
T. Kutsia (Ed.): Symbolic Computation

in Software Science (SCSS’21)

EPTCS 342, 2021, pp. 86–98, doi:10.4204/EPTCS.342.8

© D. Kim and C. Lynch

This work is licensed under the

Creative Commons Attribution License.

Congruence Closure Modulo Permutation Equations

Dohan Kim and Christopher Lynch

Clarkson University, Potsdam, NY, USA

{dohkim,clynch}@clarkson.edu

We present a framework for constructing congruence closure modulo permutation equations, which

extends the abstract congruence closure [7] framework for handling permutation function symbols.

Our framework also handles certain interpreted function symbols satisfying each of the following

properties: idempotency (I), nilpotency (N), unit (U), I∪U , or N∪U . Moreover, it yields convergent

rewrite systems corresponding to ground equations containing permutation function symbols. We

show that congruence closure modulo a given finite set of permutation equations can be constructed in

polynomial time using equational inference rules, allowing us to provide a polynomial time decision

procedure for the word problem for a finite set of ground equations with a fixed set of permutation

function symbols.

1 Introduction

Congruence closure procedures [12, 18, 19] have been researched for several decades, and play impor-

tant roles in software/hardware verification (see [9, 19, 20]) and satisfiability modulo theories (SMT)

solvers [8, 10]. They provide fast decision procedures for determining whether a ground equation is an

(equational) consequence of a given set of ground equations. (The fastest known congruence closure

algorithm runs in O(n log n) [15].)

In [7, 14], some approaches to constructing the congruence closure of ground equations using com-

pletion methods were considered. These approaches capture the efficient techniques from standard term

rewriting for congruence closure procedures. In particular, the abstract congruence closure approach

in [7] (cf. Kapur’s approach in [14]) constructs a reduced convergent ground rewrite system RS for a fi-

nite set of ground equations S, which consists of either rewrite rules of the form a→ c or f (c1, . . . ,cn)→ c

or c→ d for fresh constants c1, . . . ,cn,c,d. Furthermore, RS is a conservative extension of the equational

theory induced by S (i.e. the congruence closure CC(S)) on ground terms, and two ground terms are con-

gruent in CC(S) iff they have the same normal form w.r.t. RS. Note that this approach does not require a

total termination ordering on ground terms.

Congruence closure procedures were extended to congruence closure procedures modulo theories in

order to handle interpreted function symbols in the signature [3,6,15]. The notion of congruence closure

modulo associative and commutative (AC) theories was discussed in [6,16], and the notion of conditional

congruence closure with uninterpreted and some interpreted function symbols was considered in [15].

Meanwhile, an equation is a permutation equation [1] if it is of the form f (x1, . . . ,xn)≈ f (xπ(1), . . . ,
xπ(n)), where π is a permutation on the set {1, . . . ,n}. Commutativity is the simplest case of permuta-

tion equations. Permutation equations are difficult to handle in equational reasoning without using the

modulo approach. For example, an ordered completion procedure for ordered rewriting [5] produces ev-

ery equation of the form f (x1,x2, . . . ,xn) ≈ f (xρ(1),xρ(2), . . . ,xρ(n)) (up to variable renaming) from two

permutation equations f (x1,x2, . . . ,xn) ≈ f (x2,x1,x3, . . . ,xn) and f (x1,x2, . . . ,xn) ≈ f (x2,x3, . . . ,xn,x1),
where ρ is a permutation in the symmetric group Sn of cardinality n!. (Recall that the symmetric group

Sn can be generated by two cycles (12) and (12 · · · n).) Therefore, it is natural to view permutation
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equations as “structural axioms” (defining a congruence relation on terms) rather than viewing them as

“simplifiers” (defining a reduction relation on terms) [5].

In this paper, we present a framework for generating congruence closure modulo a finite set of per-

mutation equations. To our knowledge, it has not been discussed in the literature, and a polynomial time

decision procedure for the word problem for a finite set of ground equations with a fixed set of permuta-

tion function symbols has not yet been known.

Our framework is based on the notion of abstract congruence closure that is particularly useful for

term representation and checking E-equality between two flat terms for a given set of permutation equa-

tions E , which does not require an E-compatible ordering (cf. [17]). In addition, it also handles function

symbols satisfying each of the following properties: idempotency (I), nilpotency (N), unit (U ), I∪U , or

N ∪U . (If a function symbol is a permutation function symbol satisfying one of the above properties,

then it should be a commutative function symbol.)

We show that congruence closure modulo a given finite set of permutation equations (with or with-

out the function symbols satisfying the above properties) can be constructed in polynomial time, which

provides a polynomial time decision procedure for the word problem for a finite set of ground equations

with a fixed set of permutation function symbols (appearing in E).

2 Preliminaries

We use the standard terminology and definitions of term rewriting [4,11], congruence closure [7,12,19],

and permutation groups [13]. We also use some terminology and the results of permutation equations

found in [1, 2].

We denote by T (F ,X ) the set of terms over a finite set of function symbols F and a denumerable

set of variables X . We denote by T (F ) the set of ground terms over F . We assume that each function

symbol in F has a fixed arity.

An equation is an expression s ≈ t, where s and t are (first-order) terms built from F and X . A

ground equation (resp. ground term) is an equation (resp. a term) which does not contain any variable.

We write s[u] if u is a subterm of s and denote by s[t]p the term that is obtained from s by replacing

the subterm at position p of s by t.

An equivalence is a reflexive, transitive, and symmetric binary relation. An equivalence ∼ on terms

is a congruence if s∼ t implies u[s]p ∼ u[t]p for all terms s, t, u and positions p.

An equational theory is a set of equations. We denote by ≈E (called the equational theory induced

by E) the least congruence on T (F ,X ) that is stable under substitutions and contains a set of equations

E . If s≈E t for two terms s and t, then s and t are E-equivalent.

Given a finite set S = {ai ≈ bi |1≤ i≤m} of ground equations where ai,bi ∈ T (F ), the congruence

closure CC(S) [3, 15] is the smallest subset of T (F )× T (F ) that contains S and is closed under the

following rules: (i) S⊆CC(S), (ii) for every a∈ T (F ), a≈ a∈CC(S) (reflexivity), (iii) if a≈ b∈CC(S),
then b≈ a ∈CC(S) (symmetry), (iv) if a≈ b and b≈ c ∈CC(S), then a ≈ c ∈CC(S) (transitivity), and

(v) if f ∈F is an n-ary function symbol (n > 0) and a1 ≈ b1, . . . ,an ≈ bn ∈CC(S), then f (a1, . . . ,an)≈
f (b1, . . . ,bn) ∈CC(S) (monotonicity). Note that CC(S) is also the equational theory induced by S.

A (strict) ordering ≻ on terms is an irreflexive and transitive relation on T (F ,X ).
Given a rewrite system R and a set of equations E , the rewrite relation→R,E on T (F ,X ) is defined

by s→R,E t if there is a non-variable position p in s, a rewrite rule l→ r ∈ R, and a substitution σ such

that s|p≈E lσ and t = s[rσ ]p. The transitive and reflexive closure of→R,E is denoted by
∗
−→R,E . We say

that a term t is an R,E-normal form if there is no term t ′ such that t→R,E t ′.
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The rewrite relation →R/E on T (F ,X ) is defined by s→R/E t if there are terms u and v such that

s ≈E u, u→R v, and v ≈E t. We simply say the rewrite relation →R/E (resp.→R,E ) on T (F ,X ) as the

rewrite relation R/E (resp. R,E).

The rewrite relation R,E is Church-Rosser modulo E if for all terms s and t with s
∗
←→R∪E t, there are

terms u and v such that s
∗
−→R,E u

∗
←→E v

∗
←−R,E t. The rewrite relation R,E is convergent modulo E if R,E

is Church-Rosser modulo E and R/E is well-founded.

The depth of a term t is defined as depth(t) = 0 if t is a variable or a constant and depth( f (s1, . . . ,sn))
= 1+max{depth(si) |1≤ i≤ n}. A term t is flat if its depth is 0 or 1.

An equation of the form f (x1, . . . ,xn) = f (xρ(1), . . . ,xρ(n)) is a permutation equation [1] if ρ is a

permutation on {1, . . . ,n}. We use variable naming in such a way that the left-hand side of each equation

in a set of permutation equations with the same function symbol has the same name of variables x1, . . . ,xk

from left to right. (In this paper, we assume that the set of function symbols F in T (F ,X ) is finite and

each function symbol in F has a fixed arity.)

We denote by FE the set of all function symbols occurring in a finite set of permutation equations E .

If e := f (x1, . . . ,xn)≈ f (xρ(1), . . . ,xρ(n)) is a permutation equation, then ρ is the permutation of this

equation. We denote by π[e] the permutation of e. For example, ρ is the permutation of the permutation

equation e′ := f (x1,x2,x3,x4) ≈ f (x1,x3,x2,x4) (i.e. π[e′] = ρ) with ρ(1) = 1,ρ(2) = 3, ρ(3) = 2, and

ρ(4) = 4. Let E be a set of permutation equations with the same top function symbol. Then Π[E] is

defined as Π[E] := {π[e] |e ∈ E}. The permutation group generated by Π[E] is denoted by <Π[E]>.

Theorem 1. (see Theorem 1.4 in [2]) Let E be a set of permutation equations and let e be a permutation

equation such that every equation in E ∪{e} has the same (top) function symbol. Then E |= e if and only

if π[e] ∈<Π[E]>.

Let i1, i2, . . . , ir (r ≤ n) be distinct elements of In = {1,2, . . . ,n}. Then (i1 i2 · · · ir), called a cycle of

length r, is defined as the permutation that maps i1 7→ i2, i2 7→ i3,. . . , ir−1 7→ ir and ir 7→ i1, and every

other element of In maps onto itself. The symmetric group Sn of cardinality n! can be generated by two

cycles (12) and (12 · · · n).

Example 1. Let E = { f (x1,x2,x3,x4,x5)≈ f (x2,x1,x3,x4,x5), f (x1,x2,x3,x4,x5)≈ f (x2,x3,x4,x5,x1)}.
Then Π[E] consists of two cycles {(12),(12345)}. Since two cycles (12) and (12345) generate the

symmetric group S5, we see that <Π[E]> is S5. Therefore, f (x1, . . . ,x5) ≈E f (xτ(1), . . . ,xτ(5)) for any

permutation τ ∈ S5 by Theorem 1.

Let E be a finite set of permutation equations. Then E can be uniquely decomposed as
⋃n

i=1 Ei such

that (i) each Ei is a finite set of permutation equations, and (ii) E j and Ek with j 6= k are disjoint such that

if s j ≈ t j ∈ E j and sk ≈ tk ∈ Ek, then s j and sk do not have the same top symbol (and are not variants of

each other). Since we assume that each function symbol has a fixed arity, each distinct function symbol

occurring in E corresponds to a distinct Ei in E . We denote by Eq( f ) the corresponding equational

theory with terms headed by such a function symbol f . Now, we may apply Theorem 1 for each Eq( f )
in E with f ∈FE .

3 Congruence closure modulo permutation equations

Definition 2. Let K be a set of constants disjoint from F .

(i) A D-rule (w.r.t. F and K) is a rewrite rule of the form f (c1, . . . ,cn)→ c, where c1, . . . ,cn,c are

constants in K and f ∈F is an n-ary function symbol.

(ii) A C-rule (w.r.t. K) is a rule c→ d, where c and d are constants in K.
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In Definition 2(i), note that f ∈F can also be a 0-ary function symbol (i.e. a constant).

Example 2. Let E = { f (x1,x2) ≈ f (x2,x1),g(x1,x2,x3) ≈ g(x2,x1,x3)}. If F = {a,b,h, f ,g} with

FE = { f ,g} and P= { f (b,g(b,a,a))≈ h(a)}, then D0 = {a→ c0,b→ c1,g(c1,c0,c0)→ c2, f (c1,c2)→
c3,h(c0)→ c4} is a possible set of D-rules over F , and we have K = {c0,c1,c2,c3,c4}. Using D0, we

can simplify the original equations in P, which gives the set of C rules, i.e., C0 = {c3 → c4} where

c3 ≻ c4.

Definition 3. Let E be a finite set of permutation equations and K be a set of constants disjoint from F .

A ground rewrite system R = D∪C is a congruence closure modulo E (w.r.t. F and K) if the following

conditions are met:

(i) D is a set of D-rules and C is a set of C-rules, and for each constant c ∈ K, there exists at least one

ground term t ∈T (F ) such that t
∗
←→R,E c.

(ii) R,E is a ground convergent (modulo E) rewrite system over T (F ∪K).

In addition, given a set of ground equations P over T (F ∪K), R is said to be a congruence closure

modulo E (w.r.t. F and K) for P if for all ground terms s and t over T (F ), s
∗
←→P∪E t iff there are ground

terms u and v over T (F ∪K) such that s
∗
−→R,E u

∗
←→E v

∗
←−R,E t.

In the following, by B-rules with the interpreted function symbol g ∈F , we mean either the idem-

potency rule (I): {g(x,x)→ x} or the nilpotency rule (N): {g(x,x)→ 0} or the unit rule (U ): {g(x,0)→
x,g(0,x)→ x} or I∪U or N∪U .

Definition 4. Let E be a finite set of permutation equations and K be a set of constants disjoint from

F . A ground rewrite system R = D∪C is a congruence closure modulo E ∪B (w.r.t. F and K) if the

following conditions are met:

(i) B is a set of B-rules with the interpreted function symbol g ∈F .1

(ii) D is a set of D-rules and C is a set of C-rules, and for each constant c ∈ K, there exists at least one

ground term t ∈T (F ) such that t
∗
←→R,E c.

(iii) R∪B,E is a convergent (modulo E) rewrite system over T (F ∪K,X ).2

In addition, given a set of ground equations P over T (F ∪K), R is said to be a congruence closure

modulo E ∪B (w.r.t. F and K) for P if for all ground terms s and t over T (F ), s
∗
←→P∪B∪E t iff there are

ground terms u and v over T (F ∪K) such that s
∗
−→R∪B,E u

∗
←→E v

∗
←−R∪B,E t.

Note that B or E can be empty in Definition 4. If B is empty, then it is the same as Definition 3. Also,

condition (ii) in Definition 4 states that each constant c in K represents some term in T (F ) w.r.t. R,E ,

meaning that K contains no superfluous constants (cf. [7]).

Definition 5. We denote by W the infinite set of constants {c0,c1, . . .} such that W is disjoint from F ,

and denote by K a finite subset chosen from W . We define orderings ≻K on K, and ≻ and ≻lpo on

T (F ∪K) as follows:

(i) ci ≻K c j if i < j for all ci,c j ∈ K.

(ii) c≻ d if c≻K d, and t ≻ c if t→ c is a D-rule.

1If g ∈FE , then g is a commutative function symbol, i.e., g(x1,x2)≈ g(x2,x1) ∈ E.
2In this paper, R∪B,E (resp. R∪B/E) denotes (R∪B),E (resp. (R∪B)/E).



90 Congruence Closure Modulo Permutation Equations

(iii) ≻lpo is a lexicographic path ordering on T (F ∪K), which can be defined from the following

assumptions:

(iii.1) c≻lpo d if c≻K d,

(iii.2) t ≻lpo c if t is any term headed by a function symbol f in F and c is any constant in K, and

(iii.3) there is a total precedence on symbols in F .

Observe that ≻lpo extends ≻, and is total on T (F ∪K). (If the precedence on F ∪K is total, then

the associated lexicographic path ordering ≻lpo is total on T (F ∪K) (see [11]).) We emphasize that a

partial ordering ≻ on T (F ∪K) suffices for inference rules in Figure 1.

Figure 1 shows the inference rules for congruence closure modulo permutation equations, which

extends the inference rules for the abstract congruence closure framework in [7]. We have the additional

inference rule called the REWRITE rule in Figure 1. Also, we use the E-equality ≈E instead of the

equality ≈ for the DEDUCE and DELETE inference rules. We write (K,P,R) ⊢ (K′,P′,R′) to indicate

that (K′,P′,R′) can be obtained from (K,P,R) by application of an inference rule in Figure 1, where

K denotes a set of new constants (see Definition 5), P a set of equations, and R a set of rewrite rules

consisting of C-rules and D-rules. Also, in Figure 1, B denotes a set of B-rules. A derivation is a

sequence of states (K0,P0,R0) ⊢ (K1,P1,R1) ⊢ ·· · .

Lemma 6. If (K,P,R) ⊢ (K′,P′,R′), then for all u and v in T (F ∪K), we have u
∗
←→E∪B∪P′∪R′ v if and

only if u
∗
←→E∪B∪P∪R v.

Proof. We consider each application of an inference rule τ for (K,P,R) ⊢ (K′,P′,R′). If τ is EXTEND,

SIMPLIFY, ORIENT, DELETE, COLLAPSE, or COMPOSE, then the conclusion can be verified simi-

larly to [5, 7].

If τ is REWRITE, then we let P= P̄, R= R̄∪{l′→ r′}, R′= R̄, P′= P̄∪{rσ ≈ r′}, and K =K′. Since

(K∪P∪R)−(K′∪P′∪R′) = {l′→ r′}, we need to show that l′
∗
←→E∪B∪P′∪R′ r

′. As l′= lσ→B rσ ↔P′ r
′,

we have l′
∗
←→E∪B∪P′∪R′ r′. Conversely, since (K′∪P′∪R′)− (K ∪P∪R) = {rσ ≈ r′}, we need to show

that rσ
∗
←→E∪B∪P∪R r′. As rσ ←B lσ = l′→R r′, we have rσ

∗
←→E∪B∪P∪R r′.

If τ is DEDUCE, then let R = R̄∪{s→ c, t → d}, P′ = P∪{c≈ d}, R′ = R̄∪{t→ d}, and K = K′,

where s ≈E t. Since (K ∪P∪R)− (K′∪P′∪R′) = {s→ c}, we need to show that s
∗
←→E∪B∪P′∪R′ c. As

s
∗
←→E t→R′ d↔P′ c, we have s

∗
←→E∪B∪P′∪R′ c. Conversely, since (K′∪P′∪R′)− (K∪P∪R) = {c≈ d},

we need to show that c
∗
←→E∪B∪P∪R d. As c←R s

∗
←→E t→R d, we have c

∗
←→E∪B∪P∪R d.

Definition 7. (i) A derivation is said to be fair if any inference rule that is continuously enabled is applied

eventually.

(ii) By a fair µ-derivation, we mean that the EXTEND and SIMPLIFY rule are applied eagerly in a fair

derivation.

Theorem 8. Let (K0,P0,R0) ⊢ (K1,P1,R1) ⊢ ·· · be a fair µ-derivation such that P0 is a finite set of

ground equations with K0 = /0 and R0 = /0.

(i) Each fair µ-derivation starting from the initial state (K0,P0,R0) is finite.

(ii) If (Kn,Pn,Rn) is a final state (i.e. no inference rule can be applied to (Kn,Pn,Rn)) of a fair µ-

derivation starting from the initial state (K0,P0,R0), then Rn ∪ B,E is convergent modulo E, and Rn

is a congruence closure modulo E ∪B for P0.

Proof. Since (K0,P0,R0) ⊢ (K1,P1,R1) ⊢ ·· · is a fair µ-derivation, this derivation can be written as

(K0,P0,R0)⊢
∗ (Km,Pm,Rm)⊢ (Km+1,Em+1,Rm+1)⊢ ·· · , where the derivation (Km,Pm,Rm)⊢ (Km+1,Em+1,

Rm+1) ⊢ ·· · does not involve any application of the EXTEND rule, so we have the set Km = Km+1 = · · · .
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(K,P[t],R)
EXTEND:

(K ∪{c},P[c],R∪{t→ c})

if t→ c is a D-rule, c ∈W −K, and t occurs in some

equation in P.

(K,P[t],R∪{t→ c})
SIMPLIFY:

(K,P[c],R∪{t→ c})

if t occurs in some equation in P.3

(K,P,R∪{l′→ r′})
REWRITE:

(K,P∪{rσ ≈ r′},R)

if l′ = lσ , where l→ r ∈ B.

(K,P∪{s≈ t},R)
ORIENT:

(K,P,R∪{s→ t})

if s≻ t, and s→ t is a D-rule or a C-rule.

(K,P,R∪{s→ c , t→ d})
DEDUCE:

(K,P∪{c≈ d},R∪{t→ d})

if s≈E t.

(K,P∪{s≈ t},R)
DELETE:

(K,P,R)

if s≈E t.

(K,P,R∪{t→ c , c→ d})
COMPOSE:

(K,P,R∪{t→ d , c→ d})

(K,P,R∪{t[c]→ c′ , c→ d})
COLLAPSE:

(K,P,R∪{t[d]→ c′ , c→ d})

if c is a proper subterm of t and c→ d is a C-rule.

Figure 1: Inference rules for congruence closure modulo permutation equations
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For (i), we provide a more concrete result in the following Lemma 9.

For (ii), let (Kn,Pn,Rn) be a final state of a fair µ-derivation starting from the state (K0,P0,R0). (Note

that each fair µ-derivation starting from the initial state (K0,P0,R0) is finite by (i), so we have some final

state.) Observe that Pm,Pm+1, . . . either contains only C-equations or is empty, and ≻ can orient those C

equations, so Pn = /0. Since l ≻lpo r for all rules l→ r ∈ Rn∪B, we see that Rn∪B/E is terminating.

Also, since Rn∪B is non-overlapping w.r.t. the rewrite system Rn ∪B,E (i.e. there is no non-trivial

critical pair between rules in Rn∪B), Rn∪B,E is Church-Rosser modulo E by the critical pair lemma [5].

Thus, Rn∪B,E is convergent modulo E .

Finally, we show that for each constant c ∈ K, there exists at least one ground term t ∈ T (F )

such that t
∗
←→Rn,E c by induction. Let c be a constant in K and f (c1, . . . ,ck)→ c be the correspond-

ing extension rule for c when c was added. By induction hypothesis, we have si
∗
←→Rn,E ci, and thus

f (s1, . . . ,sk)
∗
←→Rn,E f (c1, . . . ,ck)→∪iRi

c. By Lemma 6, we also have f (s1, . . . ,sk)
∗
←→Rn∪PnB∪E c, and thus

f (s1, . . . ,sk)
∗
←→Rn∪B∪E c because Pn = /0. As Rn∪B,E is convergent modulo E and no more REWRITE

rule can be applied to f (s1, . . . ,sk) by fairness of the derivation, we have f (s1, . . . ,sk)
∗
←→Rn,E c. Thus Rn

is a congruence closure modulo E ∪B for P0.

In the following lemma, recall that function symbols in F include 0-ary function symbols in F , i.e.,

constants in F .

Lemma 9. Let (K0,P0,R0) ⊢ (K1,P1,R1) ⊢ ·· · be a fair µ-derivation such that P0 is a finite set of ground

equations with K0 = /0 and R0 = /0. Then its derivation length is bounded by O(n2), where n is the sum

of the sizes (number of symbols) of the left-hand and right-hand sides of equations in P0.

Proof. We show that the number of applications of each rule in Figure 1 in a fair µ-derivation is bounded

above by O(n2), where n is the sum of the sizes (number of symbols in F ) of the left-hand and right-

hand sides of equations in P0. Since (K0,P0,R0) ⊢ (K1,P1,R1) ⊢ ·· · is a fair µ-derivation, we may write

this derivation as

(K0,P0,R0) ⊢
∗ (Km,Pm,Rm) ⊢ (Km+1,Em+1,Rm+1) ⊢ ·· · ,

where the derivation (Km,Pm,Rm) ⊢ (Km+1,Em+1,Rm+1) ⊢ ·· · does not involve any application of the

EXTEND rule, and thus we have the finite set Km = Km+1 = · · · .

(i) The total number of the EXTEND inference steps is bounded by O(n). This is because the total

number of F -symbols in the second component of the state is not increasing for each transition

step4 and each EXTEND inference step decreases this number by one.

(ii) A derivation step by the SIMPLIFY, REWRITE, DEDUCE, COMPOSE, or COLLAPSE rule ei-

ther reduces the number of function symbols of F in Ri∪Pi or rewrites some constant. The length

of a rewriting sequence c1→ c2→ ··· is bounded by |Km|. (Here, |Km| is O(n) because the total

number of the EXTEND inference steps is bounded by O(n) as discussed in (i).) Also, the total

number of symbols in Pi∪Ri is bounded by O(n+ |Km|),
5 which is also O(n). This means that the

total number of the SIMPLIFY, DEDUCE, COLLAPSE, or COMPOSE inference steps is bounded

4The only exception is the case where the REWRITE inference step using the nilpotency rule introduces constant 0 in the

second component of the state, where 0 does not occur in P0. But this requires at most one additional EXTEND inference step.
5The total number of symbols in Pi ∪Ri for each transition step does not increase except by an EXTEND inference step,

where an EXTEND inference step may increase this number by two.
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by O(n2). (Note that rewriting constants takes O(n2) because there are at most O(n) constants, and

the length of a rewriting sequence for each constant is bounded by O(n).)

(iii) The total number of the DELETE inference steps is bounded by O(n+ |Km|) (i.e. O(n)) because

the total number of symbols in Pi∪Ri is bounded by O(n+ |Km|).

(iv) The total number of the ORIENT inference steps is bounded by the total number of EXTEND,

SIMPLIFY, DEDUCE, COLLAPSE, and COMPOSE inference steps, which is O(n2). Note that

each ORIENT inference step neither increases the number of function symbols nor the number of

constants.

Thus, the derivation length of any fair µ-derivation starting from (K0,P0,R0) is bounded by O(n2).

Given a finite (fixed) set of permutation equations E and two terms s = f (s1, . . . ,sk) and t = f (t1, . . . ,
tk) with f ∈ FE , we can determine whether s ≈E t in O(n2) time (measured in n = |s|+ |t|) using an

additional data structure (i.e. a table) that can be constructed in polynomial time [1]. If s and t are both

flat, then we can determine whether s≈E t in O(n) time using the following procedure with a table that

can be constructed in polynomial time (see [1]).

Equality-Test(s, t)

Input: s = f (c1, . . . ,ci) and t = g(d1, . . . ,d j), where s and t are both flat.

Output: If s≈E t, then return true. Otherwise, return false.

1. Determine whether s and t are headed by the same function symbol (i.e. f = g and thus i = j). If

not, then return false. If it is true, then consider the following:

2. Determine whether f ∈FE . If not, then s and t are compared by syntactic equality, and return true

if they are syntactically equal. Otherwise, if f ∈FE , then consider the following:

3. Determine whether s≈E t using the TestEq procedure in [1].

It is easy to see that steps 1 and 2 of the Equality-Test(s, t) procedure take at most O(n) time. For

step 3, which corresponds to the case f = g and f ∈FE , it takes O(n) time for comparing two multisets.

If they are equal, then s and t are further compared in constant time using the TestEq procedure

in [1] with a table that can be constructed in polynomial time. (Note that the arity of all f ∈FE and

the size of the data structure (i.e. table) is bounded by a constant independent of the size of the input

terms.) Therefore, the Equality-Test(s, t) procedure takes O(n) time using a table that can be constructed

in polynomial time. In what follows, we denote by Table(Eq( f )) this table for each f ∈FE for a finite

(fixed) set of permutation equations E .

Theorem 10. Given the table Table(Eq( f )) for each f ∈FE , a congruence closure modulo E ∪B for a

finite set of ground equations P can be computed in O(n3) time, where n is the sum of the sizes (number

of symbols) of the left and right sides of equations in P.

Proof. We first construct a fair µ-derivation (K0,P0,R0) ⊢ (K1,P1,R1) ⊢ ·· · such that P0 is a finite set of

ground equations with K0 = /0 and R0 = /0.

It is easy to see that each EXTEND, SIMPLIFY, ORIENT, COMPOSE, and COLLAPSE inference

step in the derivation takes O(n) time.

Each REWRITE inference step in the derivation takes O(n) time because we only need to consider

for rules g(x,x) → x, g(x,x) → 0, g(x,0) → x, and g(0,x) → x for some interpreted function symbol

g ∈F .

Each DEDUCE inference step in the derivation takes O(n) time for checking E-equality (see the
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Equality-Test(s, t) procedure) between two left-hand side terms s and t in Ri. Similarly, each DELETE

inference step in the derivation takes O(n) time for checking E-equality.

By Lemma 9, we know that the derivation length of a fair µ-derivation is bounded by O(n2). Since

each inference step in the derivation takes O(n) time, a congruence closure modulo E ∪B for a finite set

of ground equations P can be computed in O(n3) time.

Corollary 11. The word problem for a finite set of ground equations P with a fixed set of permutation

function symbols is decidable in polynomial time.

Proof. We can decide whether s ≈?
E t for two ground terms s and t using a congruence closure modulo

E for P. By Theorem 10, we can compute a congruence closure modulo E for P in polynomial time by

constructing and using the table Table(Eq( f )) for each f ∈FE . Let R be a congruence closure modulo

E for P. We obtain each normal form of s and t using R. We first rewrite each constant symbol in F

of s and t to a new constant symbol in K obtained from constructing R, which takes O(m) time where

m = |s|+ |t|. Each rewrite step either reduces the size of a term or rewrites a constant in K to another

constant in K. The length of a rewriting sequence c1 → c2 → ··· is bounded by |K| (i.e. O(n)), where

n is the sum of the sizes of the left-hand and right-hand sides of equations in P. We may also infer that

the sum of the sizes of the left-hand and right-hand sides of the rewrite rules in R is O(n+ |K|), which is

O(n). Each rewrite step takes at most O(n2) time using R and the Equality-Test procedure. By combining

these steps together, we can decide whether s≈?
E t for two ground terms s and t using their normal forms

in polynomial time.

The above corollary also holds if some function symbols (not necessarily permutation function sym-

bols) satisfies the properties, such as idempotency (I), nilpotency (N), unit (U ), I∪U , or N ∪U .

4 Example of congruence closure modulo E ∪B

Let B be the set of the equation for an idempotency function symbol g, i.e., B = {g(x,x)→ x} and let E

be the following set of permutation equations:

E = { f (x1,x2,x3,x4,x5,x6,x7,x8)≈ f (x2,x1,x3,x4,x5,x6,x7,x8),
f (x1,x2,x3,x4,x5,x6,x7,x8)≈ f (x2,x3,x4,x1,x5,x6,x7,x8),
f (x1,x2,x3,x4,x5,x6,x7,x8)≈ f (x1,x2,x3,x4,x6,x5,x7,x8),
f (x1,x2,x3,x4,x5,x6,x7,x8)≈ f (x1,x2,x3,x4,x5,x6,x8,x7)}.

In this example, we may view each variable xi as a switch in a specially designed electric board, where

each variable will be assigned to either constant T (representing “on”) or constant F (representing “off”).

Each ground term f (c1,c2,c3,c4,c5,c6,c7,c8) with ci = T or F represents a certain state of this electric

board. There is a special transformation button in this electric board, which may transform one state to

another state of the electic board. This transformation button is represented by a function with symbol

h /∈FE . The problem is to determine if a certain state in the electric board (represented by a term) gener-

ates a fault state (represented by term ⊥). We see that ∏[E] = {(12),(1234),(56),(78)}, which means

that f (x1,x2,x3,x4,x5,x6,x7,x8) ≈E f (xρ(1),xρ(2),xρ(3),xρ(4),x5,x6,x7,x8) for any permutation ρ on the

set {1,2,3,4}, f (x1,x2,x3,x4,x5,x6,x7,x8)≈E f (x1,x2,x3,x4,xπ(5),xπ(6),x7,x8) for any permutation π on

the set {5,6}, and f (x1,x2,x3,x4,x5,x6,x7,x8)≈E f (x1,x2,x3,x4,x5,x6,xτ(7),xτ(8)) for any permutation τ
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on the set {7,8} (see Thereom 1). Therefore, eight switches in the board are partitioned into three com-

ponents, i.e. {x1,x2,x3,x4}, {x5,x6} and {x7,x8}, where the order of “switch on” or “switch off” does

not matter in each component. For example, f (T,T,F,F,T,F,T,F) ≈E f (F,F,T,T,F,T,T,F). Mean-

while, g is an idempotent function symbol, which serves as a comparator for fault states. For example, if

g(⊥, f (F,F,F,T,T,T,T,F)), then it is ⊥ if f (F,F,F,T,T,T,T,F) is ⊥. Now we start with the following

set of ground equations:

1. f (T,T,T,T,T,T,T,T)≈⊥
2. h( f (F,F,F,F,F,F,F,F))≈ f (F,T,F,T,F,T,F,T )
3. f (T,F,F,F,F,F,F,T )≈ g(⊥,h( f (T,T,T,T,F,T,F,T )))
4. h( f (T,F,T,F,T,F,T,F))≈ f (F,F,F,F,T,T,T,T )
5. f (F,F,F,F,T,T,T,T )≈ f (T,T,T,T,F,F,F,F)
6. h( f (T,T,T,T,F,F,F,F))≈ f (T,T,T,T,T,F,T,F)
7. h( f (T,T,T,T,F,T,F,T))≈ f (T,T,T,T,T,T,T,T)

We show that, for example, each of h4( f (F,F,F,F,F,F,F,F)) and f (T,F,F,F,F,F,F,T ) is a fault

state. (For notational brevity, by hi(t), we mean the function symbol h is applied to term hi−1(t) with h0(t)
denoting t.) The initial state is (K0,P0,R0), where K0 = R0 = /0 and P0 consists of the above equations

1−7. We apply a fair µ-derivation starting with (K0,P0,R0) and some intermediate and repetitive steps

are omitted for clarity. In the following, each rewrite rule is an element of some Ri and each equation is

an element of some Pj. We assume that ci ≻ c j if i < j.

1(a). T → c1,F → c2,⊥→ c3 EXTEND and SIMPLIFY for 1

1(b). f (c1,c1,c1,c1,c1,c1,c1,c1)→ c4

1(c). c4 ≈ c3

2(a). f (c2,c2,c2,c2,c2,c2,c2,c2)→ c5 EXTEND and SIMPLIFY for 2

2(b). h(c5)→ c6

2(c). f (c2,c1,c2,c1,c2,c1,c2,c1)→ c7

2(d). c6 ≈ c7

3(a). f (c1,c2,c2,c2,c2,c2,c2,c1)→ c8 EXTEND and SIMPLIFY for 3

3(b). f (c1,c1,c1,c1,c2,c1,c2,c1)→ c9

3(c). h(c9)→ c10

3(d). g(c3,c10)→ c11

3(e). c8 ≈ c11

4(a). f (c1,c2,c1,c2,c1,c2,c1,c2)→ c12 EXTEND and SIMPLIFY for 4

4(b). h(c12)→ c13

4(c). f (c2,c2,c2,c2,c1,c1,c1,c1)→ c14

4(d). c13 ≈ c14

5(a). f (c2,c2,c2,c2,c1,c1,c1,c1)→ c15 EXTEND and SIMPLIFY for 5

5(b). f (c1,c1,c1,c1,c2,c2,c2,c2)→ c16

5(c). c15 ≈ c16

6(a). f (c1,c1,c1,c1,c2,c2,c2,c2)→ c17 EXTEND and SIMPLIFY for 6

6(b). h(c17)→ c18

6(c). f (c1,c1,c1,c1,c1,c2,c1,c2)→ c19

6(d). c18 ≈ c19

7(a). f (c1,c1,c1,c1,c2,c1,c2,c1)→ c20 EXTEND and SIMPLIFY for 7
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7(b). h(c20)→ c21

7(c). f (c1,c1,c1,c1,c1,c1,c1,c1)→ c22

7(d). c21 ≈ c22

8(a). c7 ≈ c12 (Rule 2(c) is now removed.) DEDUCE with 2(c) and 4(a)

8(b). c14 ≈ c15 (Rule 4(c) is now removed.) DEDUCE with 4(c) and 5(a)

8(c). c16 ≈ c17 (Rule 5(b) is now removed.) DEDUCE with 5(b) and 6(a)

8(d). c9 ≈ c20 (Rule 3(b) is now removed.) DEDUCE with 3(b) and 7(a)

8(e). c19 ≈ c20 (Rule 6(c) is now removed.) DEDUCE with 6(c) and 7(a)

8( f ). c4 ≈ c22 (Rule 1(b) is now removed.) DEDUCE with 1(b) and 7(c)

We next orient equations into C-rules and apply other inference rules. The set of C-rules is C = {c3→
c4,c6 → c7,c8 → c11,c13 → c14,c15 → c16,c18 → c19,c21 → c22,c7 → c12,c14 → c15,c16 → c17,c9 →
c20,c19 → c20,c4 → c22}. Using DEDUCE, COMPOSE, and ORIENT inference steps, it becomes

C′ = {c3→ c22,c6→ c12,c8→ c11,c13→ c17,c15→ c17,c18→ c20,c21→ c22,c7→ c12,c14→ c17,c16→
c17,c9 → c20,c19 → c20,c4→ c22}. The REWRITE inference step 9(d) is available after the following

inference steps 9(a), 9(b), and 9(c):

9(a). h(c20)→ c10 COLLAPSE 3(c) with c9→ c20

9(b). c10→ c22 DEDUCE with 7(b) and 9(a), ORIENT, COMPOSE

9(c). g(c22,c22)→ c11 COLLAPSE 3(d) with c3→ c22 and c10→ c22

9(d). c11→ c22 REWRITE 9(c), ORIENT

In the above, Rule 3(c) is removed after 9(a), Rule 9(a) is removed after 9(b), Rule 3(d) is removed

after 9(c), and Rule 9(c) is removed after 9(d). We may obtain a congruence closure Rn = Cn ∪Dn

modulo E ∪B for P0 for some n with some additional inference steps, where Cn = {c3 → c22,c4 →
c22,c6 → c12,c7 → c12,c8 → c11,c9 → c20,c10 → c22,c11 → c22,c13 → c17,c14 → c17,c15 → c17,c16 →
c17,c18→ c20,c21→ c22} and Dn consists of the following set of rules:

D1: T → c1 D2: F → c2

D3: ⊥→ c22 D4: f (c2,c2,c2,c2,c2,c2,c2,c2)→ c5

D5: h(c5)→ c12 D6: f (c1,c2,c2,c2,c2,c2,c2,c1)→ c22

D7: f (c1,c2,c1,c2,c1,c2,c1,c2)→ c12 D8: h(c12)→ c17

D9: f (c2,c2,c2,c2,c1,c1,c1,c1)→ c17 D10: f (c1,c1,c1,c1,c2,c2,c2,c2)→ c17

D11: h(c17)→ c20 D12: f (c1,c1,c1,c1,c2,c1,c2,c1)→ c20

D13: h(c20)→ c22 D14: f (c1,c1,c1,c1,c1,c1,c1,c1)→ c22

Now we determine whether h4( f (F,F,F,F,F,F,F,F)) is a fault state: i.e., h4( f (F,F,F,F,F,F,F,F))

≈?
Rn∪B∪E ⊥. Since h4( f (F,F,F,F,F,F,F,F))

∗
−→Rn,E h4( f (c2,c2,c2,c2,c2,c2,c2,c2))→Rn,E h4(c5)→Rn,E

h3(c12)→Rn,E h2(c17)→Rn,E h(c20)→Rn,E c22 and⊥→Rn,E c22, it is a fault state. Similarly, we can deter-

mine whether f (T,F,F,F,F,F,F,T ) is a fault state. Since f (T,F,F,F,F,F,F,T )
∗
−→Rn,E f (c1,c2,c2,c2,c2,

c2,c2,c1)→Rn,E c11→Rn,E c22 and ⊥→Rn,E c22, it is a fault state. Meanwhile, h2( f (F,F,T,T,F,T,F,T ))

is not a fault state, i.e., h2( f (F,F,T,T,F,T,F,T )) 6≈Rn∪B∪E ⊥. Since h2( f (F,F,T,T,F,T,F,T ))
∗
−→Rn∪B,E

h2( f (c2,c2,c1,c1,c2,c1,c2,c1))→Rn∪B,E h2(c12)→Rn∪B,E h(c17)→Rn∪B,E c20 and ⊥ →Rn∪B,E c22, it is

not a fault state.
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5 Conclusion

We have presented a framework for constructing congruence closure modulo a finite set of permutation

equations E , extending the abstract congruence closure framework for handling permutation function

symbols with or without the interpreted function symbols (not necessarily permutation function sym-

bols) satisfying each of the following properties: idempotency (I), nilpotency (N), unit (U ), I ∪U , or

N ∪U . We have provided a polynomial time decision procedure for the word problem for a finite set of

ground equations with a fixed set of permutation function symbols by constructing congruence closure

modulo E .

Although congruence closure procedures have been widely used in software/hardware verfication and

satisfiability modulo theories (SMT) solvers, congruence closure procedures with built-in permutations

have not been well studied. We believe that our framework for constructing congruence closure modulo

permutation equations has practical significance to software/hardware verfication and SMT solvers in-

volving built-in permutations, where built-in permutations are represented by a finite set of permutation

equations containing permutation function symbols.
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