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An open problem with categorical compositional distributional semantics is the representation of
words that are considered semantically vacuous from a distributional perspective, such as deter-
miners, prepositions, relative pronouns or coordinators.This paper deals with the topic of coordi-
nation between identical syntactic types, which accounts for the majority of coordination cases in
language. By exploiting the compact closed structure of theunderlying category and Frobenius op-
erators canonically induced over the fixed basis of finite-dimensional vector spaces, we provide a
morphism as representation of a coordinator tensor, and we show how it lifts from atomic types to
compound types. Linguistic intuitions are provided, and the importance of the Frobenius operators
as an addition to the compact closed setting with regard to language is discussed.

1 Introduction

Inspired by quantum mechanics, and specifically by the category-theoretic manifestation of quantum
mechanics as set out by Abramsky and Coecke [1], the compositional framework of Coecke, Sadrzadeh
and Clark [2] provides an intuitive way to model the interactions between words within a sentence in
the context of a distributional model of meaning. In this setting, nouns are represented as simple vectors
living in a basic vector space, while words with a relationalnature, such as verbs and adjectives, are
multi-linear maps living in tensor product spaces and acting on the noun vectors. The model uses the
framework of compact closed categories to unify a grammar expressed as a Lambek pregroup [8] with the
category of finite-dimensional vector spaces and linear maps (FdVect), which is where a distributional
model of semantics lives; this is achieved by means of a functorial passage that essentially translates
every grammatical derivation to a multi-linear algebraic manipulation on the word vectors and tensors.

A long-standing challenge in compositional distributional models is the representation of functional
words, such as prepositions, relative pronouns, or coordinators, since in principle the meaning of these
cannot be given by distributional or any other statistical methods. In order to cope with this problem,
researchers in the past have exploited the notion of Frobenius algebras which can be canonically in-
duced over the basis of finite-dimensional vector spaces [4]. Frobenius algebras constitute one of the
fundamental structures of categorical quantum mechanics [1] (the other one being compact closed cate-
gories), where they are used to model classical operations,such as copying or deleting information, that
are not allowed in the quantum world. Interestingly, these properties of Frobenius algebras have also
been proved useful in language, modelling linguistic aspects for which the representation power of the
framework of compact closed categories is insufficient [12,13, 7, 6, 3].

In this paper we show how Frobenius algebras, in conjunctionwith the compact closed structure of
FdVect, can be used to model one of the most ubiquitous phenomena in language, that of coordination.1

1A preliminary account of this subject can be found in the doctoral thesis of the author [5].
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As we will see in Section 3, from a linguistic perspective Frobenius multiplication can be seen as enforc-
ing the two inputs to contribute equally to the result—an idea that captures the essence of coordination.
Furthermore, the Frobenius co-multiplication allows the duplication of information when this makes
linguistic sense; as it will become evident in Section 4.2, this action is necessary when coordinating
text constituents with compound grammatical types, such asverb phrases. The coordinating morphisms
we provide in this paper make use of these two notions; furthermore, they get intuitive linear-algebraic
interpretations and come with compact composition formulas that simplify their practical application.
Finally, in Section 4.3 we briefly examine the application ofthe Frobenius machinery on non-standard
coordination cases that involve certain forms of ellipsis.

2 Background

This section provides a very short introduction to the compositional framework of Coecke et al. [2] and
Frobenius algebras overFdVect [4]; the interested reader is encouraged to refer to the original papers
for more details. We furthermore assume familiarity with the graphical language of compact closed
categories; for an introduction specific to linguistics, see [10], App. A.

2.1 A functorial passage from syntax to semantics

We recall that a pregroup algebra is a partially ordered monoid, each elementp of which has a left and a
right adjoint, denoted aspl andpr respectively, such that:

p· pr ≤ 1≤ pr · p pl · p≤ 1≤ p· pl (1)

TakeP(B) to be a pregroup algebra generated over a set of basic (oratomic) grammatical types
B, andΣ the vocabulary of the language; then a pregroup grammar is a relationΣ×P(B), denoted as
P(Σ,B) that assigns a grammar type to every word in the vocabulary [8]. AssumingB = {s,n}, where
s stands for a well-formed sentence andn for a well-formed noun phrase, we say that a word sequence
w1w2 . . .wn forms a grammatical sentence whenevert1 · t2 · . . . · tn ≤ s, for (wi, ti)∈P(Σ,B). For example,
given the type assignments (‘Mary’,n), (‘likes’, nr · s· nl ), (‘musicals’, n), the sentence “Mary likes
musicals” is grammatical sincen ·nr · s·nl ·n≤ 1 · s·1≤ s, according to Equation 1. Note that the type
of the transitive verb ‘likes’ iscompound, denoting a word that expects noun phrases at both of its sides
in order to return a sentence.

Both a pregroup grammar andFdVect have compact closed structure. For a pregroup, the structural
morphisms of compact closureε andη become:

ε r : p· pr ≤ 1 , ε l : pl · p≤ 1 η r : 1≤ pr · p , η l : 1≤ p· pl (2)

Unlike a pregroup,FdVect is a symmetric compact closed category, meaning that for every pair of
objectsA,B there is an isomorphismσ : A⊗B∼= B⊗A. In FdVect, theε map becomes the inner product
between the involved vectors, and theη map defines identity matrices:

ε l = ε r : V ⊗V → R :: ∑
i j

ci j (
−→vi ⊗

−→v j ) 7→ ∑
i j

ci j 〈
−→vi |

−→v j 〉 η l = η r : R→V ⊗V :: 1 7→ ∑
i

−→vi ⊗
−→vi (3)

A structure-preserving passage from syntax to semantics can be developed between these two cate-
gories by using a strongly monoidal functor:

F : P(B,Σ)→ FdVect (4)



D. Kartsaklis 31

that sends each atomic typex to a vector spaceX, and compound types to tensor product of spaces, since
F (p·q) = F (p)⊗F (q).

As an example, consider the sentence “John sleeps”. The pregroup derivation takes the formn·nr ·s≤
1 · s≤ s, translated to morphism(ε r ·1s) ◦ (n ·nr · s) according to Equation 2. Applying our functor to
this, and taking

−−→
John∈ N andsleep∈ Nr ⊗Sto be the semantic representations of the words, will give:

F [(ε r ·1s)◦ (n·n
r ·s)] = F (ε r ·1s)◦F (n·nr ·s) = (ε r ⊗1S)◦ (N⊗Nr ⊗S)

:= (ε r ⊗1S)◦ (
−−→
John⊗sleep) =

−−→
JohnT×sleep

From a linear-algebraic perspective, the above is just the matrix multiplication of the matrix repre-
senting the intransitive verb ‘sleep’ with the vector for noun ‘John’. For higher-order tensors (such as a
transitive verb living inNr ⊗S⊗Nl ), the composition operation generalizes to tensor contraction.

2.2 Frobenius algebras

An objectX in a compact closed categoryC has a Frobenius structure on it if there exist morphisms
∆ : X → X⊗X, ι : X → I andµ : X⊗X → X, ζ : I → X satisfying (among other associativity and unit
conditions) the following:

(µ ⊗1X)◦ (1X ⊗∆) = ∆◦µ = (1X ⊗µ)◦ (∆⊗1X) (5)

In the categoryFdVect, any vector spaceV with a fixed basis{−→vi }i has a commutative special
Frobenius algebra over it, explicitly given as follows [4]:

∆ :: −→vi 7→
−→vi ⊗

−→vi ι :: −→vi 7→ 1

µ :: −→vi ⊗
−→v j 7→ δi j

−→vi :=

{ −→vi i = j
−→
0 i 6= j

ζ :: 1 7→ ∑
i

−→vi (6)

For−→u ∈ V,w ∈ V ⊗V, we have that∆(−→u ) ∈ V ⊗V is a diagonal matrix whose diagonal elements
are the weights of−→u , andµ(w) ∈ V is a vector consisting only of the diagonal elements ofw.2 For
the purposes of this paper we refer to∆ map as thecopyingoperation, and toµ map as themerging
operation.

3 Linguistic uses of the Frobenius operators

The Frobenius operators inFdVect as given in Equation 6 adhere to intuitive interpretations that make
them important additions to the underlying compact closed setting. In particular, while the standard
ε-composition has a transformational effect,3 the µ map can be seen as an alternative form of com-
position that imposes equal contribution of the operands tothe final result; linear-algebraically, while
ε-composition is tensor contraction requiring one of the interacting words to be of a higher order than
the other,µ-composition takes the form of element-wise multiplication between tensors of the same
order:

µ(−→x ⊗−→y ) = ∑
i j

δi j xiy j
−→vi =∑

i

xiyi
−→vi =

−→x ⊙−→y (7)

2In this paper the notation−→v refers to a vector, whilew denotes a tensor of order> 1.
3For example, an intransitive verb is a mapN → S, faithfully encoded as a matrix living inN⊗S, that transforms the input

noun into a sentence.
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where−→vi is a basis vector and⊙ denotes element-wise vector multiplication. From a linguistic perspec-
tive, there are many cases where such an interaction is desirable. Sadrzadeh et al. [12, 13], for example,
work on nouns modified by relative clauses (e.g. “The man who likes Mary”) and present a construction
for the relative pronoun that results inµ-composing the vector of the noun (‘man’) with the vector of
the modifying verb phrase (‘likes Mary’). Similarly, Kartsaklis and Sadrzadeh [6] inject intonational
information into a sentence vector by merging the vectors ofthe theme of the sentence (information that
is known to both interlocutors in a conversation) and the rheme of the sentence (information that is new
to the addressee). Finally, Coecke and Lewis [3] argue thatµ-composition can approximate to a certain
extent the meaning of non-compositional compounds, such as‘pet fish’.

Technically,µ-composition has an intersective effect on the elements of the operands. This is more
clear when one usesRel (the category of sets and relations) as the co-domain of our syntax-to-semantics
functor F , instead ofFdVect. Recall that elements in finite sets can be seen as basis vectors of free
modules over the semi-ring of booleans. In this setting, nouns are represented by vectors corresponding
to subsets of the universe of discourse, whosei-th component is 1 if thei-th element is included in the
specific set and 0 otherwise. Furthermore, a verb becomes a relation, represented by an adjacency matrix
in which the(i, j)-th component is 1 if the relation stands for the pair consisting of thei-th element of its
domain and thej-th element of its codomain. It is clear that in these cases element-wise multiplication of
the vectors/tensors corresponds exactly to the intersection of the involved sets or relations. The transition
from the truth-theoretic setting ofRel to the real-valuedFdVect, where a standard distributional model
of semantics lives, results in a form of “quantitative” intersection between the components of the vectors
that has been proved very effective in a number of standard NLP tasks (see, for example, [9]).

The Frobenius co-multiplication (the “copying”∆ map) has been also proved useful in linguistic
applications. Kartsaklis et al. [7] use it in order to restore the functorial relationship between grammar
and verb tensors of order lower than that dictated by their type. In a more conceptual use of this operation,
the relative pronoun construction of Sadrzadeh et al. essentially copies the vector of the noun from its
original position and allows the information to “flow” at theother side of the pronoun and interact with
the vector of the verb phrase, providing a means of syntacticmovement. The current paper builds on
all the above intuitions, and in the following sections these ideas are applied to model coordination in
language.

4 Coordination in CCDS

Coordination is perhaps the linguistic aspect in which the notions of merging and copying information
find their most natural application. Two coordinated phrases or sentences can be seen as contributing
equally to the final outcome; we would expect, for example, the vector of the sentence “John reads and
Mary sleeps” to reflect equally the vectors of the two coordinated sentences, “John reads” and “Mary
sleeps”. Furthermore, distributivity conditions suggestthat parts of the coordinate structure should be
copied and interact with each one of the conjuncts separately. For example, it is the case that:

(1) Mary studies philosophy and history|= Mary studies philosophy and Mary studies history

(2) Men like sports and play football|= Men like sports and men play football

where the symbol|= denotes entailment. Therefore, merging and copying can be seen as the key pro-
cesses of coordination, and in this section we will show thatan effective use of Frobenius operators in
conjunction with the underlying compact closed structure of FdVect allows us to model a variety of
coordination cases in categorical compositional distributional semantics.
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For the analysis that follows we consider the usual ternary rule X CONJ X → X, which states that
coordination always takes place between conjuncts of the same type and produces a result that again
matches that specific type. In pregroup terms, this is achieved by assigning the typexr ·x·xl to the con-
junction (wherex can be an atomic or a compound type), which leads to the following generic derivation:

x· (xr ·x·xl ) ·x≤ 1·x·1= x (8)

Taking −→x1 ,
−→x2 ∈ F (x) = X to be the semantic representations of the two conjuncts andcon jX ∈

Xr ⊗X⊗Xl the coordination tensor,4 we translate the above pregroup derivation toFdVect as follows:

F

[

(ε r
x ·1x · ε l

x)◦ (x·x
r ·x·xl ·x)

]

= (ε r
X ⊗1X ⊗ ε l

X)◦ (
−→x1 ⊗con jX ⊗−→x2) (9)

Our main concern is to find a way to transform the composition functionε r
X ⊗ 1X ⊗ ε l

X (which for
the moment is solely expressed in terms ofε-maps) to a function that appliesµ-composition between
the two operands, thus enforces equal contribution of the conjuncts in the final result. The connection
between the two ways of composing the conjuncts is made explicit in the following diagram:

X⊗X X⊗Xr ⊗X⊗X⊗Xl ⊗X

X⊗Xr ⊗X⊗Xl ⊗X

1X ⊗η r
X ⊗η l

X ⊗1X

X

1X ⊗1Xr ⊗µX ⊗1Xl ⊗1X

ε r
X ⊗1X ⊗ ε l

X

µX

I
−→x1 ⊗

−→x2

(10)

from which we derive:

µX ◦ (−→x1 ⊗
−→x2) = (ε r

X ⊗1X ⊗ ε l
X)◦ (1X ⊗1Xr ⊗ µX ⊗1Xl ⊗1X)◦ (1X ⊗η r

X ⊗η l
X ⊗1X)◦ (

−→x1 ⊗
−→x2)

= (ε r
X ⊗1X ⊗ ε l

X)◦
(

1X ⊗
[

(1Xr ⊗ µX ⊗1Xl )◦ (η r
X ⊗η l

X)
]

⊗1X

)

◦ (−→x1 ⊗
−→x2)

= (ε r
X ⊗1X ⊗ ε l

X)◦
(

−→x1 ⊗
[

(1Xr ⊗ µX ⊗1Xl )◦ (η r
X ⊗η l

X)
]

⊗−→x2

)

(11)

The morphism between the square brackets defines a state inXr ⊗X⊗Xl , and corresponds exactly
to the semantic representation of the coordinator we need (see also Equation 9) in order to translate
ε-composition toµ-composition. The coordinator morphism is stated explicitly below:

con jX : I
η r

X⊗η l
X−−−−→ Xr ⊗X⊗X⊗Xl 1Xr ⊗µX⊗1Xl

−−−−−−−→ Xr ⊗X⊗Xl (12)

In the following sections we will use the diagrammatic calculus of compact closed categories to
demonstrate the application of Equation 12 in a number of coordination examples; the cases of atomic
and compound types are treated separately.

4.1 Coordinating atomic types

We start with the simple case of coordinating conjuncts of atomic types, that is, conjuncts whose semantic
representation is a vector (nouns) or it can be reduced to a vector byε-composition (e.g. noun phrases and

4Although for a vector spaceV in FdVect it is always the case thatV ∼=Vr ∼=V l , in this paper the adjoints of vector spaces
will be explicitly stated for additional clarity.
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sentences). In the graphical language of compact closed categories, the composition of a coordination
over noun phrases according to Equation 12 takes this form:

and
apples orangesapples oranges

N N7→N Nr N Nl N

(13)

In this notation, a vector−→v ∈V is represented as a state ofV, i.e. a morphism−→v : I →V (the triangle
denotes that the domain is the monoidal unit). Similarly, tensors are states of tensor product spaces; e.g.
the coordinator tensor above is a morphismI → Nr ⊗N⊗Nl . The cups (∪) denoteε maps, and the
caps (∩) η maps; straight line segments denote identities. Composingmorphisms amounts to connecting
outputs to inputs, while the tensor product is juxtaposition. The dot node corresponds to the Frobenius
multiplication.

As noted before, the morphism of Equation 12 provides an interface between standardε-composition
(tensor contraction) andµ-composition (element-wise vector multiplication), equipping the underlying
compositional framework with an additional layer of flexibility. For the above example we have:

(ε r
N ⊗1N ⊗ ε l

N)◦ (
−−−−→
apples⊗con jN ⊗−−−−−→oranges) = µ(

−−−−→
apples⊗−−−−−→oranges) =

−−−−→
apples⊙−−−−−→oranges (14)

The type of a sentence coordinator issr · s· sl , leading to a situation very similar to that of the noun
phrase case:

and
footballmen watch football women knit men watch women knit

7→N Nr S Nl N Sr S Sl N Nr S N Nr S Nl N N Nr S
(15)

Linear-algebraically this results in a combination ofε-composition that takes place within the context
of each sentence, andµ-composition that merges the two sentences into a single oneat the position of
the coordinator:

(−−→menT×watch×
−−−−−→
f ootball)⊙ (−−−−→womenT×knit) (16)

4.2 Coordinating compound types

The simple cases addressed in Section 4.1 make use of the merging Frobenius operator, but they do
not include any examples for which duplication of information is necessary. This requirement emerges
when one moves to coordination over complex types, which is more interesting and involved. In order
to understand how does this work, it would be instructive to examine the way in which the morphism
of Equation 12 lifts to complex types. We will use as an example the case of verb phrase coordination.
Recall that the pregroup type of a verb phrase isnr ·s; that is, something that expects a noun (a subject)
from the left in order to return a sentence. The semantic representation of a verb phrase inFdVect is a
matrix living in Nr ⊗S∼= N⊗S; note however that what follows can be directly generalizedto tensors of
higher order.
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We start by expressing the maps on the compound objects in terms of the atomic objects. For an
arbitrary compound objectU ⊗V, recall that:

I Vr ⊗V

Vr ⊗U r ⊗U ⊗V =

(U ⊗V)r ⊗ (U ⊗V)

η r
V

1Vr ⊗η r
U ⊗1Vη r

U⊗V

U ⊗U l
η l

U

1U ⊗η l
V ⊗1U lη l

U⊗V

U ⊗V ⊗V l ⊗U l =

I

(U ⊗V)⊗ (U ⊗V)l

(17)

which is graphically depicted as follows:

(U ⊗V)r (U ⊗V) V r U r U V

7→ 7→

V lV U lU(U ⊗V) (U ⊗V)l

(18)

Furthermore, it is also the case that the Frobenius operators coherently lift to compound objects; for
theµ map, this lifting takes the following form:

(U ⊗V)⊗ (U ⊗V) U ⊗U ⊗V ⊗V

U ⊗V

1U ⊗σU,V ⊗1V

µU ⊗µV
µU⊗V

(19)

and is graphically shown below:

(U ⊗V) (U ⊗V)

(U ⊗V)

U V U V

7→

U V

(20)

We can now apply the coordination morphism of Equation 12 to the compound typeNr ⊗S and
examine how does this translate in terms of the atomic typesNr andS. According to Equations 18 and
20 (and assuming the canonical extensions on identities) wehave:

NrSr SlS NNrr(Nr ⊗S)r (Nr ⊗S) (Nr ⊗S)l

7→ (21)

Symbolically, the morphism in its expanded form becomes:

con jNr⊗S = (1(Nr⊗S)r ⊗µNr⊗S⊗1(Nr⊗S)l )◦ (η r
Nr⊗S⊗η l

Nr⊗S) (22)

= (1Sr ⊗1Nrr ⊗µNr ⊗µS⊗1Sl ⊗1N)◦ (1Sr ⊗η r
Nr ⊗σNr ,S⊗η l

S⊗1N)◦ (η r
S⊗η r

N)
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Putting the coordinator in context results in the followinginteraction:

and
John sleeps snores

7→N Nr S Nr SSr NNrr Nr S Sl

SNrN

John

Nr

S

S

sleeps and snores

Nr
(23)

At the left-hand side of the diagram, we observe the following sequence of actions:

1. The subject of the coordinate structure (‘John’) is copied at theNr input of the coordinator;

2. the first branch interacts with verb ‘sleeps’ and the second one with verb ‘snores’; and

3. theSwires of the two verbs that carry the individual results are merged together withµ-composition
in order to return a single vector.

Thus the morphism of Equation 12 makes effective use of both notions of copying and merging
in order to represent coordination between verb phrases in away that makes linguistic sense. Note
that the simplified diagram at the right-hand side of Equation 23 makes apparent a compact form for
the coordinate structure “sleeps and snores”. In fact, linear-algebraically this is nothing more than the
Hadamard product between the matrices corresponding to thesemantic representations of the two verb
phrases. In the general case, the Hadamard product between two matricesA= ∑i j ai j

−→vi ⊗
−→w j andB=

∑i j bi j
−→vi ⊗

−→w j in V ⊗W is given byA⊙B = ∑i j ai j bi j
−→vi ⊗

−→w j . The element-wise merging of the two
conjuncts is consistent with the way coordination is carried out over atomic types and makes possible the
following convenient closed form for computing the meaningof the sentence:

−−→
JohnT× (sleep⊙snore) (24)

Although the above exposition was based on compound types oforder 2, the morphism of Equation
12 generalizes coherently to tensors of higher order, providing a first-class coordination object for cat-
egorical compositional distributional semantics. In the case of coordination between ditransitive verbs,
for example, like in the sentence “The bank granted Mary but denied John a loan”, the meaning of the
sentence becomes:

NrN

the bank

Nr

S

granted Mary

NNlNl SNr NlNl

John

N

a loan

N

denied

S Nl

(25)

Note that the above derivation accounts for copyingboththe subject and the direct object, as required
by distributivity. This is translated to the following formula:

−−→
bankT×

[

(grant×
−−−→
Mary)⊙ (deny×

−−→
John)

]

×
−−→
loan (26)

wheregrant anddenyrefer to tensors of order 4, and the⊙ symbol denotes element-wise multiplication
between tensors of order 3.
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4.3 Non-standard forms of coordination

In this section we briefly examine the use of Frobenius operators in non-standard forms of coordination.
Consider for example the following sentence:

(3) John likes Poe, and[John likes] Lovecraft as well

Example 3 exhibits a form of ellipsis related to coordination known asstripping; we expect that the
meaning of this sentence will be the same with that of the standard form “John likes Poe and Lovercraft”,
which is computed below according to Equation 12:

and
John likes Lovecraft

N Nr S Nl N Nr N Nl

Poe

N Nl

Lovecraft

N NS

PoeJohn likes

NrN
7→

(27)

As a special form of coordination, stripping can be addressed by exploiting a special-purpose ten-
sor; we achieve the desired result by defining the internal structure of the coordinator as shown in the
following diagram:

andJohn likes Lovecraft

N Nr S Nl N Nr N Sr

Poe

N

as well

S Sl S Nl Sr S N
7→

N Nr Nl

John

N

likes Poe

S

Lovecraft

(28)

Note that the actual coordination step is still carried out by the morphism of Equation 12; however,
additional wiring is necessary in order to allow the unhindered flow of information through the left-hand
and right-hand parts of the sentence.

5 Conclusion and future work

This paper contributes to the ongoing research on categorical compositional distributional semantics
by providing an account of coordination. While the presented ideas cover the most common cases of
coordination, language is more complex than that; for example, coordination between text constituents
of different syntactic categories (“John works evenings and on weekeends”) constitutes an interesting
future direction of research. A proper distinction betweenconjunction and disjunction cases (which is not
pursued in this paper) remains an open problem, as it impliesthe presence of an underlying logic; to this
end, applications of quantum logic seem to provide a promising direction, as the work of Widdows [14]
and Van Rijsbergen [11] shows. Finally, the Frobenius machinery and especially the copying operator
provides a means for addressing other forms of ellipsis in language, such as verb phrase ellipsis or
gapping, that we plan to explore in the future.
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