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Description Logics (DLs) are a family of languages used for the representation and for reasoning
about the knowledge base of an application domain, in a structured and formal manner.To achieve
this objectif, sevral provers have been implemented such as RACER and FACT++, but these provers
themselves have not been certified. In order to insure the soundness of derivations in these DLs,
it is necessary to verify formally the deductions applied by these reasoners. Formal Methods offer
powerful tools for the specification and verification of proof procedures, among them methods of
proving properties such as soundness, completeness and termination of a proof procedure.

In this paper, we present the definition of a proof procedure for the Description Logic A L C ,
based on a tableau method. We then prove the soundness, completeness and termination of our
reasoner with the proof assistant Isabelle. The proof proceeds in two phases, by first establishing
these properties on an abstract, set theoretic level, and by instantiating them with an implementation
based on lists.

1 Introduction

In this paper, we present a definition of a prover for the description logic A L C [18] which is based on
the method of semantic tableau [5]. We ensure the validity of our method and its implementation by the
proof of the properties of its soundness, its completeness and its termination. These proofs are performed
using the Isabelle/HOL proof assistant.

Description Logics (DL) are formalisms widely used in several areas such as the Semantic Web and
ontology construction. Several description logics, eg, S H OI Q [12] and S H OI N [3] are more
expressive extensions of A L C . S H OI N , which is considered as a formal model of Web Ontology
Language OWL-DL, is used in several provers such as FaCT++ [19] and RACER [10] .

Only a formal proof of the validity of the reasoning process applied to DLs can ensure the correctness
of derivations of properties in these logics. This is far from being the case for provers available today.
The inference engines of provers like RACER and FaCT++ have not yet been certified. In [13], the
authors give a detailed description of the various problems posed by incomplete and incorrect provers
yet widely used.

Of the many methods used as decision procedures for DLs, the semantic tableau method is the most
common. Indeed, FaCT and RACER use it in their reasoning process. We propose in this paper a
definition of a prover based on a semantic tableau method for the description logic A L C . We will also
present the formal proof in the Isabelle/HOL proof assistant of soundness, completeness and termination
of the prover.

http://dx.doi.org/10.4204/EPTCS.122.5
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Work close to our formalization of proof procedures are reported in [16], [20] and [17]. The first de-
scribes the formalization of a prover for first-order logic in the Isabelle/HOL proof assistant. The second
presents a formalization in the Coq proof assistant of some modal logics, and the third a formalization of
a prover for LTL. Please note that DLs can be considered as specific modal logics. Closest to our work
comes [11], which describes the formalization of A L C in the PVS proof assistant. Our formalization
simplifies the termination argument, see Section 8, and allows to extract a prover directly executable
in a “ standard” programming language (Caml). This paper builds on and extends our previous work
described in [7], which provides an abstract, non-executable proof procedure for A L C , that extension
is presented in [8].

This paper is organized as follows: In Sections 2, 3 and 4, we detail the description logics. In
Section 5, we present the procedure of semantic tableau for A L C and the Sections 6 and 7, we describe
the formalization of this method and present the proof of soundness and completeness properties in the
Isabelle/HOL proof assistant. In the rest of the article, we present an implementation of a method of
proof for the logic A L C and the proof of its soundness and its termination.

The development described here 1 was carried out in the environment of the Isabelle/HOL proof
assistant [14] whose logic HOL is a classical logic. However, the background of the development is
largely independent of Isabelle and could easily be simulated in other proof assistants.

2 Description logics

Description Logics [1, 2, 4, 15] are a family of knowledge representation languages which can be used
to represent knowledge of an application domain in a structured and formal way. A fundamental charac-
teristic of these languages is that they have a formal semantics. Description logics are used for various
applications. Among them are: The representation of ontologies [3], natural language processing [9] and
representation of the semantics of UML class diagrams [6].

We recall that description logics have as a common basis A L enriched with different extensions:
The description logic A L C , subject of this work, adds negation to A L . Other extensions add the
transitive closure of roles, number restrictions on roles, the notion of sub-roles etc.. The formulas C of
A L C logic, called concepts, are constructed inductively by the following grammar:

C ::= | A (atomic concept)

| > (universal concept Top)

| ⊥ (empty concept Bottom)

| ¬ C (negation)

| C u C (conjunction)

| C t C (disjunction)

| ∀ r. C (universal quantifier)

| ∃ r. C (existential quantifier)

Here, A ∈ NC is an atomic concept name, and r ∈ NR is a role name. A role is a binary relation between
instances of a concept. ∀ and ∃ are (multi-)modal operators, similar to 2 and 3 in traditional modal
logics.

3 Syntax of A L C

We now give details of the formal definition of the logic A L C . The type of roles, defined by:
1http://www.irit.fr/CMS-DRUPAL7/AcadieProjects/dl verified
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datatype ′nr role = AtomR ′nr

It only has a single constructor, but is easily expandable to accommodate more complex logic. Type
definitions are parameterized by the type of role names ′nr and atomic concepts ′nc. Following the
grammar of Section 2, here is the type definition of A L C -concepts:

datatype ( ′nr, ′nc) concept =
AtomC ′nc
| Top
| Bottom
| NotC (( ′nr, ′nc) concept)
| AndC (( ′nr, ′nc) concept) (( ′nr, ′nc) concept)
| OrC (( ′nr, ′nc) concept) (( ′nr, ′nc) concept)
| AllC ( ′nr role) (( ′nr, ′nc) concept)
| SomeC ( ′nr role) (( ′nr, ′nc) concept)

4 Semantic of A L C

Concepts are interpreted as subsets of a domain of interpretation ∆I and roles as subsets of the product
∆I × ∆I . An interpretation I is essentially a couple (∆I , .I ) where ∆I is called the domain of
interpretation and .I is an interpretation function that maps an atomic concept A to subset AI of ∆I and
a role r to subset rI of ∆I ×∆I . Its extension to other concept constructors is defined, in mathematical
notation, as follows:

>I = ∆I

⊥I = /0
(CuD)I = CI ∩DI

(CtD)I = CI ∪DI

(¬C)I = ∆I −CI

(∀r.C)I = {x ∈ ∆I /∀y : (x,y) ∈ rI → y ∈CI }
(∃r.C)I = {x ∈ ∆I /∃y : (x,y) ∈ rI ∧ y ∈CI }

The type domtype is the type of elements of the interpretation domain. Then The interpretation is
defined as follows:

record ( ′ni, ′nr, ′nc) Interp =
idomain :: domtype set
interp-c :: ′nc⇒ domtype set
interp-r :: ′nr⇒ (domtype ∗ domtype) set
interp-i :: ′ni⇒ domtype

The interpretation of roles in Isabelle is given by:

fun interpR :: ( ′ni, ′nr, ′nc) Interp⇒ ′nr role⇒ (domtype ∗ domtype) set where
interpR i (AtomR b) = (interp-r i) b

The interpretation of concepts is described by the function:

fun interpC :: ( ′ni, ′nr, ′nc) Interp⇒ ( ′nr, ′nc) concept⇒ domtype set where
interpC i Bottom = {}
| interpC i Top = UNIV
| interpC i (AtomC a) = interp-c i a
| interpC i (AndC c1 c2) = (interpC i c1) ∩ (interpC i c2)
| interpC i (OrC c1 c2) = (interpC i c1) ∪ (interpC i c2)
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| interpC i (NotC c) = − (interpC i c)
| interpC i (AllC r c) = {x . ∀y. ((x,y) ∈ (interpR i r) −→ y ∈ (interpC i c)) }
| interpC i (SomeC r c) ={ x. ∃y. ((x,y) ∈(interpR i r ) ∧ y ∈ (interpC i c ))}

An interpretation I is a model of the concept C if CI 6= /0. As given by the following Isabelle
definition:

definition is-model :: ( ′ni, ′nr, ′nc) Interp⇒ ( ′nr, ′nc) concept ⇒ bool
where is-model i c ≡ (interpC i c) 6= {}

A concept C is satisfiable if there exists an interpretation I such that I is a model of C. This
definition is written in Isabelle:

definition satisfiable-def :: ( ′nr, ′nc) concept⇒ bool
where satisfiable-def c ≡ ∃ i. is-model i c

5 Semantic tableau rules

Our rules handle Abox (corresponding to a branch in a tableau), which are sets of facts. A fact may be of
the form x: C for an individual x and concept C, or R x y, for individuals x, y and role R. It can therefore
be defined by:

datatype ( ′ni, ′nr, ′nc) fact =
Inst ( ′ni) (( ′nr, ′nc) concept)
| Rel ( ′nr role) ( ′ni) ( ′ni)

type-synonym( ′ni, ′nr, ′nc) abox = (( ′ni, ′nr, ′nc) fact) set

It is now easy to define an interpretation that satisfies a fact and an Abox:

fun satisfies-fact :: ( ′ni, ′nr, ′nc) Interp⇒ ( ′ni, ′nr, ′nc) fact⇒ bool
where satisfies-fact icr (Inst x c) = ((interp-i icr x) ∈ (interpC icr c))
|satisfies-fact icr (Rel r x y)= ((interp-i icr x, interp-i icr y) ∈ (interpR icr r))

definition satisfiable-abox :: (( ′ni, ′nr, ′nc) abox)⇒ bool
where satisfiable-abox Ab = (∃ i. (∀ f∈ Ab. satisfies-fact i f ))

We can now describe the rules of the decision procedure. A rule is a relationship between two Abox,
the Abox before and after the application of the rule:

type-synonym ( ′ni, ′nr, ′nc)rule = (( ′ni, ′nr, ′nc)abox)⇒ (( ′ni, ′nr, ′nc)abox)⇒ bool

This same format is applicable to simple rules, described later, and the composite rules. This ho-
mogeneous format is useful for writing and verifying tactics. For example, we show the rule for the
constructor AndC:

inductive Andrule :: ( ′ni, ′nr, ′nc) rule where
mk-andrule: [[Inst x (AndC c1 c2)∈ b1; ¬ ((Inst x c1)∈ b1 ∧ (Inst x c2) ∈ b1);
b2 = {Inst x c2} ∪ {Inst x c1} ∪ b1]] =⇒ Andrule b1 b2

It expresses that an instance of the concept (AndC c1 c2)] must be located in the Abox before applying
the rule (this is the condition of applicability), the concept has not been decomposed, and the application
of the rule adds the sub-concepts c1 and c2. Of course, this rule is highly non-deterministic, since it
does not indicate which instance of a conjunction rule will be applied. Making the calculation more
deterministic is one of the goals of the Section 8.
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Rule Condition Negative Appl Cond Action
→u x : C1uC2 ∈A x : C1 and x : C2 are not

both in A
A := A ∪{x : C1,x : C2}

→t x : C1tC2 ∈A neither x : C1 nor x : C2 in
A

A := A ∪ {x : C1} or
A := A ∪{x : C2}

→∀ x : ∀rC ∈A r x y ∈A but y : C /∈A A := A ∪{y : C}
→∃ x : ∃rC ∈A ¬∃y such that r x y and y :

C are both in A
A := A ∪ {z : C,r x z}
Where z is a new variable

Table 1: The decomposition rules for the method of semantic tableaux for A L C

For space reasons, we cannot present all the rules in detail. They are reproduced in Table 1.
The constructor SomeC requires special attention. As indicated in Table 1, the application of rule

requires the use of a new variable.What first comes to mind is to postulate the existence of this variable
with an existential quantifier in the precondition of the rule. However, this non-deterministic existential
choice would be impossible to implement by any specific generator function, or lead to a very complex
notion of correspondence of abstract and implemented states. We therefore parameterize the rule with
the generator function gen, which is also used in the implementation (see Section 8).

inductive Somerule-gen:: (( ′ni, ′nr, ′nc)abox⇒ ′ni)⇒( ′ni, ′nr, ′nc)abox
⇒( ′ni, ′nr, ′nc)abox⇒bool where

mk-Somerule-gen:[[(Inst x (SomeC r c1))∈ b1; ∀ y. ¬((Rel r x y)∈ b1 ∧ (Inst y c1) ∈ b1);z= gen b1; b2= insert
(Rel r x z) (insert (Inst z c1) b1)]]

=⇒ Somerule-gen gen b1 b2

In summary, our rules are:

definition list-alc-rules::((( ′ni, ′nr, ′nc)abox)⇒ ′ni)⇒ (( ′ni, ′nr, ′nc)rule)list
where list-alc-rules gen = [ Andrule, Orrule, Allrule, Somerule-gen gen ]

From these elementary rules, we can construct composite rules by application of rule constructors,
such as the following:

fun disj-rule :: ( ′ni, ′nr, ′nc) rule⇒ ( ′ni, ′nr, ′nc) rule⇒ ( ′ni, ′nr, ′nc) rule
where disj-rule r1 r2 = (λ a b. r1 a b ∨ r2 a b)

It allows to define by recursion the function disj-rule-list that converts a list of rules in a rule. Finally,
we define the rule

definition alc-rule :: ((( ′ni, ′nr, ′nc) abox)⇒ ′ni)⇒ ( ′ni, ′nr, ′nc) rule
where alc-rule gen = disj-rule-list (list-alc-rules gen)

6 Soundness

The first central property of a system of rules is soundness. A rule is called sound, if its conclusion is
satisfiable then its premise is satisfiable:

definition sound :: ( ′ni, ′nr, ′nc) rule⇒ bool
where sound r== ∀ A1 A2. r A1 A2−→ satisfiable-abox A2−→ satisfiable-abox A1

It is easy to show that the elementary rules preserve soundness, and the disjunction of rules:

lemma disj-rule-sound [simp]: sound r1 =⇒ sound r2 =⇒ sound (disj-rule r1 r2)
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or the transitive closure:

lemma tranclp-rule-sound [simp]: sound r =⇒ sound (rˆ++)

Also the proof of soundness of the various rules offers no surprises:

lemma alcrule-sound [simp]: sound (alc-rule gen)

7 Completeness

To prove completeness, we first define the notion of complete rule. A rule is complete if the satisfiability
of Abox A1 implies that there exists at least one satisfiable Abox A2 obtained by rule application from
A1.

definition complete ::( ′ni, ′nr, ′nc) rule⇒ bool
where complete r == ∀ A1.∃ A2. satisfiable-abox A1 −→ ( r A1 A2)

−→ satisfiable-abox A2

We can show this property for each rule. For the rule→u, we obtain:

lemma and-complete [simp]: complete Andrule

An Abox is contradictory if it contains a contradiction (clash), i.e, x : C and x : ¬C or x :⊥.

fun contains-clash :: ( ′ni, ′nr, ′nc) abox⇒ bool
where contains-clash AB =
(∃ x c. ((Inst x c) ∈ AB ∧ (Inst x (NotC c)) ∈ AB) ∨ ((Inst x Bottom) ∈ AB))

The fundamental property of the correctness of the tableau algorithm is that if the Abox is closed
(contains a clash) then it is unsatisfiable:

lemma content-clash-not-satisfiable:[[contains-clash AB;satisfiable-abox AB]] =⇒ False

An Abox is saturated for a rule if the rule is not applicable to it.

definition saturated :: ( ′ni, ′nr, ′nc) abox⇒ ( ′ni, ′nr, ′nc) rule⇒ bool
where saturated AB1 r ≡ (∀ AB2. ¬ (r AB1 AB2))

Finally, if an Abox A is saturated and not contradictory, then it is satisfiable. In this case, there is
an interpretation that satisfies A, which is called the canonical interpretation IA, whose components are
defined as follows:

1. The interpretation domain ∆IA is the set of all individuals included in A

2. For each concept name P we define PIA = {x|(x : P) ∈ A}

3. For each role name r we define rIA = {(x,y)|r(x,y) ∈ A}

Now the goal is to prove that if an Abox is not contradictory and saturated, then it is satisfiable by the
canonical interpretation.

lemma canon-interp-sat-fact:[[inj i; ¬contains-clash AB; saturated AB (alc-rule gen);
is-Normal-Abox AB; f∈ AB]] =⇒ satisfies-fact (canon-interp i AB) f
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8 Implementation

In this section, we propose an implementation, i.e. an executable proof procedure for the description
logic A L C . It is based on lists as data structure to implement the Abox. The tableau is encoded as a
list of Abox. The different rules are defined as functions whose argument is list abox-impl and return a
list of Abox (Tableau).

The Abox is implemented as a list of facts (abox impl).

type-synonym ( ′ni, ′nr, ′nc) abox-impl = (( ′ni, ′nr, ′nc) fact) list

The implementation of a rule is defined as a function that transforms an Abox impl to a list of
Abox impl, just called a tableau.

type-synonym ( ′ni, ′nr, ′nc)rule-impl=
( ′ni, ′nr, ′nc)abox-impl⇒( ′ni, ′nr, ′nc)abox-impl list

The type of abstraction of an (Abox impl) to an Abox is given by:

type-synonym ( ′ni, ′nr, ′nc)abstraction=( ′ni, ′nr, ′nc)abox-impl⇒( ′ni, ′nr, ′nc)abox

Tableau is simply a list of Abox imp.

type-synonym ( ′ni, ′nr, ′nc) tableau = ( ′ni, ′nr, ′nc) abox-impl list

8.1 Implementing Rules

Each rule is encoded as a pair consisting of the condition of applicability and the given action (Condition,
Action). The type of condition is given by:

type-synonym ( ′ni, ′nr, ′nc)appcond=( ′ni, ′nr, ′nc)abox-impl⇒( ′ni, ′nr, ′nc)fact⇒ bool

The type of the action of a rule is defined by:

type-synonym ( ′ni, ′nr, ′nc) action =
( ′ni, ′nr, ′nc)abox-impl ∗ ( ′ni, ′nr, ′nc)fact ∗ ( ′ni, ′nr, ′nc)abox-impl

⇒( ′ni, ′nr, ′nc)abox-impl list

The rule is implemented in Isabelle by the function:

datatype ( ′ni, ′nr, ′nc) srule = Rule ( ′ni, ′nr, ′nc)appcond ∗ ( ′ni, ′nr, ′nc)action

Once the data structures and format rules are defined, we can encode each rule. For this, we determine
for each rule the condition of its applicability and the action of this rule. For example the rule →u is
coded as follows: The condition of applicability of the rule→u is given by the following function:

fun appcond-and :: ( ′ni, ′nr, ′nc) appcond
where appcond-and Ab-i (Inst x (AndC c1 c2)) =
(¬(list-ex (is-x-c-inst x c1) Ab-i) ∨ ¬(list-ex (is-x-c-inst x c2) Ab-i))
|appcond-and Ab-i - = False

The function is x c inst means: is-x-c-inst x c f = (f = Inst x c)
The action provided by the application of this rule is:

fun action-and :: ( ′ni, ′nr, ′nc) action
where action-and (prefix, (Inst x (AndC c1 c2)), suffix) =

[[Inst x c1, Inst x c2] @ prefix @ [Inst x (AndC c1 c2)] @ suffix]
| action-and - = []
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prefix denotes the elements of the list before the fact Inst x (AndC c1 c2) and suffix denotes the
elements after the fact. The rule→uis implemented by:

definition and-srule :: ( ′ni, ′nr, ′nc)srule
where and-srule == Rule (appcond-and,action-and)

Its application is defined in Isabelle by:

definition and-rule::( ′ni, ′nr, ′nc) rule-impl where and-rule ≡ apply-srule and-srule

To generalize our implementation for all A L C rules, we define a list of implemented rules.

definition list-alc-rules-impl-gen ::
((( ′ni, ′nr, ′nc) abox-impl)⇒ ′ni)⇒ ( ′ni::alloc, ′nr, ′nc) rule-impl list where

list-alc-rules-impl-gen gen == [and-rule, or-rule, all-rule, some-rule-gen gen]

8.2 Soundness

We have shown in section 6 the proof of soundness property of rules on the abstract level. The following
result allows us to demonstrate the soundness of our implementation.

The idea can be illustrated by the following diagram. Above, we see the proof on an abstract level:
the application of an abstract rule (r-logic), applied to an Abox, generates a set of Abox successors. The
implementation of Abox by lists gives a Abox impl, whose abstraction with a set gives a set of facts. The
application of a rule for this implementation (r-impl) must provide a list of Abox implementations that
have the same abstraction.

Abox
r logic

// set of Abox

Abox impl

Abstraction(set)

OO

r impl // tableau

OO

More formally, the definition in Isabelle:

definition sound-rule-impl::
( ′ni, ′nr, ′nc)abstraction⇒( ′ni, ′nr, ′nc)rule⇒( ′ni, ′nr, ′nc)rule-impl⇒bool where

sound-rule-impl abstr r r-impl≡ ∀ ai ai ′.(ai ′∈set(r-impl ai))−→r(abstr ai)(abstr ai ′)

8.3 Termination

Termination is an important property of rewriting systems. A standard method for proving termination
of a rewrite system is to exhibit a well-founded ordering on terms, such that if A1 is rewritten to A2 then
A1� A2.

Formally, for proving termination, we associate to each implementation of a Abox a measure. If this
measure decreases with every rule in a well-founded ordering, termination is assured. In our case, a
measure is a function of type Abox imp→ T for T a domain equipped with a well founded relation�
in T which we define in the sequel.

We introduce the constructors necessary to define the measure:
The function sizeC calculates the size of a concept, it is defined as the number of constructors of this

concept.

• The measure in our case is a multiset of pairs of natural numbers.
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• For each axiom (fact) of Abox imp, we associate a pair, depending on the structure of the axiom
and the Abox imp.

• The measure of the element that is applicable must decrease, without affecting the measure of
other elements.

We now define the measure of the axioms (this is the function meas comp defined in the following). If
the axiom is:

• A relation x r y, we associate the pair (0,0)

• An instance x : D. Depending on the structure of D, there are three cases:

1. If D is an Atom (x : A) or Negation (x : ¬A), we associate the value (0,0) ;

2. If D is a conjunction, disjunction or existential quantifier:

• If the corresponding rule is applicable on the axiom, we associate the pair (sizeC(D),0),
• else (0,0);

3. If D is a universal quantifier (D = ∀r.C) we associate the pair (Comp1,Comp2) such that:

(a) Comp1 = sizeC(D);
(b) Comp2 =Comp21 +Comp22 such that:

• Comp21 is the number of applicability of the rule→∀, ie the number of x r y in Abox imp such that
y : C is not in the Abox imp. It is noted here that Comp21 decreases if the rule→∀ is applicable,
but if we apply the rule →∃ on another fact, this measure may increase. For this, we add the
component Comp22 which ensures that this remains constant by the application of another rule;

• Comp22 is the number of ∃-terms reducible and hidden (in the sense that they appear in the struc-
ture of the concept) in the Abox. This value decreases if the rule →∃ is applied and remains
constant or decreases if another rule is applied.

In the end we can prove that measure is well founded.

lemma wf-measure-abox-impl-order: wf measure-abox-impl-order

9 Conclusion

In this paper we have presented a definition of a reasoner validated for the description logic A L C based
on the method of semantic tableaux. This formalization in Isabelle and development is based on several
modules:

• Specifying the syntax and semantics of A L C ,

• Coding of Abox and the formalization of the transformation rules of semantic tableaux,

• The proof of the soundness and completeness of semantic tableaux,

• The proof of termination requires the definition of a measure for each Abox. We have shown that
this measure decreases for each application of a rule.

• The implementation of Abox, tableaux and rules transformation

• Defining a strategy of proof for A L C



60 Formal verification of a proof procedure for the description logic A L C

• Finally, the extraction of an executable, certified reasoner in the Caml language.

We will consider several extensions of this work, among which are:

• Extensions of this work to more expressive logics used in the semantic Web, such as S H OI Q
and S H OI N .

• Sets of refinements by other more efficient data structures as lists, and in particular the use of
indexing techniques to speed up testing unsatisfiability of a table (“ clash”) or to identify the
applicable rules.
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