaxPos = 80; const char blank = ’ ’;

ifstream inpstr; ofstream outpstr;

int main ()

{inpstr.open("inp1.dat"); outpstr.open("outp1.dat");

char c; c=inpstr.get();

while (!inpstr.eof()) {outpstr << c; c=inpstr.get();}

inpstr.close(); outpstr.close();}

The competence domain (CD1) of this program is the set of input sequences that are not longer than

MaxPos, have no newlines, no leading or trailing blanks, and single blanks between words. The second

program assumes that the input contains no newlines, and merely removes leading and trailing blanks,

as well as extra blanks between words.

p2: #include <fstream>

#include <string> using namespace std;

const int MaxPos = 80; const char blank = ’ ’;

const string emptyword="";

ifstream inpstr; ofstream outpstr; char c; string word;

void skipblanks();

void echoword();

int main ()

{inpstr.open("inp2.dat"); outpstr.open("outp2.dat");

c=inpstr.get(); skipblanks();

while (!inpstr.eof()) {echoword();}

inpstr.close(); outpstr.close();}

void skipblanks()

{while ((!inpstr.eof()) && (c==blank)) {c=inpstr.get();};}

void echoword ()

{bool leadingblanks; leadingblanks=(c==blank); skipblanks();

string word; word=emptyword;

while ((!inpstr.eof())&&(c!=blank)) {word+=c;c=inpstr.get();}

if (word.length()>0) {if (leadingblanks)

{outpstr << blank << word;} else {outpstr << word;}}}

The competence domain (CD2) of this program is the set of sequences whose compacted version (when

extra blanks are removed) is not longer than MaxPos, and have no newlines. The third program removes

newlines in addition to extra spaces throughout the data stream.
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p3: // same as p2, except:

const char lf = ’\n’; const char cr = ’\r’;

void skipblanks()

{while ((!inpstr.eof())&&((c==blank)||(c==lf)||(c==cr)))

{c=inpstr.get();}}

void echoword ()

{bool leadingblanks;

leadingblanks=((c==blank)||(c==lf)||(c==cr)); skipblanks();

string word; word=emptyword;

while ((!inpstr.eof()) && (c!=blank) && (c!=lf) && (c!=cr))

{word +=c; c=inpstr.get();}

if (word.length()>0) {if (leadingblanks)

{outpstr << blank << word;} else {outpstr << word;}}}

The competence domain (CD3) of this program is the set of sequences whose compacted version (when

blanks and newlines are removed) is not longer than MaxPos. The fourth program places newlines at the

appropriate places in the output stream.

p4:

// same as p3 except:

int linelen;

void echoword ()

{bool leadingblanks;

leadingblanks=((c==blank)||(c==lf)||(c==cr));skipblanks();

string word; word=emptyword;

while ((!inpstr.eof()) && (c!=blank) && (c!=lf) && (c!=cr))

{word +=c; c=inpstr.get();}

if (word.length()>0)

{if (leadingblanks)

{if (linelen+word.length()+1>MaxPos)

{linelen=word.length();

outpstr << endl << word;}

else {linelen=linelen+word.length()+1;

outpstr << blank << word;}}

else {outpstr << word; linelen=word.length();}}}

The competence domain (CD4) of this program is the set of sequences which have no words longer than

MaxPos. The fifth program takes into account the possibility of encountering long words in the input

stream, and proceeds to set the boolean flag longword to true, while skipping the long words.

p5: // same as p4, except:

int main ()

{// ... ... ...

c=inpstr.get();linelen=0;longword=false;skipblanks();...}

void echoword ()

{bool leadingblanks;

leadingblanks=((c==blank)||(c==lf)||(c==cr));skipblanks();

string word; word=emptyword;

while ((!inpstr.eof())&&(c!=blank)&&(c!=lf)&&(c!=cr))
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{word +=c; c=inpstr.get();}

if (word.length()>0)

{if (word.length()>MaxPos)

{longword=true;}

else {if (leadingblanks)

{if (linelen+word.length()+1>MaxPos)

{linelen=word.length();

outpstr << endl << word;}

else {linelen=linelen+word.length()+1;

outpstr << blank << word;}}

else {outpstr << word; linelen=word.length();}}}}

The competence domain (CD5) of this program is the set of all input sequences.

As we can see, CD0 ⊆CD1 ⊆CD2 ⊆CD3 ⊆CD4 ⊆CD5, hence P0 ⊑R P1 ⊑R P2 ⊑R P3 ⊑R P4 ⊑R P5.

Also, because CD5 = dom(R), where R is the (unwritten, but available in [17]) specification, we infer

that P5 is correct with respect to R.

We have developed our programs in a stepwise manner, by considering broader and broader subsets

of the domain of the specification, until we reach the whole domain. To some extent, the transition from

one program to the next preserves much of the code that has been written, and modifies/ adds relatively

little code. Perhaps more interestingly, the stepwise correctness enhancements enable us to tackle the

complexity of the specification one issue at a time, and to validate our solution for one step before we

tackle the next step: we have coded the file processing aspects in p1, the extra (leading, trailing, middle)

blanks in p2, the removal of incoming newlines in p3, the insertion of outgoing newlines in p4, and the

detection of long words in p5. At each step, we ensure that the program works properly for the targeted

competence domain before we consider the next (broader) competence domain.

4 Programming for Reliability

The reliability of a program P can be defined with respect to two parameters: a specification R in the

form of a binary relation; and a discrete probability distribution θ over the domain of R, reflecting a

given usage pattern. We have seen in section 2.3 that for deterministic programs, enhanced correctness

logically implies (but is not equivalent to) enhanced reliability. This means that if the derivation of a

correct program P from a specification R proceeds through a sequence of increasingly correct programs,

say P0, P1, P2, etc.. Pn = P, then the sequence of Pi’s is ordered by increasing reliability. So that the

only difference between deriving a correct program and deriving a sufficiently reliable program (for a

required reliability threshold) is that in the latter case we can end the derivation earlier, namely as soon as

the reliability of Pi matches or exceeds the selected threshold. Given that correctness is the culmination

of reliability, it is only fitting that the derivation of correct programs be the culmination of the derivation

of reliable programs.

To illustrate our claim, we consider the four sample program derivations presented in the previous

section, and for each example we derive a test driver and a (random) test data generator. Then we

apply each test driver to the sequence of programs {Pi} generated in the corresponding derivation. This

allows us to estimate the reliability of each program Pi in each example; The table below shows how the

reliability evolves as we proceed from one program to the next; the first column shows the size of the

(random) test data used for each example.
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Test Data
Size P0 P1 P2 P3 P4 P5

Fermat 4000 0.0000 0.2535 0.3445 1.0000

Sqrt Ceiling 4000 0.0000 ≈ 0.0000 0.1020 1.0000

String Analysis 100 0.0000 0.0057 0.2790 0.2917 1.0000

Word Wrap 3000 0.0000 0.0363 0.0873 0.1023 0.8990 1.0000

5 Critique

5.1 Refinement vs Correctness Enhancement

To elucidate the contrast between refinement and correctness enhancement, we revisit the concept of

projection, discussed in section 2.4. This operator has many projection-like properties, hence its name,

including:

• Idempotence: ΠR(ΠR(P)) = ΠR(P).

• The projection of P over R is refined by P and by R.

• Program P is correct with respect to R if and only if ΠR(P) = R.

• Program P′ is more-correct than program P with respect to R if and only if the projection of P′

over R refines the projection of P over R.

This last property is interesting because it highlights the contrast between refinement and correctness

enhancement. Whereas refinement mandates that we refine all of P, relative correctness mandates that

we only refine the projection of P over R, which is known to be less-refined than P.

The concept of projection enables us to distinguish between two sources of functional properties in

a program P:

• Functional attributes that are mandated by the specification. This is the projection of P over R.

• Functional attributes that are determined by design decisions. This the functionality that is deliv-

ered by P but not mandated by R.

See Figure 4. The difference between refinement and relative correctness is that at each step, refinement

refines all of P whereas relative correctness refines only those functional attributes of P that are mandated

by the specification; we may, in the process of doing so, override design decisions made previously.

Because it makes no distinction between specification-mandated attributes and design-dictated attributes

the paradigm of refinement must refine all the functional attributes of P; consequently, every design

decision taken during this process imposes constraints on subsequent steps.

5.2 Critique: Is Correctness Enhancement a Viable Methodology?

Looking at the discussion of the previous section, one would be forgiven for thinking that correctness

enhancement is a panacea for program derivation: it involves refining a weaker specification than the

traditional refinement based process (ΠR(P) rather than P); we can take design decisions and not be

constrained by them (override them subsequently, if needed); we can stop halfway through the derivation

process and still have something to show for our effort (an executable program that runs correctly for part

of dom(R)); the artifacts we generatee as we proceed are increasingly reliable; etc. But like everything

else in life, this is too good to be true. Indeed, these advantages come at a cost, in terms of breadth of

scope: In practice, correctness enhancement is viable only to the extent that each artifact Pi generated
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Figure 4: Decomposing the Function of a Program

through this process can be derived easily from the previous artifact, Pi−1. But this is not always the case:

just because Pi represents a small increment of relative correctness over Pi−1 does not necessarily mean

that Pi can be derived from Pi−1 by a simple syntactic modidfication. In the examples of section 3 this

was mostly true, particularly for the word wrap example, where the stepwise correctness enhancement

process helped us deal with one aspect of the specification at a time.

Also, it is great that design decisions taken along the process do not constrain subsequent design

decisions, but this comes at the cost of modularity: in a refinement process, each design decision is

validated then fixed, and subsequent decisions are taken and validated accordingly. But with correctness

enhancement, at each step much of the new code must be analyzed and verified anew; there is some

potential for verification reuse, but it is not built into the process.

Still, we argue that correctness enhancement is worthy of study, not because it is better than refine-

ment at the derivation of programs from scratch, but rather because unlike refinement, correctness en-

hancement models not only program derivation from scratch (a small and shrinking segment of software

engineering practice), but also the vast majority of software engineering processes. Indeed, we find that

corrective maintenance, adaptive maintenance, software merger, software upgrade, whitebox software

reuse, extreme programming, and test driven design are all instances of correctness enhancement. Much

of software engineering practice consists, not of developing a new product from scratch, but rather of

taking a software product that does not quite meet our needs, and evolving it to meet new requirements;

this is essentially a correctness enhancement (with respect to the new requirements) operation.

5.3 Related Work

To the extent that it can be seen as a weaker (less generic) form of refinement, relative correctness bears

some similarity with retrenchment [3]. It is possible to think of relative correctness (more specifically:

the property of being less-correct than) as being an instance of retrenchment, for a suitable choice of the

concedes relation. Yet, whereas retrenchment appears to apply to data abstraction in the context of B

specifications, relative correctness pertains primarily to programs modeled as mappings between initial
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states and final states.

Our notion of relative correctness is tightly coupled with our own version of refinement, both in

terms of its definition and in terms of its notation. We use relational algebra and we define refinement

as: R′ ⊒ R ⇔ (RL∩R′L∩ (R∪R′) = R). While this formula captures, in relational terms, a fairly generic

understanding of refinement (larger domain, fewer images per argument), it is still fairly different from

other definitions of refinement, such as those of [1, 2, 11, 12, 13, 18]. An interesting venue of research

would be to explore how to derive a definition of relative correctness that corresponds to these refinement

formulas.

6 Conclusion

Traditional refinement-based program derivation proceeds by successive correctness-preserving transfor-

mations starting from the specification and ending with an executable program, when all the specification

notations have been replaced by program statements. In this paper we explore an orthogonal approach,

which starts from the trivially incorrect program abort and proceeds by successive correctness enhanc-

ing transformation until we reach a correct program, or a sufficiently reliable program. While it offers

many advantages, the proposed method is only applicable to the extent that incremental correctness en-

hancements can be achieved by commensurably incremental amendments to the text of the program; this

is a weighty caveat.

Regardless of its prowess in deriving programs from scratch, and of its relative merit by comparison

with refinement based programming, correctness enhancement is worthy of study because it proves to be

an adequate model for a wide range of software engineering activities. In order for these insights to be

useful, we need to explore how mathematics of relative correctness can be turned into scalable methods

and tools, and how the results that we have derived for our definition of refinement can be repurposed for

other forms of refinement. This is currently under investigation.
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