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Modeling and analysis of soft errors in electronic circhigs traditionally been done using computer
simulations. Computer simulations cannot guarantee ctmress of analysis because they utilize
approximate real number representations and pseudo randorbers in the analysis and thus are
not well suited for analyzing safety-critical applicationin this paper, we present a higher-order
logic theorem proving based method for modeling and analyssoft errors in electronic circuits.
Our developed infrastructure includes formalized cordumirandom variable pairs, their Cumulative
Distribution Function (CDF) properties and independeandard uniform and Gaussian random
variables. We illustrate the usefulness of our approach bgeting and analyzing soft errors in
commonly used dynamic random access memory sense amlifieits

1 Introduction

In many safety critical applications, such as in avioni¢s¢teonic equipment operates in harsh environ-
ments and experiences extreme temperatures and excessg® af solar and cosmic radiations. This
can often result in change in the state of the charge storaggesrin electronic circuits. Such abnormal
changes in the states of storage nodes in electronic dratetcalled soft errors [14]. These nonrecurrent
and non permanent errors can cause an electronic systerhaoeebim an un predictable way. There are
four commonly known causes of soft errors in logic and meneinguits: 1) undesirable capacitive cou-
pling of circuit elements[[12], 2) circuit parameter fludibas and variations, 3) ionizing particle and
EM radiation, and 4) built-in thermal, shot and Tloise. Good circuit design and layout techniques can
be used to effectively eliminate soft errors due to undbkraapacitive coupling and circuit parameter
variations [[2]. In order to deal with the other two types oft ®rors accurate analysis of the design is
required [14, 15].

Soft error occurrence mechanism is random in nature andialysnalyzed using simulation based
techniques such as Monte carlo simulation methods [16].s@techniques tend to be inaccurate and
slow and are unsatisfactory for safety critical applicagio Realistic analysis of most practical linear
and non-linear circuits involves real and random variablesrmal methods based techniques, such as
probabilistic model checking, are unsuitable for the asialgf such problems as it is usually not possible
to accurately model the continuous electronic circuit b@rausing finite state systems.

In this paper, we apply the higher-order logic theorem prgwnethod([5] to the problem of random
effect modeling and analysis in electronic circuits. Themmaason for using higher-order logic is
to leverage upon its high expressiveness, which allows yseoisely model any system that can be
expressed mathematically. Thus, it allows us to constiuet tontinuous and randomized models of
electronic circuits and thus alleviates the limitationssiwhulation and model checking based analysis
techniques. These models are then used to form an equieatenan implication relation with their
specifications. These boolean relationships are then grasimg mathematical reasoning in the sound
core of the HOL theorem prover.
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Probabilistic analysis infrastructure has been develapétDL during the last decade. Hurd formal-
ized discrete random variables having Uniform, Berno@inomial, and Geometric probability mass
functions in the HOL theorem prover [10]. Audebaud et alsalibe a method for proving properties of
randomized algorithms in Coq proof assistant [3]. They usetional and algebraic properties of unit
interval to show the validity of general rules for estimgtite probabilities of randomized algorithms.
However, similar to Hurd’s work, their approach can only m#$d discrete distributions. Hasan, build-
ing on Hurds work, formalized statistical properties ofgénand multiple discrete random variables,
continuous random variables with various distributionsgisnverse transform method][7] and veri-
fied their probabilistic and some statistical propertiels Farrison [6] formalized the guage integration
on finite-dimensional Euclidean spaces, which is quitelainid product space of Lebesgue measures.
Okazaki and Shidama [19] formalized properties of real @dltandom vairables in Mizar. More re-
cently, Hoelzl [9] and Mhamdi [17, 18] formalized basic mots of measure, topology and lebesgue
integration. These formalisms are based on extended reatbens and are thus more expressive than
Hurds formalization of probability theory. However, they dot contain a specific probability space due
to which they cannot be used to verify random variable fumsti Since, soft error is primarily based
on modeling the uncertainties by appropriate random viesako we have chosen Hurd’s formalization
of measure theory for this work. To the best of our knowledbe,foremost foundations of soft error
analysis of electronic circuits, such as the formalizatdrcontinuous random variable pair, its classic
Cumulative Distribution Function (CDF) properties, and thrmalization of Gaussian random variable
pair do not exist in literature and is presented for the vesg fime in this paper.

Our proposed method is shown in Figlie 1. We build on exigtiéay number, transcendental func-
tion, set, measure, and probability theories in the HOL s@oprover. Our developed infrastructure
includes formalization of a continuous random variable paing an approach similar tol[7]. We have
formalized important notions of joint and marginal cumidatdistribution functions and the indepen-
dence of random variable pairs. Using the specification mdoa variable pairs, we then verify their
CDF properties by interactively constructing the proofshafse properties for arbitrary continuous ran-
dom variables. Then using Inverse Transform Method, we lf@wealized random variable pairs for
which inverse CDF function of the cumulative probabilitgtlibution function exists.
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Figure 1: Proposed methodology for circuit analysis
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In this paper, we also describe the formalization of a paindépendent Gaussian random variables
using the Box-Muller method [4]. We then utilize these vhalés in the modeling and formal analysis of
soft errors caused by thermal noise in sense amplifier tiofa@ DRAM. In a typical analysis using our
proposed method, the design and the best, nominal and vesesspecifications are first expressed using
higher-order logic. Uncertain design and operating emvirent behaviors are then accurately modeled
using formalized random variables in higher-order logi@sIgn uncertainties include noise and device
model parameter variations. Realistic and accurate apgrativironment uncertainties include effects
such as variations in the operating temperature, suppbag®el and varying doses of incident particle
and electromagnetic radiation. Finally, the analysis rsied out interactively in the trusted kernel of the
HOL theorem prover and formal circuit and system analysi®fsrare constructed.

The rest of the paper is organized as follows: Sediion 2 descthe formalization of continuous
random variable pair, verification of its classical proft and formalization of standard Uniform and
Gaussian random variable pairs. Using the developed tnficiare, we describe an accurate analysis of
soft errors in the sense amplifier of dynamic random accessames in Sectiofl3. Finally, Section 4
concludes the paper.

2 Formalization of Continuous Random Variables

In Hurd’s formalization[[10], a random variabl& is a higher-order logic probabilistic function which
takes a parameter of type and an infinite Boolean sequence, ranges over values offiygred upon
termination returns the remaining portion of the infinitedB@an sequence.

ZF:.:a—B”—pBxB”
Hurd formalized four probabilistic algorithms with Unifor, Bernoulli, Binomial, and Geometric
probability mass functions. Hasan [7], building on Hurdsry, formalized a standard uniform random
variable as a special case of the discrete version of a mmifandom variable, as given in Equatldn 1.
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where(An. Z (E)k“Xk) represents the discrete uniform random variable. Hasamsdl specification

of the standaord uniform random variable in HOL is given in Digifoin 1, and is based on Equatian 1.
Definition 1: Standard Uniform Random Variab]€|
FVs. stdunif_cont s = lim (An. fst (std_unif_disc n s))
The functionstd unif disc is a standard discrete uniform random variable in HOL. letakvo argu-
ments, a natural numbaeii:um) and an infinite sequence of random bisiim—bool). The function
utilizes these two arguments and returns a pair of type, (neh—bool). The real value corresponds to
the value of the random variable and the second element ipdinés the unused portion of the infinite
boolean sequence. The functiéat takes a pair as input and returns the first element of the guadt,
the functionlim P in HOL is the formalization of the limit of a real sequeneeUsing Inverse Trans-
form Method (ITM), Hasan formalized uniform, triangulagp@nential and rayleigh random variables.
Hasan’s HOL formalization of a standard uniform randomafaléuniform rv is as follows:

FVs a b. uniformrv a b s = (b - a)(stdunif cont s) + a.
Wherea andb are the two real parameters of the uniform random variabkebWild upon these founda-
tions to formalize pairs of continuous random variablesia paper.
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2.1 Continuous Random Variable Pairs

Multiple independent random variables are often requicethddel and analyze hard to predict and ran-
dom behaviour of electronic circuits and systems. To perfsuch modeling and analysis in a theorem
proving environment formalized independent random véegmhare needed. Building on Hasan’s work,
we formalize a pair of Uniform continuous random variablss a

~ e R ~ e
(lim (An. kZO(E) Xi), lim (An. kZO(E) X)),
n-1

1 . . . .
where(An. Z (E)k”Xik), i € {1,2}, represents a discrete uniform random variable. The HOm#br
0

ization of a Bair of Uniform continuous random variablesiigeg by:
FVs. stdunif pair cont s= (rI]im (An. fst (std_unif disc n (seven s))),
—»00

lim(An. fst (std_unif disc n (sodd s))))

n—oo
fst (std_unif _pair_cont s);

FVs. X1 SUNIF s

FVs. X2_SUNIF s = snd (std.unif_pair_cont s)

We also formalize important concepts of Joint and Marginamn@lative Distribution Functions and
the Independence of a pair of random variables. These ctspkgy a vital role in analyzing soft errors
as will be demonstrated later. Our formalization of thesacepts is based oh [13].

Definition 2 describes the HOL formalization of the joint CBfa pair of random variables mathemati-
cally expressed as:

Py (X1,%2) = P(X1 < X A Xo < X0).

Definition 2: Joint CDF of a Pair of Random Variables
FVX1l X2 x1 x2. joint._cdf X1 X2 x1 x2 =
prob bern {s | (X1 s < x1) A (X2 s < x2)}

whereX1 andX2 are the first and second element of the random variable paix aandx2 are two real
numbers.

The marginal CDF functions of a pair of random variab{&g, X,) is defined as:

Fx]_(Xl) = XETOO Fx]_.xg(Xl,XZ) =P(X1 < x1) and

sz(XZ) = |]!m Fx]_.xg(Xl,XZ) =P(X2 < x2).
X1—00
The HOL formalization of marginal CDF functions is given irefinition 3.

Definition 3: Joint CDF of a Pair of Random Variables
FVZX1l X2 x1. marginal cdf x1 X1 X2 x1 =

lim (An. prob bern {s| (X1 s) < x1 A (X2 s) < (&n))})
FVX1l X2 x2. marginal_cdf x2 X1 X2 x2 =

lim (An. prob bern {s| (X1 s) < (&n) A (X2 s) < x2)})

Two random variable1 andX2 are said to be independent if for every pair of real numkerand
x2 the two eventg X1 < x1} and{X2 < x2} are independent. Which means that the value of one random
variable has no influence on the other and vice versa. Thismist very useful in accurate and realistic
modeling of practical electronic circuits and systems. Wdatatically the notion of independence is
defined as:
P{X1 < x1 A X2 < x2} = P{X1 < x1}.P{X2 < x2}

The HOL formalization is given in Definition 4.
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Definition 4: Independent Random Variable Pair
FVZX1l X2 x1 x2. independent rv_pair X1 X2 x1 x2 =
({s | X1 s < x1 A X2 s < x2} IN events bern) A
(prob bern {s | X1 s < x1 A X2 s < x2} =
prob bern {s | X1 s < x1} * prob bern {s | X2 s < x2})

2.2 Formal Verification of CDF Properties of Pairs of Random \ariables

Using the formal specification of the CDF function for a pdirandom variables, we have formally
verified the classical properties of the CDF of a pair of rand@riables. These properties are verified
under the assumption that the 4et | R s x}, whereR represents a pair of random variables under
consideration, is measurable for all values of the pair. fbinmal proofs for these properties confirm
our formalized specifications of the CDF of a pair of randomaldes. We summarize these results in
Table].

Table 1: CDF properties of continuous random variable pairs

Property Mathematical Description; HOL Formalization
CDF 0 S Fxl-,XZ(X17X2) S l;
Bounds VX1 X2 x1 x2.CDF_pair_in events_bern X1 X2 x1 x2 =
((0 < joint_cdf X1 X2 x1 x2) A (joint_cdf X1 X2 x1 x2 < 1))
CDF FXLXZ(a? c) SFXLXz(bvd);
Monotonic FYabcd (a<b A(c<d A
Non (V x1 x2. CDF_pair_in events_bern X1 X2 x1 x2) =
. ( (joint_cdf X1 X2 a ¢ < joint_cdf X1 X2 b ¢c) A
decreasing S A
(joint_cdf X1 X2 b ¢ < joint_cdf X1 X2 b d) )
lim lim Fx1x2(x1,x2) =Fxpx2(0,0) = 1;
X X2—00 X1—00 ’
CDF Pair F (V X1 x1. CDF_in_events_bern X1 x1) A
at +o (V X1 X2 x1 x2. CDF_pair_in events_bern X1 X2 x1 x2) =
(1im (Anl. 1lim (An2. joint_cdf X1 X2 (& nl1) (& n2))) = 1)
lim Fx1x2(x1,x2) = lim Fxi1x2(x1,x2) = 0;
. X2——00 ’ X1——00 '
CDF Pair F (VX1 X2 x1 x2. CDF_pair_in_events_bern X1 X2 x1 x2) =
at -o ( (1im (An. joint_cdf X1 X2 (- & n) x2) = 0) A
(1im (An. joint._cdf X1 X2 x1 (- & n)) = 0) )

As an example, we present the proof of one such property ldiseiche CDF interval property. The
rest of the formal proofs can be found in [1].
CDF Pair Interval Property
If a, b, c, andd are real numbers with < b, andc < d, then the probability of an interval event of a
pair of random variables isgivenBya < X1 < b, ¢ < X2 < d) = Fxix2(b,d) - Fxixa(b,c)
- Fxixe(a,d) + Fxixe(a,c). The property is formally stated in Theorem 1.

Theorem 1: CDF Pair Useful Interval Property

FVabcd. (a<b) A(c<d A

{s 1 X1 s<aAc<ZX2sAX2s < d} IN events bern A
{sla<XlsAXls<bAc<IX2s A X2s < d} IN events bern
{s | X1 s < a A X2 s < c} IN events bern A

{s | X1 s <b A X2 s < c} IN events bern A

{s 1 X1 s <bAc<ZX2s A X2s < d} IN events bern =

(probbern {s | a < X1 s AXls<DbAc<IX2sAX2s <d} =

<
<
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joint_cdf X1 X2 b d - joint_cdf X1 X2 b ¢ -
joint_cdf X1 X2 a d + joint_cdf X1 X2 a ¢ )

Proof: The proof of this property begins by first showing that thergsda < X1 < b A ¢ <
X2 < d)and(X1 < a A ¢ < X2 < 4) are disjoint. Then we show that P@xX1 <bAc< X2 <
d)+P(X1l<anc< X2 <d)=P(X1<bAc< X2 <d), using the additive law of probabilities [10].
Similarly, we prove that, P(XKbAc< X2 <d)+P(X1<bAX2<c)=P(X1<bAX2<d)and
PXl1<anc<X2<d)+P(Xl<anX2<c)=PXl<aA X2 <d). Finally, we conclude the
proof by rewriting and simplifying with the definitions ofdtjoint CDF function and the above results.
This property states that the probability that the randowtore(X1,X2) falls in a rectangular region
and can be found by combining the values of cumulative istion function at the four corners of the
rectangular region.

2.3 Formalization of Gaussian Random Variable Pairs

Thermal noise in electronic circuits is caused by randonianaif electrons in semiconductor materials
and is typically modeled using Gaussian random variabtethi$ section, we describe the HOL formal-
ization of a pair of independent Gaussian random varialdgguhe Box-Muller method [4]. According
to the Box-Muller method, given a pair of independent stathdidniform random variable§U,,U,), a
pair of independent Gaussian random variable can be faethis:

(G1,Gy) = (\/Tnul COS(Z T Uz), -2 In Uq sin(2 T Ug)).
The HOL formalization of the Gaussian random variable i€giin Tabld 2.

Table 2:Gaussian random variable formalization in HOL

Distribution Formalized Random Variable Pair
Standard FVs. stdgpairrv s =
Gaussian ((v/-2 1n (X1_S_UNIF s) cOS(27T(X2_S_UNIF s))),
0,1) (v/-2 1n (X1_S_UNIF s) sin(2m(X2_S_UNIF s))))
FVs U 0. gpairxrv U 0 s=
Gaussian (u + 0 fst (std_gpairrv s), U + O snd (std_g-pair.rv s))
(o,w FVs. VIG U 0 s = fst (gpairrv U O s);
FVs. V2G 4 0 s = snd (gpairrv U O s)

In this section, we described the formalization of a statidariform random variable pair and the
formalization of a Gaussian random variable pair. These digtributions are used in modeling of
realistic process, supply voltage and temperature vanain electronic circuits. Using the formalization
described in this section, we can for the very first time maahel analyze behavior of analog and mixed
signal circuits in a higher-order logic theorem prover agalson about their functional properties in the
presence of random process and environment variationfu$oate the usefulness of our formalization,
we present an application in the next section.

3 Formal Analysis of Soft Errors in DRAMs

3.1 Dynamic Random Access Memory

Figure[2(a) shows a typical block diagram of a Dynamic Randagess Memory or DRAM. It consists
of address buffers, decoders, memory array, and inputibutyerface circuits. Sense amplifiers are
very sensitive differential amplifiers. A differential afifi@r usually has three inputs. A pair of inputs
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is connected to the two bit lines (Figure 2(b), lineskbi), The third input is used to enable the sense
amplifier (gr). The amplifier increases the amplitude of the differengeali between the two bit lines
and thermal noise can affect the operation of the sense f@npFigure 2(b) shows a balanced bit-line
architecture of a commercial DRAM. In this architecture sease amplifier connects to the bit line of
two identical arrays. The circuit diagram shows one trdosistorage cellsCs, dummy cellsCp, and
the sense amplifier. The loading effects of the pre-chagfeesh and the input output devices of the
DRAM are included irCg. More details can be found in[11].

cl CZ CS CN
LA 2 2 J
| Column Address Decoder bi Sen_s¢ E
Input Buffers . | | | Jf Amplifier JI_ | | | _
DIN =>1Input / Output /Refresh CKTs |.><_| LDL
o R ks T :
ouT
RJE o8 IS e ks Ao | Ao s
2 Y

Rg__) ® g § Memory Array

?Q § Woo W 0 do Wi Wiy
Ry

(a) (b)

Figure 2: DRAM block diagram (a), balanced bit-line arctitee (b), PDF of non-ideal sense amplifier
bit line voltages[[14] (c).

We model the voltages on the two bit lines connected to thet:pf a non-ideal sense amplifier as
two independent Gaussian random variabess(- BB,VBBn) andV,_ G(VBBNBBn) wherevgg, represents
the standard deviation of the thermal noise! [14]. Fidure g8tmws the probability density functions
(PDF) for the two inputs to the sense amplifier. The vertitelded area represents the probability of
detecting a logic “1” in the DRAM cell due to the noise when atffa logic “0” is stored in that loca-
tion. Similarly, the horizontally shaded region corresg®o detecting a logic “0” when in fact a logic
“1” is stored in the memory. The probabilities of a low levelitg detected as high and that of a high

_ W _(yLo
level being detected as low, at the two bit lines, is giverRfy; % +vy <Vi_-G) = Q (”V"T(VBB)> :
BB
w _vH
andP(Vo G < ¥ +vy) =1-Q ( 2 +V3§BVBB>’ respectively. Where the insensitivity width and the sen-

sitivity center deviation are given by, = 0Vgg andvy = xVgg, where 0< x,0 <1 [14]. Using these
assumptions and that both 0 and 1 errors are equally likelyctmur, the soft error rate is given by:

Perror = erfc{ (1 g - X)] . Where error functiong(rfc) is de-

Vg 5 ViE
f\/_ (1—§+x>] + erfc{f\/_
fined as:erfc(x) = 2Q <\/§x) Next, we formally verify this result using the proposedniatization.

3.2 \Verification of soft error rates

Based on the proposed methodology described in Sectioe firshstep is to formally represent the
Non-ideal sense amplifier soft error rate model, which caddre as follows:
Definition 4' Non-ideal Sense Amplifier SER Model
FV Vgg Vit vBBn Viv Vd -
non._ 1dea1 ser V VH Vegn Vw Vd =
3 (P{sl( d——) (V1 G (—Vas) Vegn )} +
]P’{S\(VZ G Vg Vegn S) < (Va+%)})
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Now based on this formal definition, we can formally verifg ttollowing useful probabilistic rela-
tionship regarding the soft error rate for a non-ideal semsplifier in the presence of thermal noise and
parameter variations.

Theorem 2: Non-ideal Sense Amplifier Soft Error Rate

FVYabf Vé_igVé'gVBgn o X.

((a<b) A (¥x. (a<x) A (x<b) = (f diffl (At. ﬁe—g) x) x) A (Qlab=£fb
-fa AN @Qy-= r!mn (An. Q1 y Gn))) A

(Vx. Qx=%erfc(%))/\(VzuG. (0<0) = (P{s|z<ViGuos}=Q

EEN A Vzpo (0<o) = Pfs [z<VeGpuost=0aEE) A 0<8) A
(0<1) A (0<X) A (X<1) A (Vi = SVED A (vg = X Vi) A (0 < vggy) A
(Vé‘gz—\(/é:g) A Q) +QC¢-y) = 1) j non_ideal _ser Vgz Vit Vegn =
1 BB _9 1 BB _0_
rerto( gz [1-3x]) + derre( % [1-5-x))
The predicate( (f diffl (At. V%Te‘% x) x) in the first assumption states that the differen-
tial of the functionf with respect ta is the function At. \/%Te‘g). The second assumption states that
Q1 is a function with two real argumenssandb, and it returns areal valu(b) - £ (a), whichis equal

to the value of the definite integral ok (. \/%Te‘%. The third assumption then formally represents the
Q function as the limit value of functioQ1 when its second argument tends to infinity. The fourth as-
sumption describes the relationship betweengthenction and the error functioretfc, defined inl[1]).
Assumptions 5 and 6 explicitly state that the probabilitéthe random variableg; G andV,_G taking
values greater than an arbitrary real numbes given byQ (%). Assumptions 7, 8, 9, 10, 11, and 12
state tha® and x which relate the insensitivity widthu§ = 6VE§'§) and the sensitivity deviatiornv{ = x
Vg'g) parameters to the mean values of the Gaussian random leaNabG andV,_G, are real numbers
and can only take values in the closed real interval [0,1F fHirteenth assumption makes sure that the
standard deviation of the thermal noise is a non zero pesitiue (0< vgg ). The fourteenth assump-
tion (\/E';g: —VE'jg) states that the sense amplifier at its inputs sees two eqdabgposite polarity dc
signals represented Mg'g andvég, respectively. The fifteenth assumption states an impbpiaperty
of the Q function that the total area under the Q function isabtp 1.

Proof: We begin the proof by rewriting the right hand side of Theo@mith the definition of the

complementary error functiodvx. Q x = % erfc (%)), the property of Q function (Q(x)+Q(-

x)=1), and three other assumptions of Theorem 2, thatjss V4L, va = x Vit andVis = —Vik.
This reduces the righthand side of the proof goal}¢1 —P{s|(va+%) < (V-G VL veg, 9)}] +
$P{s|(va — %) < (V1-G (Va5 Vean S)}. Now using the fact thaP(x < a) + P(a < x) = 1, we rewrite
the first term in the above expression as:

T [P{sl(Va-G ViE Vg 8) < (va+%)}] +

1P{s|(va— %) < (V1-G (~V&5) Vean 9}

Finally, rewriting the left hand side of the proof goal withetdefinition of thenon_ideal_ser and
the assumptioNg; = — VL, we conclude the proof. More detailed description of thevpoan be found
in [1].

The HOL code describing our formalization and the soft erate analysis consists of approximately
1800 lines of code and took over 100 man-hours to complete.r@sults we presented are guaranteed to
be accurate, unlike the simulation based analysis, andesrerig due to the universally quantified vari-

ables. Such analysis was not possible in the HOL theorerepearlier because of lack of formalization
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of pairs of continuous standard uniform and Gaussian rangwiables which is one of the contributions
of this work.

4 Conclusion

In this paper, we presented a method for formal analysis fvfestors in electronic circuits using real
and independent random variables. We presented the faatiah of independent continuous random
variable pairs with Uniform and Gaussian distributions. dféscribed soft error rate analysis of a non-
ideal sense amplifier circuit commonly used in DRAMSs.

Our formalization of Gaussian random variable can be uspdtiorm bit error rate analysis of com-
munication receivers utilizing various modulation schersach as ASK, PSK and QAM modulations
in the presence of additive white Gaussian noise. We aremlyrworking on formalization of lists
of independent random variables to be able to tackle prablgith more than two random variables in
HOL.
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