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Modeling and analysis of soft errors in electronic circuitshas traditionally been done using computer
simulations. Computer simulations cannot guarantee correctness of analysis because they utilize
approximate real number representations and pseudo randomnumbers in the analysis and thus are
not well suited for analyzing safety-critical applications. In this paper, we present a higher-order
logic theorem proving based method for modeling and analysis of soft errors in electronic circuits.
Our developed infrastructure includes formalized continuous random variable pairs, their Cumulative
Distribution Function (CDF) properties and independent standard uniform and Gaussian random
variables. We illustrate the usefulness of our approach by modeling and analyzing soft errors in
commonly used dynamic random access memory sense amplifier circuits.

1 Introduction

In many safety critical applications, such as in avionics, electronic equipment operates in harsh environ-
ments and experiences extreme temperatures and excessive doses of solar and cosmic radiations. This
can often result in change in the state of the charge storage nodes in electronic circuits. Such abnormal
changes in the states of storage nodes in electronic circuits are called soft errors [14]. These nonrecurrent
and non permanent errors can cause an electronic system to behave in an un predictable way. There are
four commonly known causes of soft errors in logic and memorycircuits: 1) undesirable capacitive cou-
pling of circuit elements [12], 2) circuit parameter fluctuations and variations, 3) ionizing particle and
EM radiation, and 4) built-in thermal, shot and 1/f noise. Good circuit design and layout techniques can
be used to effectively eliminate soft errors due to undesirable capacitive coupling and circuit parameter
variations [2]. In order to deal with the other two types of soft errors accurate analysis of the design is
required [14,15].

Soft error occurrence mechanism is random in nature and is usually analyzed using simulation based
techniques such as Monte carlo simulation methods [16]. These techniques tend to be inaccurate and
slow and are unsatisfactory for safety critical applications. Realistic analysis of most practical linear
and non-linear circuits involves real and random variables. Formal methods based techniques, such as
probabilistic model checking, are unsuitable for the analysis of such problems as it is usually not possible
to accurately model the continuous electronic circuit behavior using finite state systems.

In this paper, we apply the higher-order logic theorem proving method [5] to the problem of random
effect modeling and analysis in electronic circuits. The main reason for using higher-order logic is
to leverage upon its high expressiveness, which allows us toprecisely model any system that can be
expressed mathematically. Thus, it allows us to construct true continuous and randomized models of
electronic circuits and thus alleviates the limitations ofsimulation and model checking based analysis
techniques. These models are then used to form an equivalence or an implication relation with their
specifications. These boolean relationships are then proved using mathematical reasoning in the sound
core of the HOL theorem prover.
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Probabilistic analysis infrastructure has been developedin HOL during the last decade. Hurd formal-
ized discrete random variables having Uniform, Bernoulli,Binomial, and Geometric probability mass
functions in the HOL theorem prover [10]. Audebaud et al., describe a method for proving properties of
randomized algorithms in Coq proof assistant [3]. They use functional and algebraic properties of unit
interval to show the validity of general rules for estimating the probabilities of randomized algorithms.
However, similar to Hurd’s work, their approach can only address discrete distributions. Hasan, build-
ing on Hurds work, formalized statistical properties of single and multiple discrete random variables,
continuous random variables with various distributions using inverse transform method [7] and veri-
fied their probabilistic and some statistical properties [8]. Harrison [6] formalized the guage integration
on finite-dimensional Euclidean spaces, which is quite similar to product space of Lebesgue measures.
Okazaki and Shidama [19] formalized properties of real valued random vairables in Mizar. More re-
cently, Hoelzl [9] and Mhamdi [17, 18] formalized basic notions of measure, topology and lebesgue
integration. These formalisms are based on extended real numbers and are thus more expressive than
Hurds formalization of probability theory. However, they do not contain a specific probability space due
to which they cannot be used to verify random variable functions. Since, soft error is primarily based
on modeling the uncertainties by appropriate random variables so we have chosen Hurd’s formalization
of measure theory for this work. To the best of our knowledge,the foremost foundations of soft error
analysis of electronic circuits, such as the formalizationof continuous random variable pair, its classic
Cumulative Distribution Function (CDF) properties, and the formalization of Gaussian random variable
pair do not exist in literature and is presented for the very first time in this paper.

Our proposed method is shown in Figure 1. We build on existingreal number, transcendental func-
tion, set, measure, and probability theories in the HOL theorem prover. Our developed infrastructure
includes formalization of a continuous random variable pair using an approach similar to [7]. We have
formalized important notions of joint and marginal cumulative distribution functions and the indepen-
dence of random variable pairs. Using the specification of random variable pairs, we then verify their
CDF properties by interactively constructing the proofs ofthese properties for arbitrary continuous ran-
dom variables. Then using Inverse Transform Method, we haveformalized random variable pairs for
which inverse CDF function of the cumulative probability distribution function exists.

Figure 1: Proposed methodology for circuit analysis
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In this paper, we also describe the formalization of a pair ofindependent Gaussian random variables
using the Box-Muller method [4]. We then utilize these variables in the modeling and formal analysis of
soft errors caused by thermal noise in sense amplifier circuit of a DRAM. In a typical analysis using our
proposed method, the design and the best, nominal and worst case specifications are first expressed using
higher-order logic. Uncertain design and operating environment behaviors are then accurately modeled
using formalized random variables in higher-order logic. Design uncertainties include noise and device
model parameter variations. Realistic and accurate operating environment uncertainties include effects
such as variations in the operating temperature, supply voltage, and varying doses of incident particle
and electromagnetic radiation. Finally, the analysis is carried out interactively in the trusted kernel of the
HOL theorem prover and formal circuit and system analysis proofs are constructed.

The rest of the paper is organized as follows: Section 2 describes the formalization of continuous
random variable pair, verification of its classical properties, and formalization of standard Uniform and
Gaussian random variable pairs. Using the developed infrastructure, we describe an accurate analysis of
soft errors in the sense amplifier of dynamic random access memories in Section 3. Finally, Section 4
concludes the paper.

2 Formalization of Continuous Random Variables

In Hurd’s formalization [10], a random variableF is a higher-order logic probabilistic function which
takes a parameter of typeα and an infinite Boolean sequence, ranges over values of typeβ and upon
termination returns the remaining portion of the infinite Boolean sequence.

F : α → B∞ → β ×B∞

Hurd formalized four probabilistic algorithms with Uniform, Bernoulli, Binomial, and Geometric
probability mass functions. Hasan [7], building on Hurd’s work, formalized a standard uniform random
variable as a special case of the discrete version of a uniform random variable, as given in Equation 1.

lim
n→∞

(λn.
n−1

∑
k=0

(
1
2
)k+1Xk) (1)

where(λn.
n−1

∑
k=0

(
1
2
)k+1Xk) represents the discrete uniform random variable. Hasan’s formal specification

of the standard uniform random variable in HOL is given in Definition 1, and is based on Equation 1.
Definition 1: Standard Uniform Random Variable[7]
⊢ ∀ s. std unif cont s = lim (λn. fst (std unif disc n s))

The functionstd unif disc is a standard discrete uniform random variable in HOL. It takes two argu-
ments, a natural number (n:num) and an infinite sequence of random bits (s:num→bool). The function
utilizes these two arguments and returns a pair of type (real, num→bool). The real value corresponds to
the value of the random variable and the second element in thepair is the unused portion of the infinite
boolean sequence. The functionfst takes a pair as input and returns the first element of the pair,and
the functionlim P in HOL is the formalization of the limit of a real sequenceP. Using Inverse Trans-
form Method (ITM), Hasan formalized uniform, triangular, exponential and rayleigh random variables.
Hasan’s HOL formalization of a standard uniform random variableuniform rv is as follows:

⊢ ∀s a b. uniform rv a b s = (b - a)(std unif cont s) + a.
Wherea andb are the two real parameters of the uniform random variable. We build upon these founda-
tions to formalize pairs of continuous random variables in this paper.
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2.1 Continuous Random Variable Pairs

Multiple independent random variables are often required to model and analyze hard to predict and ran-
dom behaviour of electronic circuits and systems. To perform such modeling and analysis in a theorem
proving environment formalized independent random variables are needed. Building on Hasan’s work,
we formalize a pair of Uniform continuous random variables as:

( lim
n→∞

(λn.
n−1

∑
k=0

(
1
2
)k+1X1k), lim

n→∞
(λn.

n−1

∑
k=0

(
1
2
)k+1X2k)),

where(λn.
n−1

∑
k=0

(
1
2
)k+1Xik), i ∈ {1,2}, represents a discrete uniform random variable. The HOL formal-

ization of a pair of Uniform continuous random variables is given by:
⊢ ∀s. std unif pair cont s= ( lim

n→∞
(λn. fst (std unif disc n (seven s))),

lim
n→∞

(λn. fst (std unif disc n (sodd s))))

⊢ ∀s. X1 S UNIF s = fst (std unif pair cont s);
⊢ ∀s. X2 S UNIF s = snd (std unif pair cont s)

We also formalize important concepts of Joint and Marginal Cumulative Distribution Functions and
the Independence of a pair of random variables. These concepts play a vital role in analyzing soft errors
as will be demonstrated later. Our formalization of these concepts is based on [13].
Definition 2 describes the HOL formalization of the joint CDFof a pair of random variables mathemati-
cally expressed as:

FX1,X2(x1,x2) = P(X1 ≤ x1∧X2 ≤ x2).

Definition 2: Joint CDF of a Pair of Random Variables
⊢ ∀ X1 X2 x1 x2. joint cdf X1 X2 x1 x2 =

prob bern {s | (X1 s ≤ x1) ∧ (X2 s ≤ x2)}

whereX1 andX2 are the first and second element of the random variable pair and x1 andx2 are two real
numbers.

The marginal CDF functions of a pair of random variables(X1,X2) is defined as:
FX1(x1) = lim

x2→∞
FX1,X2(x1,x2) = P(X1 ≤ x1) and

FX2(x2) = lim
x1→∞

FX1,X2(x1,x2) = P(X2 ≤ x2).

The HOL formalization of marginal CDF functions is given in Definition 3.

Definition 3: Joint CDF of a Pair of Random Variables
⊢ ∀ X1 X2 x1. marginal cdf x1 X1 X2 x1 =

lim (λn. prob bern {s| (X1 s) ≤ x1 ∧ (X2 s) ≤ (&n))})
⊢ ∀ X1 X2 x2. marginal cdf x2 X1 X2 x2 =

lim (λn. prob bern {s| (X1 s) ≤ (&n) ∧ (X2 s) ≤ x2)})

Two random variablesX1 andX2 are said to be independent if for every pair of real numbersx1 and
x2 the two events{X1 ≤ x1} and{X2≤ x2} are independent. Which means that the value of one random
variable has no influence on the other and vice versa. This notion is very useful in accurate and realistic
modeling of practical electronic circuits and systems. Mathematically the notion of independence is
defined as:
P{X1 ≤ x1 ∧ X2 ≤ x2} = P{X1 ≤ x1}.P{X2 ≤ x2}

The HOL formalization is given in Definition 4.
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Definition 4: Independent Random Variable Pair
⊢ ∀ X1 X2 x1 x2. independent rv pair X1 X2 x1 x2 =

({s | X1 s ≤ x1 ∧ X2 s ≤ x2} IN events bern) ∧
(prob bern {s | X1 s ≤ x1 ∧ X2 s ≤ x2} =

prob bern {s | X1 s ≤ x1} * prob bern {s | X2 s ≤ x2})

2.2 Formal Verification of CDF Properties of Pairs of Random Variables

Using the formal specification of the CDF function for a pair of random variables, we have formally
verified the classical properties of the CDF of a pair of random variables. These properties are verified
under the assumption that the set{s | R s x}, whereR represents a pair of random variables under
consideration, is measurable for all values of the pair. Theformal proofs for these properties confirm
our formalized specifications of the CDF of a pair of random variables. We summarize these results in
Table 1.

Table 1: CDF properties of continuous random variable pairs
Property Mathematical Description; HOL Formalization

CDF

Bounds

0≤ FX1,X2(x1,x2)≤ 1;
⊢ ∀X1 X2 x1 x2.CDF pair in events bern X1 X2 x1 x2 ⇒
((0 ≤ joint cdf X1 X2 x1 x2) ∧ (joint cdf X1 X2 x1 x2 ≤ 1))

CDF

Monotonic

Non

decreasing

FX1,X2(a,c) ≤FX1,X2(b,d);
⊢ ∀a b c d. (a < b) ∧ (c < d) ∧
(∀ x1 x2. CDF pair in events bern X1 X2 x1 x2) ⇒
( (joint cdf X1 X2 a c ≤ joint cdf X1 X2 b c) ∧
(joint cdf X1 X2 b c ≤ joint cdf X1 X2 b d) )

CDF Pair

at +∞

lim
x2→∞

lim
x1→∞

FX1,X2(x1,x2) =FX1,X2(∞,∞) = 1;

⊢ (∀ X1 x1. CDF in events bern X1 x1) ∧
(∀ X1 X2 x1 x2. CDF pair in events bern X1 X2 x1 x2) ⇒
(lim (λn1. lim (λn2. joint cdf X1 X2 (& n1) (& n2))) = 1)

CDF Pair

at -∞

lim
x2→−∞

FX1,X2(x1,x2) = lim
x1→−∞

FX1,X2(x1,x2) = 0;

⊢ (∀X1 X2 x1 x2. CDF pair in events bern X1 X2 x1 x2) ⇒
( (lim (λn. joint cdf X1 X2 (- & n) x2) = 0) ∧
(lim (λn. joint cdf X1 X2 x1 (- & n)) = 0) )

As an example, we present the proof of one such property here called the CDF interval property. The
rest of the formal proofs can be found in [1].
CDF Pair Interval Property
If a, b, c, andd are real numbers witha < b, andc < d, then the probability of an interval event of a
pair of random variables is given byP(a < X1 ≤ b, c < X2 ≤ d) = FX1,X2(b,d) - FX1,X2(b,c)

- FX1,X2(a,d) + FX1,X2(a,c). The property is formally stated in Theorem 1.

Theorem 1: CDF Pair Useful Interval Property
⊢ ∀a b c d. (a < b) ∧ (c < d) ∧
{s | X1 s ≤ a ∧ c < X2 s ∧ X2 s ≤ d} IN events bern ∧
{s | a < X1 s ∧ X1 s ≤ b ∧ c < X2 s ∧ X2 s ≤ d} IN events bern

{s | X1 s ≤ a ∧ X2 s ≤ c} IN events bern ∧
{s | X1 s ≤ b ∧ X2 s ≤ c} IN events bern ∧
{s | X1 s ≤ b ∧ c < X2 s ∧ X2 s ≤ d} IN events bern ⇒
( prob bern {s | a < X1 s ∧ X1 s ≤ b ∧ c < X2 s ∧ X2 s ≤ d} =
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joint cdf X1 X2 b d - joint cdf X1 X2 b c -

joint cdf X1 X2 a d + joint cdf X1 X2 a c )

Proof: The proof of this property begins by first showing that the events (a < X1 ≤ b ∧ c <

X2 ≤ d) and(X1 ≤ a ∧ c < X2 ≤ d) are disjoint. Then we show that P(a< X1 ≤ b∧ c< X2 ≤
d) + P(X1≤ a∧ c < X2 ≤ d) = P(X1≤ b ∧ c < X2 ≤ d), using the additive law of probabilities [10].
Similarly, we prove that, P(X1≤ b ∧ c < X2 ≤ d) + P(X1≤ b ∧ X2 ≤ c) = P(X1≤ b ∧ X2 ≤ d) and
P(X1 ≤ a ∧ c < X2 ≤ d) + P(X1≤ a ∧ X2 ≤ c) = P(X1≤ a ∧ X2 ≤ d). Finally, we conclude the
proof by rewriting and simplifying with the definitions of the joint CDF function and the above results.
This property states that the probability that the random vector (X1,X2) falls in a rectangular region
and can be found by combining the values of cumulative distribution function at the four corners of the
rectangular region.

2.3 Formalization of Gaussian Random Variable Pairs

Thermal noise in electronic circuits is caused by random motion of electrons in semiconductor materials
and is typically modeled using Gaussian random variables. In this section, we describe the HOL formal-
ization of a pair of independent Gaussian random variables using the Box-Muller method [4]. According
to the Box-Muller method, given a pair of independent standard Uniform random variables(U1,U2), a
pair of independent Gaussian random variable can be formalized as:

(G1,G2) = (
√
−2 ln U1 cos(2 π U2),

√
−2 ln U1 sin(2 π U2)).

The HOL formalization of the Gaussian random variable is given in Table 2.

Table 2:Gaussian random variable formalization in HOL
Distribution Formalized Random Variable Pair
Standard

Gaussian

(0,1)

⊢ ∀s. std g pair rv s =

((
√
-2 ln (X1 S UNIF s) cos(2π(X2 S UNIF s))),

(
√
-2 ln (X1 S UNIF s) sin(2π(X2 S UNIF s))))

Gaussian

(σ,µ)

⊢ ∀s µ σ. g pair rv µ σ s=
(µ + σ fst (std g pair rv s), µ + σ snd (std g pair rv s))

⊢ ∀s. V1 G µ σ s = fst (g pair rv µ σ s);
⊢ ∀s. V2 G µ σ s = snd (g pair rv µ σ s)

In this section, we described the formalization of a standard uniform random variable pair and the
formalization of a Gaussian random variable pair. These twodistributions are used in modeling of
realistic process, supply voltage and temperature variations in electronic circuits. Using the formalization
described in this section, we can for the very first time modeland analyze behavior of analog and mixed
signal circuits in a higher-order logic theorem prover and reason about their functional properties in the
presence of random process and environment variations. To illustrate the usefulness of our formalization,
we present an application in the next section.

3 Formal Analysis of Soft Errors in DRAMs

3.1 Dynamic Random Access Memory

Figure 2(a) shows a typical block diagram of a Dynamic RandomAccess Memory or DRAM. It consists
of address buffers, decoders, memory array, and input/output interface circuits. Sense amplifiers are
very sensitive differential amplifiers. A differential amplifier usually has three inputs. A pair of inputs
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is connected to the two bit lines (Figure 2(b), lines bit,bit). The third input is used to enable the sense
amplifier (φR). The amplifier increases the amplitude of the difference signal between the two bit lines
and thermal noise can affect the operation of the sense amplifier. Figure 2(b) shows a balanced bit-line
architecture of a commercial DRAM. In this architecture onesense amplifier connects to the bit line of
two identical arrays. The circuit diagram shows one transistor storage cells,CS, dummy cells,CD, and
the sense amplifier. The loading effects of the pre-charge, refresh and the input output devices of the
DRAM are included inCB. More details can be found in [11].
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Figure 2: DRAM block diagram (a), balanced bit-line architecture (b), PDF of non-ideal sense amplifier
bit line voltages [14] (c).

We model the voltages on the two bit lines connected to the inputs of a non-ideal sense amplifier as
two independent Gaussian random variablesV1 G(-VL

BB
,vBBn) andV2 G(VH

BB
,vBBn), wherevBBn represents

the standard deviation of the thermal noise [14]. Figure 2(c) shows the probability density functions
(PDF) for the two inputs to the sense amplifier. The vertical shaded area represents the probability of
detecting a logic “1” in the DRAM cell due to the noise when in fact a logic “0” is stored in that loca-
tion. Similarly, the horizontally shaded region corresponds to detecting a logic “0” when in fact a logic
“1” is stored in the memory. The probabilities of a low level being detected as high and that of a high

level being detected as low, at the two bit lines, is given by,P(− vw
2 +vd <V1 G) = Q

(

− vw
2 +vd−(−VL

BB̄)√
v2

BB̄

)

,

andP(V2 G≤ vw
2 + vd) = 1−Q

(

vw
2 +vd−VH

BB̄√
v2

BB̄

)

, respectively. Where the insensitivity width and the sen-

sitivity center deviation are given byvw = δVBB̄ andvd = χVBB̄, where 0≤ χ ,δ ≤ 1 [14]. Using these
assumptions and that both 0 and 1 errors are equally likely tooccur, the soft error rate is given by:

Perror =
1
4erfc

[

VL
BB̄√

2
√

v2
BB̄

(

1− δ
2 + χ

)

]

+ 1
4erfc

[

VH
BB̄√

2
√

v2
BB̄

(

1− δ
2 − χ

)

]

. Where error function (erfc) is de-

fined as:er f c(x) = 2Q
(√

2x
)

. Next, we formally verify this result using the proposed formalization.

3.2 Verification of soft error rates

Based on the proposed methodology described in Section 1, the first step is to formally represent the
Non-ideal sense amplifier soft error rate model, which can bedone as follows:
Definition 4: Non-ideal Sense Amplifier SER Model
⊢ ∀ VL

BB̄ VH
BB̄ vBB̄n vw vd.

non ideal ser VL
BB̄ VH

BB̄ vBB̄n vw vd =
1
2(P{s|(vd − vw

2 )< (V1 G (−VL
BB̄) vBB̄n s)} +

P{s|(V2 G VH
BB̄ vBB̄n s)≤ (vd +

vw
2 )})
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Now based on this formal definition, we can formally verify the following useful probabilistic rela-
tionship regarding the soft error rate for a non-ideal senseamplifier in the presence of thermal noise and
parameter variations.

Theorem 2: Non-ideal Sense Amplifier Soft Error Rate
⊢ ∀ a b f VH

BB̄ VL
BB̄ vBB̄n δ χ.

((a≤b) ∧ (∀x. (a≤x) ∧ (x≤b) ⇒ (f diffl (λt. 1√
2π

e−
t2
2 ) x) x) ∧ (Q1 a b = f b

- f a) ∧ (Q y = lim
n→∞

(λn. Q1 y (&n))) ∧
(∀x. Q x = 1

2 erfc ( x√
2
)) ∧ (∀z µ σ. (0 < σ) ⇒ (P{s | z < V1 G µ σ s} = Q

(
z−µ

σ )) ∧ (∀z µ σ. (0 < σ) ⇒ (P{s | z < V2 G µ σ s} = Q (
z−µ

σ )) ∧ (0≤δ) ∧
(δ≤1) ∧ (0≤χ) ∧ (χ≤1) ∧ (vw = δVH

BB̄) ∧ (vd = χ VH
BB̄) ∧ (0 < vBB̄n) ∧

(VL
BB̄ =−VH

BB̄) ∧ (Q(y) + Q(-y) = 1) ⇒ non ideal ser VL
BB̄ VH

BB̄ vBB̄n =

1
4erfc

(

VH
BB̄√

2 vBB̄n

[

1− δ
2 + χ

])

+ 1
4erfc

(

VL
BB̄√

2 vBB̄n

[

1− δ
2 − χ

])

The predicate((f diffl (λt. 1√
2π e−

t2
2 ) x) x) in the first assumption states that the differen-

tial of the functionf with respect tox is the function (λ t. 1√
2π

e−
t2
2 ). The second assumption states that

Q1 is a function with two real argumentsa andb, and it returns a real valuef(b) - f(a), which is equal

to the value of the definite integral of (λ t. 1√
2π e−

t2
2 ). The third assumption then formally represents the

Q function as the limit value of functionQ1 when its second argument tends to infinity. The fourth as-
sumption describes the relationship between theQ function and the error function (erfc, defined in [1]).
Assumptions 5 and 6 explicitly state that the probabilitiesof the random variablesV1 G andV2 G taking
values greater than an arbitrary real numberz is given byQ (

z−µ
σ ). Assumptions 7, 8, 9, 10, 11, and 12

state thatδ andχ which relate the insensitivity width (vw = δVH
BB̄) and the sensitivity deviation (vd = χ

VH
BB̄) parameters to the mean values of the Gaussian random variablesV1 G andV2 G, are real numbers

and can only take values in the closed real interval [0,1]. The thirteenth assumption makes sure that the
standard deviation of the thermal noise is a non zero positive value (0< vBB̄n

). The fourteenth assump-
tion (VL

BB̄ = −VH
BB̄) states that the sense amplifier at its inputs sees two equal and opposite polarity dc

signals represented byVH
BB̄ andVL

BB̄, respectively. The fifteenth assumption states an important property
of the Q function that the total area under the Q function is equal to 1.

Proof: We begin the proof by rewriting the right hand side of Theorem2 with the definition of the
complementary error function(∀x. Q x = 1

2 erfc ( x√
2
)), the property of Q function (Q(x)+Q(-

x)=1), and three other assumptions of Theorem 2, that is,vw = δVH
BB̄, vd = χ VH

BB̄ andVL
BB̄ = −VH

BB̄.
This reduces the righthand side of the proof goal to:1

2

[

1−P{s|(vd +
vw
2 ) < (V2 G VH

BB̄ vBB̄n s)}
]

+
1
2P{s|(vd − vw

2 )< (V1 G (VH
BB̄) vBB̄n s)}. Now using the fact thatP(x≤ a)+P(a< x) = 1, we rewrite

the first term in the above expression as:
1
2

[

P{s|(V2 G VH
BB̄ vBB̄n s) ≤ (vd +

vw
2 )}

]

+
1
2P{s|(vd − vw

2 )< (V1 G (−VL
BB̄) vBB̄n s)}.

Finally, rewriting the left hand side of the proof goal with the definition of thenon ideal ser and
the assumptionVL

BB̄ =−VH
BB̄, we conclude the proof. More detailed description of the proof can be found

in [1].
The HOL code describing our formalization and the soft errorrate analysis consists of approximately

1800 lines of code and took over 100 man-hours to complete. The results we presented are guaranteed to
be accurate, unlike the simulation based analysis, and are generic due to the universally quantified vari-
ables. Such analysis was not possible in the HOL theorem prover earlier because of lack of formalization
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of pairs of continuous standard uniform and Gaussian randomvariables which is one of the contributions
of this work.

4 Conclusion

In this paper, we presented a method for formal analysis of soft errors in electronic circuits using real
and independent random variables. We presented the formalization of independent continuous random
variable pairs with Uniform and Gaussian distributions. Wedescribed soft error rate analysis of a non-
ideal sense amplifier circuit commonly used in DRAMs.

Our formalization of Gaussian random variable can be used toperform bit error rate analysis of com-
munication receivers utilizing various modulation schemes such as ASK, PSK and QAM modulations
in the presence of additive white Gaussian noise. We are currently working on formalization of lists
of independent random variables to be able to tackle problems with more than two random variables in
HOL.
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