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An open problem with categorical compositional distributl semantics is the representation of
words that are considered semantically vacuous from aillisivnal perspective, such as deter-
miners, prepositions, relative pronouns or coordinatd@tss paper deals with the topic of coordi-
nation between identical syntactic types, which accoumtdife majority of coordination cases in
language. By exploiting the compact closed structure ofitiderlying category and Frobenius op-
erators canonically induced over the fixed basis of finiteatisional vector spaces, we provide a
morphism as representation of a coordinator tensor, anchewe kow it lifts from atomic types to
compound types. Linguistic intuitions are provided, angl ithportance of the Frobenius operators
as an addition to the compact closed setting with regardiguage is discussed.

1 Introduction

Inspired by gquantum mechanics, and specifically by the ocayetfpeoretic manifestation of quantum
mechanics as set out by Abramsky and Coecke [1], the compudiframework of Coecke, Sadrzadeh
and Clark [2] provides an intuitive way to model the inteias between words within a sentence in
the context of a distributional model of meaning. In thidiegt nouns are represented as simple vectors
living in a basic vector space, while words with a relationature, such as verbs and adjectives, are
multi-linear maps living in tensor product spaces and gctin the noun vectors. The model uses the
framework of compact closed categories to unify a grammparressed as a Lambek pregroup [8] with the
category of finite-dimensional vector spaces and linearsnfagh/ect), which is where a distributional
model of semantics lives; this is achieved by means of a fuiadtpassage that essentially translates
every grammatical derivation to a multi-linear algebraianipulation on the word vectors and tensors.

A long-standing challenge in compositional distributibrreodels is the representation of functional
words, such as prepositions, relative pronouns, or coatalig, since in principle the meaning of these
cannot be given by distributional or any other statisticatimods. In order to cope with this problem,
researchers in the past have exploited the notion of Frabealgebras which can be canonically in-
duced over the basis of finite-dimensional vector spacesH4dbenius algebras constitute one of the
fundamental structures of categorical quantum mechalfidsHe other one being compact closed cate-
gories), where they are used to model classical operatsoie$, as copying or deleting information, that
are not allowed in the quantum world. Interestingly, thesgperties of Frobenius algebras have also
been proved useful in language, modelling linguistic atpar which the representation power of the
framework of compact closed categories is insufficient 32,7, 6! 3].

In this paper we show how Frobenius algebras, in conjunatiidm the compact closed structure of
FdVect, can be used to model one of the most ubiquitous phenomeaagdndge, that of coordinatidh.

1A preliminary account of this subject can be found in the dmaitthesis of the author[[5].
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As we will see in Sectiohl3, from a linguistic perspectivelfgnius multiplication can be seen as enforc-
ing the two inputs to contribute equally to the result—araitleat captures the essence of coordination.
Furthermore, the Frobenius co-multiplication allows thglitation of information when this makes
linguistic sense; as it will become evident in Section 4t?s action is necessary when coordinating
text constituents with compound grammatical types, sualeds phrases. The coordinating morphisms
we provide in this paper make use of these two notions; fmbee, they get intuitive linear-algebraic
interpretations and come with compact composition forsdktet simplify their practical application.
Finally, in Sectiorf 4.3 we briefly examine the applicationtttd Frobenius machinery on non-standard
coordination cases that involve certain forms of ellipsis.

2 Background

This section provides a very short introduction to the cositimal framework of Coecke et al.|[2] and
Frobenius algebras ov&dVect [4]; the interested reader is encouraged to refer to thenaligpapers
for more details. We furthermore assume familiarity witle fraphical language of compact closed
categories; for an introduction specific to linguisticse §80], App. A.

2.1 A functorial passage from syntax to semantics

We recall that a pregroup algebra is a partially ordered nuhmach elemenp of which has a left and a
right adjoint, denoted ag' and p' respectively, such that:

p-p<1<pp P-p<i<p-p (1)

Take P(#) to be a pregroup algebra generated over a set of basiat¢arig grammatical types
2, andX the vocabulary of the language; then a pregroup grammarakan x P(%), denoted as
P(Z, %) that assigns a grammar type to every word in the vocabulgrnyABsuming# = {s,n}, where
s stands for a well-formed sentence amtbr a well-formed noun phrase, we say that a word sequence
wiWs, . .. Wy forms a grammatical sentence whenéyet, - . ... - t, < s, for (wi,ti) € P(Z, #). For example,
given the type assignments (‘Many), (likes’, n" -s-n'), (‘musicals’, n), the sentence “Mary likes
musicals” is grammatical singe- n"-s-n'-n< 1-s-1 < s, according to Equationl 1. Note that the type
of the transitive verb ‘likes’ icompoungddenoting a word that expects noun phrases at both of its side
in order to return a sentence.

Both a pregroup grammar afalVect have compact closed structure. For a pregroup, the stalctur
morphisms of compact closueeandn become:

eip-p<l, gipp<t n:1<p-p,n:1<p-p 2
Unlike a pregroupFdVect is a symmetric compact closed category, meaning that foyeuar of

objectsA, B there is an isomorphism : A® B= B® A. In FdVect, thee map becomes the inner product
between the involved vectors, and thenap defines identity matrices:

g =¢:vVaVv —)R::ZC”(W@VJ})F—)ZC”<W|W> n'=n""R-VaV:il- ZW@W (3)
1] 1] ]

A structure-preserving passage from syntax to semantitbealeveloped between these two cate-
gories by using a strongly monoidal functor:

F P(#,Z) — FdVect (4)
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that sends each atomic typéo a vector spac¥, and compound types to tensor product of spaces, since
Z(p-q) = F(p)©.7(q).

As an example, consider the sentence “John sleeps”. Thegpiederivation takes the formn".s<
1-s< s, translated to morphisrte" - 15) o (n- n" - s) according to Equationl 2. Applying our functor to
this, and takingJo—h?le N andsleepc N' ® Sto be the semantic representations of the words, will give:

F(1s)o(n-n"-s)] = F(e - L)oF(n-n-s)=(e"®1s5)o(NaN'®9)
‘= (£"®1s)o (Johnw sleep = John' x sleep
From a linear-algebraic perspective, the above is just thgixmultiplication of the matrix repre-

senting the intransitive verb ‘sleep’ with the vector foundJohn’. For higher-order tensors (such as a
transitive verb living inN" ® S® N'), the composition operation generalizes to tensor calitrac

2.2 Frobeniusalgebras

An objectX in a compact closed catego#/ has a Frobenius structure on it if there exist morphisms
A X > XX, i X—=>landu: XX — X, {: 1 — X satisfying (among other associativity and unit
conditions) the following:

(H®1x)o(1x@D) = Doy = (Ix@ )0 (A 1y) (5)

In the categoryFdVect, any vector spac® with a fixed basis{W}i has a commutative special
Frobenius algebra over it, explicitly given as follows [4]:

AV VoW oV
= o - v i=] -
V@V — &V = 6> oy Ziil'—>ZVi (6)
|

For U € V,WweV ®V, we have thaﬂ(ﬁ) €V ®V is a diagonal matrix whose diagonal elements
are the weights ofir, andu(w) € V is a vector consisting only of the diagonal elementsvlf For
the purposes of this paper we referAdamap as thecopyingoperation, and tou map as thamerging
operation.

3 Linguistic uses of the Frobenius operators

The Frobenius operators FdVect as given in Equatiohl6 adhere to intuitive interpretatidmest make
them important additions to the underlying compact clossttingy. In particular, while the standard
g-composition has a transformational eﬁEdthe U map can be seen as an alternative form of com-
position that imposes equal contribution of the operandhecfinal result; linear-algebraically, while
g-composition is tensor contraction requiring one of theratting words to be of a higher order than
the other,u-composition takes the form of element-wise multiplicatioetween tensors of the same
order:

HXOY) =Y axyi% =Y X%V = X0y 7)
1] I

2| this paper the notatiolV refers to a vector, while denotes a tensor of order1.
3For example, an intransitive verb is a mdp— S, faithfully encoded as a matrix living iN ® S, that transforms the input
noun into a sentence.
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whereV/ is a basis vector an@ denotes element-wise vector multiplication. From a listjaiperspec-
tive, there are many cases where such an interaction isabésirfSadrzadeh et al. [12,/13], for example,
work on nouns modified by relative clauses (e.g. “The man ikes IMary”) and present a construction
for the relative pronoun that results ijnrcomposing the vector of the noun (‘man’) with the vector of
the modifying verb phrase (‘likes Mary’). Similarly, Kaaklis and Sadrzadeh][6] inject intonational
information into a sentence vector by merging the vectoth®theme of the sentence (information that
is known to both interlocutors in a conversation) and themdef the sentence (information that is new
to the addressee). Finally, Coecke and LeWwis [3] arguethadmposition can approximate to a certain
extent the meaning of non-compositional compounds, sugbeasish’.

Technically, u-composition has an intersective effect on the elementeebperands. This is more
clear when one usd®d (the category of sets and relations) as the co-domain ofyoiias-to-semantics
functor .#, instead ofFdVect. Recall that elements in finite sets can be seen as basigyv@ftiree
modules over the semi-ring of booleans. In this settingnsare represented by vectors corresponding
to subsets of the universe of discourse, whiesecomponent is 1 if théth element is included in the
specific set and 0 otherwise. Furthermore, a verb becomésatione represented by an adjacency matrix
in which the(i, j)-th component is 1 if the relation stands for the pair comgistf thei-th element of its
domain and thg-th element of its codomain. It is clear that in these casmmeht-wise multiplication of
the vectors/tensors corresponds exactly to the intesseofithe involved sets or relations. The transition
from the truth-theoretic setting &tel to the real-valuedrdVect, where a standard distributional model
of semantics lives, results in a form of “quantitative” irgection between the components of the vectors
that has been proved very effective in a number of standard fdkks (see, for examplel [9]).

The Frobenius co-multiplication (the “copyindt map) has been also proved useful in linguistic
applications. Kartsaklis et al[[7] use it in order to resttne functorial relationship between grammar
and verb tensors of order lower than that dictated by thpe.tyn a more conceptual use of this operation,
the relative pronoun construction of Sadrzadeh et al. ¢éisfigrcopies the vector of the noun from its
original position and allows the information to “flow” at tlke¢her side of the pronoun and interact with
the vector of the verb phrase, providing a means of syntaeticement. The current paper builds on
all the above intuitions, and in the following sections thédeas are applied to model coordination in
language.

4 Coordination in CCDS

Coordination is perhaps the linguistic aspect in which tbgoms of merging and copying information
find their most natural application. Two coordinated phsagesentences can be seen as contributing
equally to the final outcome; we would expect, for example,wéctor of the sentence “John reads and
Mary sleeps” to reflect equally the vectors of the two coaatkd sentences, “John reads” and “Mary
sleeps”. Furthermore, distributivity conditions suggestt parts of the coordinate structure should be
copied and interact with each one of the conjuncts sepgrdiet example, it is the case that:

(1) Mary studies philosophy and histogy Mary studies philosophy and Mary studies history

(2) Men like sports and play footba# Men like sports and men play football
where the symbol= denotes entailment. Therefore, merging and copying carede as the key pro-
cesses of coordination, and in this section we will show #maeffective use of Frobenius operators in

conjunction with the underlying compact closed structurd-dVect allows us to model a variety of
coordination cases in categorical compositional distidmal semantics.
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For the analysis that follows we consider the usual ternalgyX CONJ X — X, which states that
coordination always takes place between conjuncts of theedgpe and produces a result that again
matches that specific type. In pregroup terms, this is aebidy assigning the typé - x- X' to the con-
junction (wherex can be an atomic or a compound type), which leads to the foilpgeneric derivation:

X-(X - x-x)-x<1-x-1=x (8)

Taking Xi,% € .Z(x) = X to be the semantic representations of the two conjunctscand, ¢

X' ® X ® X! the coordination tens@we translate the above pregroup derivatiofrdtyect as follows:
7 r | r | _(ef | Y7 o AR 24

F (&1 &) o (XX -X-X -x)} = (& ®1x ®é&y) o (X ®Cconjy ® X3) 9)

Our main concern is to find a way to transform the compositiorcfion &) ® 1x ® e>'< (which for
the moment is solely expressed in termscahaps) to a function that appligs-composition between
the two operands, thus enforces equal contribution of timuoacts in the final result. The connection
between the two ways of composing the conjuncts is madeogxiplithe following diagram:

I

X{ ® %3 1x ® % ® Nk ® 1x
[ X @X XX eXeXoX X
Lx I @ Ixr @ Px @ Ly @ 1x (20)
X - | XX aXeX @X
€x®lx®€x
from which we derive:
pxo (M ®%3) = (®1x®g}) o (Ix® 1y @ px @ Iy ® 1x) o (Ix @ N @ Nk ® 1x) 0 (X © 33)
= (e{<®1x®e>'<)o(1x®[(1xr®ux®1x|)o(n{<®n>'<)}®1x)o(Y{®Yz>)
= (ekog)o (4 (L@ mel)o(nkenk)] o %) (12)

The morphism between the square brackets defines a stéfezitX @ X', and corresponds exactly
to the semantic representation of the coordinator we nessl {50 Equatioh]9) in order to translate
g-composition tgu-composition. The coordinator morphism is stated expyidielow:

. r | 1yr 1
cony 1 2 X e X @ X @ X 2N g X @ X! (12)

In the following sections we will use the diagrammatic célsuof compact closed categories to
demonstrate the application of Equatiod 12 in a number ofdination examples; the cases of atomic
and compound types are treated separately.

4.1 Coordinating atomic types

We start with the simple case of coordinating conjuncts @it types, that is, conjuncts whose semantic
representation is a vector (nouns) or it can be reduced totandgy e-compaosition (e.g. noun phrases and

4Although for a vector spacé in FdVect it is always the case thet= V" =V', in this paper the adjoints of vector spaces
will be explicitly stated for additional clarity.
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sentences). In the graphical language of compact closedaéts, the composition of a coordination
over noun phrases according to Equatioh 12 takes this form:

and
apples /\ oranges apples oranges

NP N

N

AR \?/

In this notation, a vectow €V is represented as a stategfi.e. a morphismV ' =V (the triangle
denotes that the domain is the monoidal unit). Similarlystes are states of tensor product spaces; e.g.
the coordinator tensor above is a morphisr» N' @ N®@ N'. The cups () denotes maps, and the
caps (1) n maps; straight line segments denote identities. Compasorghisms amounts to connecting
outputs to inputs, while the tensor product is juxtapositi®he dot node corresponds to the Frobenius
multiplication.

As noted before, the morphism of Equation 12 provides amfate between standaedcomposition
(tensor contraction) and-composition (element-wise vector multiplication), gupuing the underlying
compositional framework with an additional layer of fleXityi For the above example we have:

(eN®IN® s,'\,) o(appleszconjy® orang8$ = u(apples» orang8$ =apples>oranges (14)

The type of a sentence coordinatorsiss- s, leading to a situation very similar to that of the noun
phrase case:

and )
men watch football /\ women knit men watchfootball women knit

| | I (15)

llll\llrllllll $NN"—> llf

MBI

Linear-algebraically this results in a combinatioreefomposition that takes place within the context
of each sentence, ang-composition that merges the two sentences into a singlebtiee position of
the coordinator:

m_
(Z_

(meh x watchx football) © (womer x knit) (16)

4.2 Coordinating compound types

The simple cases addressed in Sedtiom 4.1 make use of thengh&mbenius operator, but they do
not include any examples for which duplication of infornoatiis necessary. This requirement emerges
when one moves to coordination over complex types, whichasenmteresting and involved. In order
to understand how does this work, it would be instructivexangine the way in which the morphism
of EquatiorIP lifts to complex types. We will use as an exanipé case of verb phrase coordination.
Recall that the pregroup type of a verb phrase' iss; that is, something that expects a noun (a subject)
from the left in order to return a sentence. The semanticesgmtation of a verb phrase FaVect is a
matrix living inN" ® S= N ® S; note however that what follows can be directly generalize@nsors of
higher order.
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We start by expressing the maps on the compound objectsnts tef the atomic objects. For an
arbitrary compound objett ®V, recall that:

r |

n n
| — VeV I ——UU
Iyr @nf ® 1 !
n[& hv en)ely nﬂ& hlu@r)\/@lw (17)
ViU oU eV = UsVeV eu! =
UaV) e UaV) UeV)eUaV)

which is graphically depicted as follows:

N (A O 2 AN a8

V) vrur UaV) (UaV) uv vy

Furthermore, it is also the case that the Frobenius operattrerently lift to compound objects; for
the u map, this lifting takes the following form:

Leoyyely
UsV)eaU®V) ———— U U VeV

\ h Hu ® py (19)
Huev

UV

and is graphically shown below:

UsV) UxV)

Nl

We can now apply the coordination morphism of Equafioh 1zhto dompound typ&" @ S and
examine how does this translate in terms of the atomic tiyesndS. According to Equations_18 and
(and assuming the canonical extensions on identitie$)ave:

Symbolically, the morphism in its expanded form becomes:

(N®9S" (N®S) (N®9)

CONjyrgs = (l(N'®S)'®UN'®S®1(N'®S)')O(nI(I'®S®nII\|f®S) (22)
= (ls @1y @ Unr ®@ Us® 1g @ 1n) 0 (1g @ Ny @ Onr 5@ NE® In) 0 (NE@ Nk
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Putting the coordinator in context results in the followinggraction:

John sleeps and snores

John sleeps snores
T 1 1
o m N 23

|

At the left-hand side of the diagram, we observe the follgnsequence of actions:
1. The subject of the coordinate structure (‘John’) is cd@ietheN" input of the coordinator;
2. the first branch interacts with verb ‘sleeps’ and the séanre with verb ‘snores’; and

3. theSwires of the two verbs that carry the individual results asgad together witli-composition
in order to return a single vector.

Thus the morphism of Equatidn]12 makes effective use of botloms of copying and merging
in order to represent coordination between verb phraseswayathat makes linguistic sense. Note
that the simplified diagram at the right-hand side of Equel@ makes apparent a compact form for
the coordinate structure “sleeps and snores”. In factatiadgebraically this is nothing more than the
Hadamard product between the matrices corresponding tsetinantic representations of the two verb
phrases In the general case, the Hadamard product betweematncesA Yij aj i ®wJ andB =
Yij bij VW @W] in V @W is given byA© B = Yij aijbij Vi @W]. The element-wise merging of the two
conjuncts is consistent with the way coordination is cdrdat over atomic types and makes possible the
following convenient closed form for computing the meanirighe sentence:

Johi'  (Sleeps snore (24)
Although the above exposition was based on compound typesief 2, the morphism of Equation
[12 generalizes coherently to tensors of higher order, giogia first-class coordination object for cat-
egorical compositional distributional semantics. In thseof coordination between ditransitive verbs,
for example, like in the sentence “The bank granted Mary lemied John a loan”, the meaning of the
sentence becomes:

the bank granted Mary denied John aloan

I I
N SN' N' Nr SN'N'

Note that the above derivation accounts for copyinththe subject and the direct object, as required
by distributivity. This is translated to the following fourta:

bank' x {(grant x Mary) ® (denyx John)| x loan (26)

wheregrant anddenyrefer to tensors of order 4, and thesymbol denotes element-wise multiplication
between tensors of order 3.
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4.3 Non-standard forms of coordination

In this section we briefly examine the use of Frobenius opesah non-standard forms of coordination.
Consider for example the following sentence:

(3) John likes Poe, anghn jikes LOVecraft as well

Example B exhibits a form of ellipsis related to coordinatimown asstripping we expect that the
meaning of this sentence will be the same with that of thedstahform “John likes Poe and Lovercraft”,
which is computed below according to Equation 12:

and
John likes Poe /\ Lovecraft John likes Poe Lovecraft

T T LT T 1 17 —TTT1T 7 I (27)
N NSN N NNN N 7 N NSN N N

I\ T

As a special form of coordination, stripping can be addmdseexploiting a special-purpose ten-
sor; we achieve the desired result by defining the intermatsire of the coordinator as shown in the
following diagram:

John likes Poe Lovecraftas well John likes Poe Lovecraft

l m .

[ [
N fsr\l NNNS S sN

"@M"

Note that the actual coordination step is still carried quthe morphism of Equation 12; however,
additional wiring is necessary in order to allow the unhiedeflow of information through the left-hand
and right-hand parts of the sentence.

I (28)

5 Conclusion and future work

This paper contributes to the ongoing research on categar@mpositional distributional semantics
by providing an account of coordination. While the preseéritkeas cover the most common cases of
coordination, language is more complex than that; for exapgmordination between text constituents
of different syntactic categories (“John works eveningd an weekeends”) constitutes an interesting
future direction of research. A proper distinction betweenjunction and disjunction cases (which is not
pursued in this paper) remains an open problem, as it imppleepresence of an underlying logic; to this
end, applications of quantum logic seem to provide a promidirection, as the work of Widdows [14]
and Van Rijsbergeri [11] shows. Finally, the Frobenius nreatyi and especially the copying operator
provides a means for addressing other forms of ellipsis mguage, such as verb phrase ellipsis or
gapping, that we plan to explore in the future.
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