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In this note, I develop my personal view on the scope and relevance of symbolic computation in

software science. For this, I discuss the interaction and differences between symbolic computation,

software science, automatic programming, mathematical knowledge management, artificial intelli-

gence, algorithmic intelligence, numerical computation, and machine learning. In the discussion of

these notions, I allow myself to refer also to papers (1982, 1985, 2001, 2003, 2013) of mine in which

I expressed my views on these areas at early stages of some of these fields.

The Intention of This Note

It is a great joy to see that the SCSS (Symbolic Computation in Software Science) conference series,

this year, experiences its 9th edition. A big Thank You to the organizers, referees, and contributors who

kept the series going over the years! The series emerged from a couple of meetings of research groups

in Austria, Japan, and Tunisia, including my Theorema Group at RISC, see the home pages of the SCSS

series since 2006. In 2012, we decided to define “Symbolic Computation in Software Science” as the

scope for our meetings and to establish them as an open conference series with this title.

As always, when one puts two terms like “symbolic computation” and “software science” together,

one is tempted to read the preposition in between - in our case “in” - as just a set-theoretic union.

Pragmatically, this is reasonable if one does not want to embark on scrutinizing discussions. However,

since I was one of the initiators of the SCSS series, let me take the opportunity to explain the intention

behind SC in SS in this note. Also, this note, for me, is a kind of revision and summary of thoughts I

had over the years on the subject of SCSS and related subjects. Hence, allow me to refer to a couple

of my papers with basic considerations on the subject. I do not discuss, however, any of my technical

contributions to the subject of SCSS (which would be, mainly, Gröbner bases and the Theorema system).

In some way, this note continues, updates, and specializes the note on mathematics in the 21st century I

gave at the beginning of SCSS 2013, see [3], from which I quote:

In my view, mathematics of the 21st century will evolve as a unified body of mathemat-

ical logic, abstract structural mathematics, and computer mathematics with no boundaries

between the three aspects. Working mathematicians will have to master the three aspects

equally well and integrate them into their daily work. More specifically, working in math-

ematics will proceed on the object level of developing new mathematical content (abstract

knowledge and computational methods) and, at the same time, on the meta-level of develop-

ing automated reasoning methods for supporting research on the object level. This massage

of the mathematical brain by jumping back and forth between the object and the meta-level

will guide mathematics onto a new level of sophistication. Symbolic computation is just a
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way of expressing this general view of mathematics of the 21 st century and it also should

be clear that software science is just another way of expressing the algorithmic aspect of this

view.

Continuing the discussion on the intended meaning of “Symbolic Computation in Software Science”

in this note will hopefully help to advocate the central importance of this topic for the future of mathe-

matics, logic, and computer science. This should also motivate more and more people to submit papers

to the conferences in the SCSS series.

What is Symbolic Computation?

In 1984, Academic Press London issued a call for designing a new journal for a new field that had

emerged approximately since 1960. Various names were in use for this field: computer algebra, symbolic

and algebraic manipulation, analytic computation, formula manipulation, computation in finite terms,

symbolic computation, and others. As a response to this call, I submitted a proposal to Academic Press

for a “Journal of Symbolic Computation”. My proposal was selected and my clarification of the scope

of “symbolic computation” formed also the Editorial of the journal, see [2].

I defined “symbolic computation” as the area that deals with algorithms on symbolic objects, and I

proposed “symbolic objects” to be defined as finitary representations of infinite mathematical entities.

Here, “finitary” means “storable in a computer memory”. For example, finitely many generators with

finitely many relations between words formed from the generators form a finitary object that may repre-

sent an infinite group (or, at least, a “large” group, i.e. a group whose number of elements is much much

larger than the size of the finitary representation). Algorithms can only work on finitary objects and the

flavor of “symbolic” is exactly the point that we want to solve problems on infinite (or “large”) mathe-

matical entities by finding algorithms that work on finitary (small), “symbolic”, representations of these

entities. Also, numerical computation works on finitary representations (for example, lists of rational

numbers that represent a function consisting of infinitely many pairs of real numbers). In this sense, nu-

merical computation is a subfield of symbolic computation. However, usually, for algorithms to be called

“symbolic” we request that the representation of the abstract mathematical domains by finitary domains

must be an isomorphism w.r.t. to the operations on the objects we study. In numerical computation, for

the sake of efficiency, this request has to be given up. Instead, we are satisfied with “approximations”.

Pragmatically, in the editorial of the Journal of Symbolic Computation, I named three main areas

for symbolic computation: computer algebra, automated reasoning, and “automatic programming”.

I also emphasized that all aspects of these areas should be in the scope of the Journal of Symbolic

Computation: mathematical theory on which symbolic algorithms can be based, the algorithms with

their correctness proofs and complexity analysis, the details of the implementation of the algorithms,

languages and software systems for symbolic computation, and applications. Indeed, the three main

branches of symbolic computation consider three important classes of “symbolic objects”:

– computer algebra: symbolic objects that represent algebraic entities like terms that represent func-

tions, differential operators, etc. or finite relations that represent residue class structures;

– automated reasoning: symbolic objects containing (quantified) variables that are considered as

statements on (infinite) domains;

– automatic programming: symbolic objects containing variables that are considered as programs

that define processes on potentially infinitely many inputs.
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(Of course, these three sub-areas of symbolic computation are intimately connected and, in some

precise way, even embedded in each other. The distinction between the three areas is more or less only a

matter of “flavor”.)

In other words, symbolic objects are finitary objects that have “semantics” attached to them where,

typically, the semantics is “large”, even infinite, not tangible by computers whereas the symbolic ob-

jects are “small”, finitary, tangible by algorithms. Any field of mathematics can be studied under the

“symbolic” view and, actually, in any field of mathematics, if we want to solve problems by algorithms,

we have to find finitary representations for the objects in the field. Finding suitable finitary represen-

tations, by itself, may be a difficult - sometimes provably impossible - mathematical problem: Before

embarking on deeper questions, deciding whether or not two symbolic objects represent the same ab-

stract mathematical object and finding “canonical” representatives for symbolic objects may already be

very difficult (sometimes provably impossible). By finding representations of mathematical objects in

any field of mathematics, the field becomes “algebraic”, and problems in the algebraic disguise of the

field, essentially, become combinatorial problems. Thus, very sketchy, one may say: symbolic computa-

tion, ultimately, is the “combinatorization” of all of mathematics via finitary representations of infinite

mathematical entities.

It is a common misunderstanding that symbolic computation is the trivial side of mathematics, i.e.

some people believe that, whereas “pure” mathematics lives in difficult spaces needing deep and difficult

thinking, algorithmic mathematics (which must be “symbolic” in the above sense) “just” puts every-

thing to the computer and presses the start button. The truth is, that the “just” needs more and deeper

mathematics than a mathematics that allows non-algorithmic constructions for problem-solving like the

unlimited set quantifier, infinite summation, infinite unions, transition to residua class domains etc. (A

trivial example: In “pure” mathematics, a Gröbner basis for given ideal generators can be “easily” found

by just taking the ideal generated by the generators. However, the definition of the ideal generated by

generators involves an infinite set construction!) Hence, with some provocation, in my view, mathematics

only starts at the moment when it tries to solve problems by “symbolic computation”.

Recently, in 2020, we issued a call for running for the editor-in-chief position of the Journal of

Symbolic Computation (JSC). At that occasion, we asked the candidates to submit also their views on

the scope of “symbolic computation” and of the JSC. Interestingly, the view of symbolic computation in

the editorial of the JSC (and summarized above) was backed by all candidates and, basically, no dramatic

changes or extensions were proposed except that “artificial intelligence” was mentioned a couple of

times.

Mentioning artificial intelligence, for me, raises some nostalgia because, when I founded the Re-

search Institute for Symbolic Computation (also in 1985), for some time I was torn between using “sym-

bolic computation” or “artificial intelligence” as the main notion in the name of the new institute. At that

time, bringing symbolic computation under the umbrella of artificial intelligence was quite tempting and

also quite common: For example, finding symbolic integrals was considered an “artificial intelligence”

task like playing chess, with lots of heuristics. Correspondingly, the most comprehensive symbolic com-

putation software system at that time, MACSYMA, had “MAC” (= Machine Aided Cognition) in its

name! And, of course, implementing heuristics is still a very important approach for improving the

practical efficiency of methods for symbolic computation problems. However, in 1985, I deliberately de-

cided against having “artificial intelligence” in the name of my institute since I wanted to emphasize the

logical, mathematical, formal approach to problem-solving over the psychological, experimental aspect,

which some people (then and now) believe that goes “beyond mathematics”. I will go deeper into the

analysis of the relationship between symbolic computation and artificial intelligence later in this note.

Anyway, although symbolic computation (in the sense of the editorial of the JSC) seems to be a quite
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established and stable notion, as a matter of fact, in the JSC over the years one can observe that

– the majority of papers in the JSC is on computer algebra,

– more and more, but still much fewer, papers are in automated reasoning,

– only a few papers came in on automatic programming.

Symbolic Computation in Software Science

Software science is the science of the process of developing software. This process starts from problems

in some “reality” (part of the real world) and creates software that solves the problems in an appropriate

finitary model of this reality. Since the beginning of the software age, the software development process

has matured from being a kind of “magic” and being an “art” to a decent engineering discipline called

“software engineering”. In parallel, since the very beginning, people have also tried to establish a “sci-

ence” of software and the software development process to make the process more reliable, provably

correct, faster, more flexible, more economic, and ultimately automatic or semi-automatic. Research in

this direction is mostly summarized under the heading “theoretical computer science”. Interestingly, the

term “software science”, which seems quite natural to me, in comparison to “theoretical computer sci-

ence”, is only used quite rarely. (This can easily be verified by googling the two notions and comparing

the number of relevant results.)

Anyway, I think that “software science” is a quite useful notion that focuses on the actual devel-

opment process of software and on its automation and, hence, has a high impact on one of the central

technologies - if not the central technology - of our age.

Since the objects of software science are formal models (domains with finitary objects and algorith-

mic operators on the objects), automation or semi-automation of the software design process is essentially

a “symbolic computation” process according to the definition of symbolic computation we considered

above. In other words, it should be clear that symbolic computation is the area that naturally should

include also the (semi-)automation of the software development process. Unfortunately, this logical

analysis did not really create a big stream of papers on automating software development to the JSC (and

neither to conferences in the area of symbolic computation like ISSAC, ACA, SYNASC, etc.). There-

fore, in 2012, I argued that the topic “Symbolic Computation in Software Science” could and should get

special attention by turning our group meetings into a conference series with this name.

Still, the idea that symbolic computation should have a major application in software science - in par-

ticular in the automation of the software development process - did not create a big echo in the symbolic

computation community. Neither do many people who work in software engineering realize that the

automation of the software development process is essentially a symbolic computation task. One reason

for this is, surely, that there are strong conference series and journals in the area of automated reasoning

and related subjects. (A side-remark: As some readers may know, when I built up RISC starting from

1985, I also devoted much of my time to building up the “Softwarepark Hagenberg”. With this, I wanted

to demonstrate that the mathematically deep field of symbolic computation has also the power to create

something with a strong practical impact: I started the Softwarepark with 25 people. When I stepped

back as the director of the Softwarepark Hagenberg in 2013, 2500 people working and/or studying in the

Softwarepark. I hoped that the government and the administration of my university would have noticed

and recognized the unique power that RISC / symbolic computation had created and had turned into in-

novation in the software foundations, into software development, and into software business. Therefore,
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in 2013, I asked the government and university administration to establish an extra professorship “Soft-

ware Science” in the frame of RISC with the task of continuing my work for directing and expanding the

Softwarepark based on solid research on symbolic computation in software science. Indeed, in response

to my request and argumentation, a professor position for “Software Science” was created but then, much

to my displeasure, giving in to the pressure of the informatics department, the position was finally used

for something “more useful” for the education of the informatics undergraduates.)

Now, what I called “automatic programming” in the preface of the JSC, could also be called “sym-

bolic computation in software science”. In more detail, I want to make this clear in this note. If seen in

the right way, I think that symbolic computation in software science is / could be / should be the most /

one of the most fascinating topics of the next stage of mathematics / logic / computer science. (I like to

call mathematics, logic, and computer science together “thinking technologies” or just “full-stack math-

ematics”. Unfortunately, “mathematics” sounds old-fashioned to some people, sounds “non-creative”

to others, boring to others, intimidating to again others. However, one may bend and turn this as one

likes, finally, at the top of the creative hierarchy of problem-solving and gaining knowledge by thinking,

there is mathematics at higher and higher levels - whether certain people in politics, science, economy,

philosophy, culture, media or the people at the beer table like it or not.)

A Stream of Problems on the Way

On the way from a problem description / a collection of problem descriptions to an algorithm / program

/ software system that solves the problem there are many creative steps each of which can be handled

ad hoc for the particular problem at hand by a mathematician, computer scientist, developer. Each of

these steps, however, can also be considered as a problem on the meta-level with some symbolic objects

(like software requirements, programs, algorithm schemata, verification conditions, etc.) as input and

symbolic objects as output for which we would like to have a general algorithmic solution.

In this section, we assume that all the symbolic objects on the way from a problem specifica-

tion/requirements to an algorithm / piece of software are expressions that describe or at least try to

describe something “in general terms”. In particular, we assume that the problem specification (even a

vague attempt of a specification that may need much clarification and reformulation) tries to describe the

problem in general and not only by examples.

The important case that a problem specification, for certain reasons, can only be given by examples

and cannot be explained in general terms, is analyzed in detail in the next section in the paragraph on

machine learning.

In the majority of cases, problem specifications are explicit in the sense that they are specified by

an expression P[x,y] with input variable(s) x and output variables(s) y, and a solution algorithm A has to

satisfy P[x,A[x]], for all x. (However, there are important classes of algorithmic problems that cannot be

described in explicit form. For example, a canonical simplifier A for an equivalence relation P cannot be

described in this form. More generally, for example, the specification of operations on data structures by

axioms or the construction of algorithmic isomorphic representations of mathematical domains is not an

explicit specification. We cannot go into more details about this here.)

Depending on the situation, the initial (often vague) problem descriptions may be given in natural

language, maybe mixed with drawings and diagrams, or in some formal language.

Also, it is important to distinguish between two extremes:

• Finding algorithms for fundamental, non-trivial, stand-alone algorithmic problems: In this case,

the problem specification and the solution algorithm are completely formal, symbolic objects and
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everything that happens between problem and solution should be amenable to algorithmic treat-

ment on the meta-level, i.e. to symbolic computation. For such problems, typically, time and

memory complexity is an issue. Examples: the problem of finding shortest paths in graphs; the

problem of finding symbolic integrals; the problem of finding Gröbner bases; etc.

• Developing software for an entire application: In this case, the individual parts of the system

(called “units”) should implement a (big) number of functionalities, most of which are not really

difficult. Only some of the functionalities may involve the algorithmic solution of fundamental

problems. The algorithms for these functionalities, typically, are known and taken from reliable

sources. The complexity of such systems originates from the huge number of units and the various

(desired and undesired) interactions of the units. Also tuning of the known algorithms to the

application at hand is an issue.

This distinction is important for the following reason: The application of formal methods for estab-

lishing the correctness of software only makes sense if we consider non-trivial algorithmic problems. In

contrast, for most of the millions of units to be developed in large software systems a formal specification

of the problem to be solved by the unit would be essentially identical to the code to be developed. In

other words, a proposal for the code of a unit, in the case of “easy” problems, is a way for describing the

problem to be solved. This is the reason why rapid prototyping and agile software development, in such

situations, is so useful. It is also the reason why formal algorithm verification methods are rarely used in

the practice of developing large software systems.

Example. In a calendar software system, probably, we want one unit that should check whether a

proposed new calendar entry collides with one of the existing entries. Let us assume that a calendar

entry is characterized by its start time and end time. The input to the unit will then consist of four time

moments s1,e1,s2,e2 for the start time and the end time of the first and the second entry, respectively,

with input condition s1 < e1 and s2 < e2. “After some thinking”, the problem will then be described by

most developers by a sentence like this: “The two calendar entries characterized by s1,e1,s2,e2 collide

iff s2 ≤ s1 ≤ e2 or s1 ≤ s2 ≤ e1.” Now it is clear that this “specification” of the problem is, basically,

already the solution algorithm. Only some transformation into the syntax of the programming language

used is necessary. No powerful algorithm verification method or algorithm synthesis method is necessary

in such a case.

As simple as the example is, it is not too simple to guarantee the avoidance of severe flaws in the

development. I tested the example out by presenting it to various (reasonably experienced) developers.

Amazingly, a few came up with the following specification / code: “The two calendar entries charac-

terized by s1,e1,s2,e2 collide iff either s2 ≤ s1 ≤ e2 or s2 ≤ e1 ≤ e2.” This specification is “incorrect”

because it does not include the case s1 < s2 < e2 < e1, which of course “everybody” would also consider

as a collision, even a “particularly heavy one”. (I put “incorrect” in quotation marks because, at the very

first stage of uttering a request, the “customer is always right”. Maybe, he really wants what he tells!

Either one just implements what he tells or one may consider the subsequent discussion as a way to find

out what he “really wants” or to change his mind about what he wants.) This shows that already in the

“thinking” between a vague indication of a problem and its specification (by a general statement, not

only by examples), severe mistakes may be made (or, considered differently, the request of the customer

may undergo serious changes). In our example, we also could start a little “earlier” and just say: “The

two calendar entries characterized by s1,e1,s2,e2 collide iff the time interval [s1,e1] intersects with the

time interval [s2,e2].” Now we could question the notion “intersects” and might agree on the following:

“The two calendar entries characterized by s1,e1,s2,e2 collide iff there is a time moment x such that
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s1 ≤ x ≤ e1 and s2 ≤ x ≤ e2.” In this form, we can send the condition into a quantifier elimination algo-

rithm and we will get an answer which will be equivalent to “s2 ≤ s1 ≤ e2 or s1 ≤ s2 ≤ e1.” (Please try

it out, it is worthwhile!) Hence, this simple example shows that, actually, already in the very early stage

of discussing and clarifying even seemingly simple requirements a lot of systematic/formal thinking is

involved, which in principle should be amenable to automating and, hence, symbolic computation!

Thus, we start at the very early stage of having a vague desire of achieving something by software

and go through all the stages of developing a piece of software that fulfills the desire and, further, through

all the stages of maintaining, updating, improving, and integrating pieces of software to fulfill more and

more sophisticated desires. Through all these stages, we ask ourselves how much of this process can

be (semi-)automated. This gives a rich list of R&D topics, which make up the important topics in the

scope of “symbolic computation in software science” as described in the calls for the SCSS series, see

the latest version in the call for SCSS 2021. This call contains, roughly, 20 important and quite diverse

but strongly interconnected topics on the way from requirements to software.

I do not list these topics and comment on all these topics here. Rather, let me give some personal

remarks that emphasize, and maybe expand, some of the subjects, themes, and objectives of the topics in

the SCSS calls.

• My feeling is that relatively little research is available on (semi-)automating the development of

large software systems consisting of tons of simple “units” of the type we have seen above in

the example. Research has focused more on symbolic methods for algorithm verification and

synthesis for non-trivial algorithms. In some way, this is unfortunate because the construction of

tons of software is necessary today, semi-automation of this process is needed and could be a big

business. Our research results are too much oriented on automating the invention of “important”,

“difficult” algorithms. However, the (semi-) automation of the development of huge amounts of

simple programs and their interaction, in some way, is quite challenging, much needed, and asks

for formal methods to guarantee the quality of the process.

• As a variant of developing big software systems consisting of many simple units we also should

consider the task of re-engineering big software systems that were written years ago in program-

ming languages that are antiquated now. Often, the documentation of such systems is lost or

fragmentary, and finding out what the units should do, i.e. getting a problem specification from

code, is a major task.

• In most cases, software development starts from vague requirements in natural language (maybe

with diagrams or drawings). The task is to come up, maybe in an interactive dialogue, with a bunch

of formal requirements. Here, we should allow natural language or, maybe, a simplified version

of natural language as a symbolic language: The sentences that formulate requirements are “fini-

tary” with infinite semantics since, normally, requirements have hidden universal quantifiers in it.

(See the simple example above: The requirement is formulated for arbitrary calendar entries. In

our first step towards formalization, the hidden universal quantifier goes over s1,e1,s2,e2.) We

also should allow diagrams or drawings as symbolic objects: They are surely “finitary” and, usu-

ally, have infinite semantics, since a drawing normally tries to convey the important features of

infinitely many possible individual situations. Specifying requirements by natural language text

or drawings is very different from the specification of requirements by finitely many input/output

pairs, see the analysis of “machine learning” in the next section. Allowing natural language or

drawings in requirements is of course a big challenge but I think we should take this deliberately

under the umbrella of SCSS because it will need much more than just ordinary NLP (natural lan-

guage processing) and graphics. Rather, a systematic connection to logic is necessary. (In fact,
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in dynamic geometry systems a lot of work in this direction is already done when graphical input

explaining geometrical situations “in general positions” is allowed.)

• As we have seen in the simple example above, we also would like to go a step further and go

from requirements in natural language and/or drawings right away to algorithms/programs that

satisfy the requirements. As we have argued in the example, in the majority of “units” in appli-

cation software systems this will not be significantly more difficult than coming up with formal

requirements.

• The individual algorithms/programs in software systems do not live in empty air but inside a whole

hierarchy of data structures and domains which, depending on the context, are called (algorithmic)

“models” of reality. Such models consist of problem specifications, definitions of notions, knowl-

edge, algorithms, and - in the ideal case - arguments/proofs why the operations/algorithms in the

system meet their specifications. Hence, seen in this way, software systems can also be considered

mathematical knowledge systems. Hence, (semi-)automation of building and maintaining such

systems can also be seen under the umbrella of Mathematical Knowledge Management (MKM).

We introduced this term a couple of years ago in a slightly different context, see the preface of the

proceedings [4], which were expanded as the special issue [5]. We propose that SCSS and MKM

should be considered together and, maybe, SCSS and MKM should be collocated in the future.

• In practice, the correctness of software is established by testing rather than by formal verification.

Testing is a highly developed “technology” in software engineering: There is an arsenal of “au-

tomated software testing” systems available. They are well integrated into the various software

development environments and they are quite helpful for managing large test suites for the consec-

utive versions of software systems. However, I think that much more could be done by applying

formal methods for coming up with complete systems of test data from a given problem specifi-

cation and program. Here, completeness means that we would get one test input/output for each

equivalence class of inputs that generate the same program path during execution. Of course, in

general, the set of these equivalence classes is not finite. However, in the practical case of large

software systems consisting of a huge number of relatively simple units, the set of equivalence

may well be finite, see the example above. As can be seen in the example, generating a complete

system of equivalence classes for inputs might be essentially the same task as coming up with the

code for the program. In fact, this automated generation of equivalence classes should start from

the problem specification and not from a program code - as most of the commercial “white box”

test generation programs do.

How Does Artificial Intelligence Fit into the Picture?

Undoubtedly, in the past two decades, artificial intelligence has gained enormous attention. This is due

to the fact that, by the drastically increased computational power of current computer systems and the

availability of huge databases of “labeled” data, a couple of difficult and urgent problems have received

impressive solutions by artificial intelligence methods, as for example machine translation of natural

languages.

Amazingly, there is still a lot of mystery, nebulosity, and misunderstanding around what artificial

intelligence (AI) actually is and why it is / may be / is believed to be essentially different from all com-

putational approaches so far. This nebulosity is all over the place: in politics, in the media, even in

science, and, of course, with the man on the street. At times, I have the impression that even quite some
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researchers in the AI area do not have a very clear picture of the distinctive characteristics of AI when

compared with other computational approaches. Also, labeling a project with AI, may have a beneficial

effect when it comes to funding, societal respect, political influence etc. Thus, it is tempting to keep the

notion ambiguous. What amazes me, even more, is that the nebulosity about the essence of AI did not

disappear since the field started in the middle of the fifties. I remember talks of AI evangelists around

1980, i.e. in the “first wave of AI research”, who believed and spread that “AI can solve hard problems

that cannot be solved by mathematics”. And still, when I participate in political discussions about the im-

portance of mathematical education (in the sense of training mathematical thinking), I hear the argument

that, actually, the ability to do mathematics will be less and less important because “tedious” mathemati-

cal thinking, in the presence of “artificial intelligences” (plural!), will not be necessary anymore and that

we should teach the youngsters more “creative” things than mathematics.

Now all such statements may be true or false according to which notion of artificial intelligence one

has in mind. For clarifying this notion, I want to distinguish three possible characterizations of AI:

Hard Problems: Artificial Intelligence may be described as the field that tries to solve problems that, at a

certain historic moment, are considered to be “hard” in the sense that they apparently need a decent

amount of (human) “intelligence” to solve them. For example, playing chess or finding symbolic

integrals, at some historic moment, were considered as needing human intelligence. Algorithms

(invented by humans!) that finally were able to solve these problems were then (and still are)

considered to be the result of “AI research”.

Now, in my opinion, this definition of the notion of AI is quite shallow. It is the natural flow of

science and technology that we can solve harder and harder problems automatically, i.e. by algorithms.

However, from some point on, people think that now “algorithms are taking over”, “artificial intelligence

is replacing humans” etc. forgetting that this happened and happens already since centuries and that this

is the very goal of science and technology. And, of course, whatever the methods behind automation were

and are, we humans should stay in control and decide how far we let problems be solved and decisions

be taken by algorithms. Anyway, the notion of a “hard” problem is relative and “hard” problems for

which an algorithmic solution was finally found very soon are considered to be “easy” by the consumer.

For example, car drivers nowadays take the functionality of a navigation system for granted. Some thirty

years ago, the current functionality of navigation systems would have been considered unbelievably

intelligent. In fact, the stack of scientific findings and algorithmic techniques involved in a navigation

system for guiding a driver from A to B is quite deep.

In my opinion, one should not use the notion of “artificial intelligence” for “finding algorithms for

hard problems” but rather continue to call this just “mathematical, algorithmic solution of hard prob-

lems”. Attaching the label “AI” to algorithms depending on whether they solve hard or easy problems is

more a question of marketing rather than a logically sound distinction.

Simulate the Brain: A completely different view (and branch) of artificial intelligence is artificial intelli-

gence as the science of understanding and simulating biological structures that show “intelligence”,

notably the human brain. This type of AI research, historically, was one of the origins of the field

of AI that started, maybe, 1943 with the investigations of W. McCulloch and W. Pitts who intro-

duced a simple mathematical model of the functionality of a neuron. Of course, understanding

and simulating the most complex biological systems, which are commonly considered to display

“intelligence”, is a highly fascinating and relevant undertaking. Well, why not call this type of

research “artificial intelligence” in the same way as a technical realization of the phenomenon of

flying could be called “artificial flying”.
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“Artificial intelligence” in the sense of brain simulation has little overlap with symbolic computation

in software science except that, of course, there may be applications of symbolic computation in devel-

oping models of the brain. Also, studying biological structures (like the brain, like swarms of animals,

or like the evolution of life on earth) motivated some of the algorithmic methods that today are called

“AI methods”, see next paragraphs.

“Intelligent” Methods: The third approach of characterizing artificial intelligence is by specifying cer-

tain algorithmic methods as “intelligent”. These algorithms would constitute the area of “artificial

intelligence”. I hope I do not overlook something important but my impression is that, essentially,

“machine learning” is the only such method or, better, class of methods that has not already been

around before the term “artificial intelligence” was coined. The many other algorithmic methods

that are often labeled as “AI methods”, like automated reasoning, semantic networks, graph search,

expert systems, regression, etc., in my view, are algorithmic methods that are not specific to AI.

They are, so to say, usual algorithmic methods and were applied also to problems that, for some

reason, got the label “AI”, see the remarks about hard problems above.

In my view, machine learning methods cannot actually be specified by the way how they work but,

rather, by the way the problems these methods should solve are specified. As we have seen in the

previous section, the fundamental part of algorithm and software development is the transition from

a given problem specification P to an algorithm (program, system) A that solves the problem for any

admissible input. As long as the steps for going from a problem specification to a solution algorithm are

done by a human this is just the “usual” business of mathematics/informatics. If finding these steps is

(partially) supported by algorithms (invented by humans) this is what we can call “symbolic computation

in software science”. How and when does “machine learning” come in and why, if at all, is this different

from “usual” mathematics and “usual” (maybe quite sophisticated) symbolic computation in software

science?

The point is that, in many situations, when we want to specify a problem, we do not have a specifica-

tion “in general terms” available. For example, let’s consider the seemingly simple problem of deciding

whether a given English sentence contains information of the type “somebody cooperates with some-

body else”. An algorithm for this problem should produce the answer “NO” in case no such information

is in the input sentence and should produce “YES” and the two “somebodies” if such information is in

the sentence. Now, of course, before trying to invent such an algorithm, we will ask: What exactly do

you mean by “cooperate”? Among the English speaking community, under the natural assumption of

a long experience of using English in thousands of different situations, it would be natural the start to

explain “cooperate” in terms of a couple of other notions like “working together”, “having a common

goal”, . . . Oh, “having a common goal” may not always be sufficient for speaking about “cooperation”.

One may have a common goal but fight against each other. Thus, “supporting each other” etc. should

be added. Some more subtle details should be explained, some other things excluded etc. A long list of

sentences explaining the meaning of “cooperate” would be necessary. Then one could, in the attempt of

finding an algorithm for this little problem, try to put these numerous explanations into algorithmic rules

(assuming that we already have access to a powerful grammar parsing algorithm for all of English). As

a result, we would hope that this rule system would be able to do the job. For example, if we now would

input “Peter and Ann found a way to help each other for passing the exam”, the algorithm should answer

“YES”, “Peter”, “Ann”. If we would input “Peter and Ann passed the exam on the same day”, it should

answer “NO”. Should it really answer “NO”? Shouldn’t it rather answer “DON’T KNOW” or “COULD

BE” or “COULD BE BUT NOT EXPLICITLY MENTIONED”.

I now want to explain what, in my view, is the essence of the machine learning approach. For this,
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we need not at all bother about what “learning” is. I just consider those methods that, over the years,

have been named “machine learning” methods. The common feature of these methods is not how they

proceed but the type of specification of the problems to which they are applied: Namely, they all are

applied to problems of the kind above where a spelled-out complete specification is not possible or, at

least, not feasible. Now, the fundamental idea of machine learning for solving such problems is:

• Instead of spending time trying to specify the problem by a huge number of general definitions,

cases, rules, etc., one spends the time giving a huge number of examples of input instances together

with the answers. (In this paper, we consider only “supervised learning”.) In this context, the

answers are called “labels”.

• One sets up an algorithm from a certain class of relatively simply structured algorithms (like the

class of neural networks, the class of hyperplanes in a high-dimensional space, the class of nested

if-then-else expressions, etc.) with some constants c1, . . . ,cn (for example the weights at the inputs

of neurons in neural networks) in the algorithm left unspecified. For each choice of numerical

values for the c1, . . . ,cn, the algorithm would produce an answer for each admissible input for the

problem.

• One uses techniques of mathematical optimization (or other, experimental techniques, for example

techniques that mimic biological evolution) to change the initial values for c1, . . . ,cn iteratively

until the answer of the algorithm to more and more inputs from the set of labeled data would give

the answer specified by the label. In the jargon of machine learning, this iteration is called “training

a model”.

• One stops the iteration on the c1, . . . ,cn when sufficiently many answers are identical to the labels.

Practically, at the beginning of the whole operation, one partitions the set of labeled input into a

“training set” that is used for the iterations and a “test set” on which the algorithm with the current

values for the c1, . . . ,cn - which in the jargon of machine learning is called the “trained model” - is

tested.

The impressive success of this approach in the past two decades hinges on three ingredients:

• a huge amount of mathematical research on good and, partly provably convergent, techniques

for improving the algorithm parameters c1, . . . ,cn; such research was partly already available in

the first phase of AI between 1960 and 1980, but it did not convince because of the next two

ingredients were not available,

• huge corpora of labeled data; for example, in the spectacular application of machine translation, a

huge amount of “labeled data” is now available in the form of files that contain an original book

and its translation - by humans - to some other language,

• high-performance computing; the number of iterations of the machine learning steps for determin-

ing suitable c1, . . . ,cn and the computational effort in each step is huge and is only manageable by

computers in recent years.

In principle, the approach is not radically new. Examples of historical “learning from examples”

problems are: Given points in the plane, find the coefficients c1, . . . ,cn of a polynomial that goes through

the given points (the interpolation problem). Given a function with some properties on differentiability,

an interval, and a distance, find the coefficients c1, . . . ,cn of a polynomial that is closer to the function

than the given distance everywhere on the interval (approximation problem). Given points in the plane,

find the coefficients of a straight line such that the distance to all points is minimal (regression problem).
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Given a function with certain differentiability properties, find the coefficients c1, . . . ,cn of a finite Fourier

approximates of the function. Etc.

Artificial Intelligence in the form of machine learning falls neatly into the “automatic programming”

view: It is the method of choice in cases where the problem is not specified by general (formal or natural

language) statements but, rather, is specified only by a (huge) number of examples of admissible input

and desired output. In the case of general specifications of problems, the transition from the problem to

a solving algorithm, in principle, is a reasoning process that is executed by humans or, in the symbolic

computation approach advocated in this paper, is a reasoning process (partly) executed by symbolic

computation methods. In the case of problems that are specified only by examples, this process can still

be automated by the machine learning approach.

From the simple summary of the machine learning approach I gave above, one important deficiency

of the machine learning approach should be clear: The algorithm which we get for a given problem just

does the job of delivering (in sufficiently many cases) desired answers. However, in general, no reason

can be given why, for example, the particular neural network that translates one natural language to the

other mimics certain fundamental insights about the environment both languages share as their semantics.

This is, in fact, similar to the situation in the historical predecessors of “learning from examples”: The

Fourier analysis just does the job of finding an optimal Fourier sum. In the example, where the function

to be represented is the frequency spectrum of a musical tone, the representation by a finite Fourier

sum has a reasonable “explanatory” power: The tone is composed of tones and overtones that occur in

the physical “music” world (for example, when picking the strings of a guitar). However, if a Fourier

representation of some arbitrary other function is executed, there will be some outcome but there may not

be any reasonable interpretation of what this representation means in the reality from which the function

is taken.

The problem of weak explanatory power in the models (algorithms) created in machine learning is

well known. Lots of research was recently started to extract “meaning” from such models. This research

area is called “explainable AI”.

In the frame of the analysis of this paper, I summarize: The machine learning approach can be well

subsumed under the general target of (semi-)automating the process of software development (“auto-

matic programming”). It can be viewed as a numerical, rather than a symbolic, approach to automatic

programming. Thus, it is probably a very good idea to integrate machine learning into the scope of the

SCSS series because, of course, the interaction of symbolic and numerical computation as the two pos-

sible approaches to compute on finitary representations of abstract mathematical domains is of utmost

importance. The integration of machine learning into the scope of SCSS can generate a stream of new

ideas in both directions: Applying symbolic methods to mathematical sub-problems of machine learning

(e.g. the determination of weights in neural networks) and applying machine learning to symbolic al-

gorithms (e.g. “learning” a priori complexity estimates for computation-intensive methods like Gröbner

bases etc.).

However, there is no reason to establish a flavor of “intelligence beyond mathematics” when speaking

about machine learning: I hope I have been able to show the machine learning is just another mathemat-

ical method. As in the past, of course, we can hope and expect also for the future that more and more

powerful algorithmic problem-solving methods will be invented.

Personally, when speaking to people who do not (want to) understand the timeless, universal, al-

ways new, creative power of mathematics, I like to use the term algorithmic intelligence for what we are

doing: Algorithmic intelligence is the human intelligence that produces algorithms for more and more

challenging problems in all areas of human activity. By an algorithm, an infinite class of individual

problem instances can then be treated by a completely unintelligent machine. People who do not really
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understand what is going on may believe that these machines display “intelligence”. The algorithmic

intelligence - by reflection, i.e. jumps to higher and higher meta-levels - also provides more and more so-

phisticated algorithms for producing algorithms. The incompleteness theorem of Kurt Gödel (1931), in

a somewhat liberal interpretation, shows that this tour through higher and higher levels of algorithmiza-

tion has no upper bound. In comparison to “artificial intelligence”, the term “algorithmic intelligence”

is used quite rarely, which can be verified by Googling. However, my impression is that “algorithmic

intelligence” appears in more serious discussions about the essence of AI. Therefore, I like to expand the

abbreviation “AI” as “algorithmic intelligence”.

Implicitly, I expressed this view already in the early days of AI, see [1]. At the “Spring School of AI”

in Teisendorf, 1982, I contributed a long article summarizing the most important “symbolic” methods

for automating the algorithm/software development process that were known at that time. And we had

long, intensive, and quite controversial discussions at this conference on the question of whether AI is

something that goes beyond mathematics. As you may guess, my answer then was “no” with essentially

the arguments which I expanded above. In my hectic years of research on methods for “algorithmic

intelligence” and research management, I never found the time and occasion to spell out these arguments

in a paper. Thus, I am grateful that I am given the opportunity here.
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