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Many programming languages and tools, ranging from grep to the Java String library, contain regular
expression matchers. Rather than first translating a regular expression into a deterministic finite
automaton, such implementations typically match the regular expression on the fly. Thus they can be
seen as virtual machines interpreting the regular expression much as if it were a program with some
non-deterministic constructs such as the Kleene star. We formalize this implementation technique for
regular expression matching using operational semantics.Specifically, we derive a series of abstract
machines, moving from the abstract definition of matching toincreasingly realistic machines. First
a continuation is added to the operational semantics to describe what remains to be matched after
the current expression. Next, we represent the expression as a data structure using pointers, which
enables redundant searches to be eliminated via testing forpointer equality. From there, we arrive
both at Thompson’s lockstep construction and a machine thatperforms some operations in parallel,
suitable for implementation on a large number of cores, suchas a GPU. We formalize the parallel
machine using process algebra and report some preliminary experiments with an implementation on
a graphics processor using CUDA.

1 Introduction

Regular expressions form a minimalistic language of pattern-matching constructs. Originally defined in
Kleene’s work on the foundations of computation, they have become ubiquitous in computing. Their
practical significance was boosted by Thompson’s efficient construction [13] of a regular expression
matcher based on the “lockstep” simulation of a Non-deterministic Finite Automaton (NFA), and the
wide use of regular expressions in Unix tools such as grep andawk.

The regular expression matchers used in such tools differ indetail from the implementation of reg-
ular expressions used in compiler construction for lexicalanalysis. In compiling, lexical analyzers are
typically built by constructing a Deterministic Finite Automaton (DFA), using one of the standard results
of automata theory. The DFA can process input very efficiently, but its construction incurs an additional
overhead before any input can be matched. Moreover, the DFA construction only works if the matching
language really is a regular language, so that it can be recognized by a DFA. Many matching languages
add constructs that take the language beyond what a DFA can recognize, for instance back references.
(By abuse of terminology, such extended languages are sometimes still referred to as “regexes”.)

Recently, Cox [5] has given a rational reconstruction of Thompson’s classic NFA matcher in terms
of virtual machines. In essence, a regular expression is interpreted on the fly, much as a program in
an interpreted programming language. The interpreter is a kind of virtual machine, with a small set of
instructions suitable for running regular expressions. For instance, the Kleene stare∗ gives a form of
non-deterministic loop. Cox emphasizes that the virtual machine approach in the style of Thompson is
both flexible and efficient. Once a basic virtual machine for regular expressions is set up, other constructs
such as back-references can be added with relative ease. Moreover, the machine is much more efficient
than other implementation techniques based on a more naive backtracking interpreter [4], which exhibit

http://dx.doi.org/10.4204/EPTCS.62.3


32 Regular expression matching and operational semantics

exponential run-time in some cases. Surprisingly, these inefficient matchers are widely used in Java and
Perl [4].

In this paper, we formalize the view of regular expression matchers as machines by using tools from
programming language theory, specifically operational semantics. We do so starting from the usual
definition of regular expressions and their meaning, and then defining increasingly realistic machines.

We first define some preliminaries and recall what it means fora string to match a regular expression
in Section 2; from our perspective, matching is a simple formof big-step semantics, and we aim to
refine it into a small-step semantics. To do so in Section 3, weintroduce a distinction between a current
expression and its continuation. We then refine this semantics by representing the regular expression
as a syntax tree using pointers in memory (Section 4). Crucially, the pointer representation allows us
to compare sub-expressions by pointer equality (rather than structurally). This pointer equality test is
needed for the efficient elimination of redundant match attempts, which underlies the general lockstep
NFA simulation presented in Section 5. We recover Thompson’s machine as a sequential implementation
of the lockstep construction (Section 6). Since the lockstep construction involves simulating many non-
deterministic machines in parallel, we then explore a parallel version using some simple process algebra
in Section 7. The parallel process semantics is then relatedto a prototype implementation we have written
in CUDA [3] to run on a Graphics Processor Unit (GPU) in Section 8. Section 9 concludes with some
future directions. The overall plan of the paper can be visualised as follows:

Regular expression matching as big-step semantics (Sec. 2)

EKW machine (Sec. 3)

PWπ machine (Sec. 4)

Generic lockstep construction (Sec. 5)

Sequential matcher (Sec. 6) Parallel matcher (Sec. 7)

Implementation on Graphics Processor (Sec. 8)

Small step with continuations

Pointer representation

Macro steps

Sequential scheduling Parallel scheduling

Processes as threads in CUDA

2 Regular expression matching as a big-step semantics

Let Σ be a finite set, regarded as the input alphabet. We use the following abstract syntax for regular
expressions:

e ::= ε

e ::= a wherea ∈ Σ

e ::= e∗

e ::= e1e2

e ::= e1 | e2

We let e range over regular expressions,a over characters, andw over strings of characters. The
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e ↓ w
e1 ↓ w1 e2 ↓ w2

(SEQ)
(e1 e2) ↓ (w1w2)

(MATCH)
a ↓ a

(EPSILON)
ε ↓ ε

e ↓ w1 e∗ ↓ w2
(KLEENE1)

e∗ ↓ (w1 w2)
(KLEENE2)

e∗ ↓ ε

e1 ↓ w
(ALT1)

(e1 | e2) ↓ w

e2 ↓ w
(ALT2)

(e1 | e2) ↓ w

Figure 2.1: Regular expression matching as a big-step semantics

empty string is written asε . Note that there is also a regular expression constantε. We also write the
sequential compositione1 e2 ase1 • e2 when we want to emphasise it as the occurrence of an operator
applied toe1 ande2, for instance in a syntax tree. For stringsw1 andw2, we write their concatenation as
juxtapositionw1w2. A single charactera is also regarded as a string of length 1.

Our starting point is the usual definition of what it means fora stringw to match a regular expression
e. We write this relation ase ↓ w, regarding it as a big-step operation semantics for a language with
non-deterministic branchinge1 | e2 and a non-deterministic loope∗. The rules are given in Figure 2.1.

Some of our operational semantics will use lists. We writeh :: t for constructing a list with headh
and tail t. The concatenation of two listss and t is written ass@t. For example, 1 ::[2] = [1,2] and
[1,2]@[3] = [1,2,3]. The empty list is written as[ ].

3 The EKW machine

The big-step operational semantics of matching in Figure 2.1 gives us little information about how we
should attempt to match a given input stringw. We define a small-step semantics, called the EKW
machine, that makes the matching process more explicit. In the tradition of the SECD machine [7], the
machine is named after its components: E for expression, K for continuation, W for word to be matched.

Definition 3.1 A configuration of the EKW machine is of the form〈e ; k ; w〉 where e is a regular
expression,k is a list of regular expressions, andw is a string. The transitions of the EKW machine are
given in Figure 3.1. The accepting configuration is〈ε ; [ ] ; ε〉.

Heree is the regular expression the machine is currently focusingon. What remains to the right of the
current expression is represented byk, the current continuation. The combination ofe andk together is
attempting to matchw, the current input string.

Note that many of the rules are fairly standard, specificallythe pushing and popping of the contin-
uation stack. The machine is non-deterministic. The pairedrules with the same current expressionse∗

or (e1 | e2) give rise to branching in order to search for matches, where it is sufficient that one of the
branches succeeds.

Theorem 3.2 (Partial correctness)e ↓ w if and only if there is a run

〈e ; [ ] ; w〉 → ·· · → 〈ε ; [ ] ; ε〉
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〈e ; k ; w〉 → 〈e′ ; k′ ; w′〉

〈e1 | e2 ; k ; w〉 → 〈e1 ; k ; w〉 (3.1)

〈e1 | e2 ; k ; w〉 → 〈e2 ; k ; w〉 (3.2)

〈e1 e2 ; k ; w〉 → 〈e1 ; e2 :: k ; w〉 (3.3)

〈e∗ ; k ; w〉 → 〈e ; e∗ :: k ; w〉 (3.4)

〈e∗ ; k ; w〉 → 〈ε ; k ; w〉 (3.5)

〈a ; k ; aw〉 → 〈ε ; k ; w〉 (3.6)

〈ε ; e :: k ; w〉 → 〈e ; k ; w〉 (3.7)

Figure 3.1: EKW machine transition steps

Example 3.3 Unfortunately, while Theorem 3.2 ensures that all matchingstrings are correctly accepted,
there is no guarantee that the machine accepts all strings that it should on every run. In fact, there are
valid inputs on which the machine may enter an infinite loop; an example is the configuration〈a∗∗ ; [ ] ; a〉.

〈a∗∗ ; [ ] ; a〉 → 〈a∗ ; [a∗∗] ; a〉

→ 〈ε ; [a∗∗] ; a〉

→ 〈a∗∗ ; [ ] ; a〉

→ ·· ·

Such infinite loops can be prevented by backtracking and pruning. However, backtracking implementa-
tions can still take a very long time matching expressions like a∗∗ to a string consisting of, say, 1000 oc-
currences of a charactera followed by some otherb, due to the exponentially increasing search space [4].

In Thompson’s matcher, such loops are avoided by means of redundancy elimination. The matcher
checks whether it has encountered the same expression before. Note, however, that “the same” expression
is to be taken in the sense of pointer equality rather than structural equality. For instance, the two
occurrences ofa in (ab) | (ac) would be taken as not the same, given their different positions in the
syntax tree.

4 The PWπ machine

We refine the EKW machine by representing the regular expression as a data structure in a heapπ, which
serves as the program run by the machine. That way, the machine can distinguish between different
positions in the syntax tree.

Definition 4.1 A heapπ is a finite partial function from addresses to values. There exists a distinguished
addressnull, which is not mapped to any value.

In our setting, the values are syntax tree nodes, represented by an operator from the syntax of regular
expressions together with pointers to the tree for the arguments (if any) of the operator. For example, for
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p π(p) cont p

p0 p1• p2 null

p1 p3
∗ p2

p2 b null

p3 p4
∗ p1

p4 a p3

null

p0
•

p1
∗

p2

b
p3

∗

p4
a

Figure 4.1: The regular expressiona∗∗•b as a tree with continuation pointers

sequential composition, we have a node containing(p1 • p2), where the two pointersp1 and p2 point to
the trees of the two expressions being composed.

Definition 4.2 We write⊗ for the partial operation of forming the union of two partialfunctions pro-
vided that their domains are disjoint. More formally, letf1 : A ⇀ B and f2 : A ⇀ B be two partial
functions. Then if dom( f1)∩dom( f2) = /0, the function

( f1⊗ f2) : A ⇀ B

is defined asf1⊗ f2 = f1∪ f2.

Note that⊗ is the same as the operation∗ on heaps in separation logic [11], and hence a partial
commutative monoid. We avoid the notation∗ as it could be confused with the Kleene star. As in
separation logic, we use⊗ to describe data structures with pointers in memory.

Definition 4.3 We writeπ, p |= e if p points to the root node of a regular expressione in a heapπ. The
relation is defined by induction one as follows:

π, p |= a if π(p) = a

π, p |= ε if π(p) = ε

π, p |= (e1 | e2) if π = π0⊗π1⊗π2∧π0(p) = (p1 | p2)

∧π1, p1 |= e1∧π2, p2 |= e2

π, p |= (e1 e2) if π = π0⊗π1⊗π2∧π0(p) = (p1• p2)

∧π1, p1 |= e1∧π2, p2 |= e2

π, p |= e1
∗ if π = π0⊗π1∧π0(p) = p1

∗∧π1, p1 |= e1

Here the definition ofπ, p |= e precludes any cycles in the child pointer chain.
As an example, consider the regular expressione = a∗∗b. A π andp0 such thatπ, p0 |= e is given by

the table in Figure 4.1. The tree structure, represented by the solid arrows, is drawn on the right.
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p −→ q or p
a

−→ q relative toπ

p −→ p1 if π(p) = p1 | p2

p −→ p2 if π(p) = p1 | p2

p −→ p1 if π(p) = p1 • p2

p −→ p1 if π(p) = p1
∗

p −→ p2 if π(p) = p1
∗ andcont p = p2

p −→ p1 if π(p) = ε andcont p = p1

p
a

−→ p′ if π(p) = a andp′ = cont p

Figure 4.2: PWπ transitions

Definition 4.4 Let cont be a function

cont : dom(π)→ (dom(π)∪{null})

We writeπ |= cont if

• If π(p) = (p1 | p2), thencont p1 = cont p andcont p2 = cont p

• If π(p) = (p1• p2), thencont p1 = p2 andcont p2 = cont p

• If π(p) = (p1)
∗, thencont p1 = p

• cont p0 = null, wherep0 is the pointer to the root of the syntax tree.

The functioncont is uniquely determined by the tree structure layed out inπ, and it is easy to
compute by a recursive tree walk. We elide it when it is clear from the context, assuming thatπ always
comes equipped with acont such thatπ |= cont. By treatingcont as a function, we have not committed
to a particular implementation; for instancecont could be represented as a hash table indexed by pointer
values, or it could be added as another pointer field to the nodes in the heap.

In the graphical representation in Figure 4.1, dashed arrows representcont. In particular, note the
cycle leading downward fromp1 and up again via dashed arrows. Following such a cycle could lead to
infinite loops as for the EKW machine in Example 3.3.

Definition 4.5 The PWπ machine is defined as follows. Transitions of this machine are always relative
to some heapπ, which does not change during evaluation. We elideπ if it is clear from the context.
Configurations of the machine are of the form〈p ; w〉, wherep is a pointer inπ andw is a string of
input symbols. Given the transition relation between pointers defined in Figure 4.2, the machine has the
following transitions:

p
a

−→ q

〈p ; a w〉 → 〈q ; w〉

p −→ q

〈p ; w 〉 → 〈q ; w〉

The accepting state of the machine is〈null ; ε〉. That is, both the continuation and the remaining input
have been consumed.
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Example 4.6 For a regular expressione = a∗∗b, let π and p0 be such thatπ, p0 |= e. See Figure 4.1 for
the representation ofπ as a tree with pointers. The diagram below illustrates two possible executions of
the PWπ machine against inputse andaab.

Execution - 1: Infinite loop

〈p0 ; aab〉

−→ 〈p1 ; aab〉

−→ 〈p3 ; aab〉

−→ 〈p1 ; aab〉

−→ 〈p3 ; aab〉

−→ 〈p1 ; aab〉

−→ 〈p3 ; aab〉

−→ 〈p1 ; aab〉

−→ 〈p3 ; aab〉

−→ 〈p1 ; aab〉

−→ . . .

Execution - 2: Successful match

〈p0 ; aab〉

−→ 〈p1 ; aab〉

−→ 〈p3 ; aab〉

−→ 〈p4 ; aab〉

−→ 〈p3 ; ab〉

−→ 〈p4 ; ab〉

−→ 〈p3 ; b〉

−→ 〈p1 ; b〉

−→ 〈p2 ; b〉

−→ 〈null ; ε〉

Theorem 4.7 (Simulation) Let π be a heap such thatπ, p |= e. Then there is a run of the EKW machine
of the form

〈e ; [ ] ; w〉 → ·· · → 〈ε ; [ ] ; ε〉

if and only if there is a run of thePWπ machine of the form

〈p ; w〉 → ·· · → 〈null ; ε〉

One needs to show that each step of the EKW machine can be simulated by the PWπ machine and vice
versa. The invariant in this simulation is that the stackk in the EKW machine can be reconstructed by
following the chain of pointers in the heap of the PWπ machine via the following function:

stack p = [] if cont p = null

stack p = e :: (stackq) if q = cont p 6= null

andπ,q |= e

5 The lockstep construction in general

As we have seen, the PWπ machine is built from two kinds of steps. Pointers can be evolved viap −→ q
by moving in the syntax tree without reading any input. When anode for a constant is reached, it can be
matched to the first character in the input via a stepp

a
−→ q.

Definition 5.1 Let S ⊆ dom(π)∪{null} be a set of pointers. We define the evolution�S of S as the
following set:

�S = {q ∈ dom(π) | ∃p ∈ S.p −→∗ q∧∃a.π(q) = a}
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Forming�S is similar to computing theε-closure in automata theory. However, this operation is not
a closure operator, becauseS ⊆ �S does not hold in general. When one computes�S incrementally,
elements are removed as well as added. Avoiding infinite loops by adding and removing the same element
is the main difficulty in the computation.

We define a transition relation analogous to Definition 4.5, but as a deterministic relation onsets of
pointers. We refer to these as macro steps, as they assume thecomputation of�S as given in a single
step, whereas an implementation needs to compute it incrementally.

Definition 5.2 (Lockstep transitions) Let S,S′ ⊆ dom(π)∪{null} be sets of pointers.

S =⇒ S′ if S′ =�S

S
a

=⇒ S′ if S′ = {q ∈ dom(π) | ∃p ∈ S.p
a

−→ q}

A set of pointers is first evolved fromS to�S. Then, moving from a set of pointers�S to S′ via�S
a

=⇒ S′

advances the state of the machine by advancing all pointers that can matcha to their continuations. All
other pointers are deleted as unsuccessful matches.

Definition 5.3 (Generic lockstep machine)The generic lockstep machine has configurations of the form
〈S ; w〉. Transitions are defined using Definition 5.2:

S
a

=⇒ S′

〈S ; a w〉 ⇒ 〈S′ ; w〉

S =⇒ S′

〈S ; w 〉 ⇒ 〈S′ ; w〉

Accepting states of the machine are of the form〈S ; ε〉, wherenull ∈ S.

Theorem 5.4 For a heapπ, p |= e there is a run of the PWπ machine:

〈p ; w〉 → ·· · → 〈null ; ε〉

if and only if there is a run of the lockstep machine

〈{p} ; w〉 ⇒ . . .⇒ 〈S ; ε〉

for some set of pointersS with null ∈ S.

6 The sequential lockstep machine

The sequential lockstep machine maintains two lists of pointers c, n corresponding to pointers being
incrementally evolved within the current macro step and pointers to be evolved in the next macro step.
Another pointer listt is maintained which provides support for redundancy elimination, we also introduce
an auxilary functionψ(p, l1, l2) to aid in this regard:

Definition 6.1 The auxilary functionψ(p, l1, l2) is defined as:

ψ(p, l1, l2) = p :: l1 if p /∈ l1@l2
ψ(p, l1, l2) = l1 if p ∈ l1@l2
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〈c ; t ; n ; w〉 → 〈c′ ; t ′ ; n′ ; w′〉

〈p :: c ; t ; n ; w〉 → 〈c′ ; p :: t ; n ; w〉 if π(p) = p′ | p′′

wherec′ = ψ(p′′,ψ(p′,c, t), t)

〈p :: c ; t ; n ; w〉 → 〈c′ ; p :: t ; n ; w〉 if π(p) = p′ • p′′

wherec′ = ψ(p′,c, t)

〈p :: c ; t ; n ; w〉 → 〈c′ ; p :: t ; n ; w〉 if π(p) = (p′)∗

wherec′ = ψ(cont p,ψ(p,c, t), t)

〈p :: c ; t ; n ; w〉 → 〈c′ ; p :: t ; n ; w〉 if π(p) = ε

wherec′ = ψ(cont p,c, t)

〈p :: c ; t ; n ; aw〉 → 〈c ; t ; n ; aw〉 if p = null

〈p :: c ; t ; n ; aw〉 → 〈c ; p :: t ; n′ ; aw〉 if π(p) = a
wheren′ = ψ(cont p,n, [ ])

〈p :: c ; t ; n ; aw〉 → 〈c ; p :: t ; n ; aw〉 if π(p) = b

〈[ ] ; t ; n ; aw〉 → 〈n ; [ ] ; [ ] ; w〉 if n 6= []

〈p :: c ; t ; n ; ε〉 → 〈c ; p :: t ; n ; ε〉 if π(p) = a

Figure 6.1: Sequential lockstep machine with redundancy elimination

Definition 6.2 The redundancy-eliminating sequential lockstep machine has configurations of the form
〈c ; t ; n ; w〉. Its transitions are given in figure 6.1. The accepting states are of the form〈null :: c′ ; t ′ ;
n′ ; ε〉

We regard this machine as a rational reconstruction of Thompson’s matcher [13] in the light of Cox’s
elucidation as a virtual machine [5]. This machine uses a sequential schedule for incrementally evolving
pointers, keeping a list of pointers that have been evolved already to prevent loops and search space
explosion. However, our main interest is in performing thiscomputation in parallel.

7 Parallel lockstep semantics

We now define an operational semantics where each pointer is given a dedicated thread for evolving
it. Our motivation is to leverage the large number of cores and hence threads available on GPUs. The
semantics in this section is intended as an idealization of the implementation described in Section 8
below, capturing the essentials of the computation while abstracting from implementation details.

To describe the parallel computation, we define a simple process calculus. Its transition rules are
given in Figure 7.1. Most of our calculus is a subset of CCS [8], with one-to-one directional message
passing and parallel composition. However, we also need ann-way synchronization with a synchronous
transition inspired by Synchronous CCS [9].

We let M range over processes,p over pointers that may be sent as asynchronous messages, anda
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M −→ M′

M1 −→ M2
(PAR)

M1‖M3 −→ M2‖M3

(SEND)
((p .M)‖ p)−→ M

M
a

−→ M′

M′ 6≡ ($a .M′)‖M′′′ M′ 6−→
(SYNC)

($a .M1 ‖ . . .‖$a .Mn ‖M′)
a

−→ (M1‖ . . .‖Mn)

Figure 7.1: Process calculus

over input symbols, which may be used forn-way synchronisation. The syntax of processes is as follows:

M ::= p

| M ‖M

| p .M

| $a .M

We impose some structural congruences≡, identifying terms up to associativity and commutativity
of parallel compostion‖. Process transitions can be interleaved with rule PAR.

We have CCS-style handshake communication in rule SEND. Here p .M receives the messagep
and proceeds withM afterwards. Note that receivers of the formp .M are not replicated (in the pi-
calculus sense [10]), so that each communication consumes the receiver. This behaviour is essential, as
the processes we generate could become trapped in an infiniteloop otherwise.

We also have ann-way synchronisation SYNC. This rule is the most complex, and it is needed to
implement matching to input once all pointers have been evolved. The idea is as follows:

• The current process is factorized into those processes thatare of the form $a .M j and anM′ com-
prising everything else.

• There are no further−→ transitions insideM′, written asM′ 6−→.

• If these conditions are met, then all the processes waiting to participate in ann-way synchroniza-
tion ona are advanced in one synchronous step.

• The remaining processes inM′ are discarded in the same step.

Rules in this style, in which a number of processes are advanced in a single step, are sometimes
referred to as “lockstep” [9]. Indeed, we use this rule to implement the lockstep matching of regular
expressions in the sense of Thompson and Cox. (In practice, this rule may require a little ad-hoc protocol
to implement on a given architecture.)

We translate each expression pointerp in the heapπ into a process[[p]]π as follows:

[[p]]π = p .(q1 ‖q2) if π(p) = (q1 | q2)

[[p]]π = p .q1 if π(p) = (q1•q2)

[[p]]π = p .(q1 ‖q2) if π(p) = q1
∗ andcont p = q2

[[p]]π = p .q if π(p) = ε andcont p = q

[[p]]π = p .$a .q if π(p) = a andcont p = q
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Intuitively, for each internal node in the expression tree identified by the pointerp, we create a
dedicated little process that listens on a channel uniquelycorresponding top. For simplicity, we use the
same name for the channel as for the pointer. The process may be activated by messagesp sent to it, and
it may send such messages itself. These messages trigger a chain reaction that evolve the current pointer
set of a macro step. There is no need for these messages to be externally visible, as their only purpose
is to wake up their unique recipient. A processp .M listening for p is consumed by the transition that
receives the message. Processes for nodes that point to input charactersa at the leaves of the expression
tree use a different form of communication. All these nodes synchronize on the input symbol. The
symbola is visible in the resulting synchronous transition step

a
−→, because we need it to agree with the

next input symbol.
If dom(π) = {p1, . . . , pn}, we define the translation[[π]] as the translation of all its pointers:

[[p1]]π ‖ . . .‖ [[pn]]π

If the input string is not empty, leta be the first character, so thataw′ = w. The parallel machine
launches processes for all the nodes in the tree, and sends a message to the process for the root. The
resulting process makes a number of asynchronous transitions, followed by a synchronous move fora:

[[π]]‖ p −→ ·· · −→
a

−→ M

All these steps together represent one macro step. The machine then repeats the above with the next
symbola′ andM

[[π]]‖M −→ ·· · −→
a′

−→ M′

The machine accepts if the remaining input is empty and the current process is of the form

null‖M

Example 7.1 For e = a∗∗b, let π andp0 be such thatπ, p0 |= e. See Figure 4.1 for the representation of
π as a tree with pointers. Translating the tree structure to parallel processes gives us:

[[π]] = (p0 . p1)‖ p1 .(p3 ‖ p2)‖ p2 .$b .null‖ p3 .(p4‖ p1)‖ p4 .$a . p3

Assume an input string ofaab. We have the pointer evolution as follows:

p0‖ [[π]]
−→p0‖ p0 . p1 ‖ p1 .(p3‖ p2)‖ p2 .$b .null‖ p3 .(p4 ‖ p1)‖ p4 .$a . p3

−→p1‖ p1 .(p3 ‖ p2)‖ p2 .$b .null ‖ p3 .(p4 ‖ p1)‖ p4 .$a . p3

−→p3‖ p2 ‖ p2 .$b .null ‖ p3 .(p4‖ p1)‖ p4 .$a . p3

−→p3‖$b .null‖ p3 .(p4 ‖ p1)‖ p4 .$a . p3

−→$b .null‖ p4‖ p1 ‖ p4 .$a . p3

−→$b .null‖ p1‖$a . p3

Since no more micro transitions are possible, we have reached then-way synchronization point:

$b .null‖ p1‖$a . p3
a

−→ p3
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Now we feed the residual messages back into a fresh[[π]]:

p3‖ [[π]]
−→p3‖ p0 . p1 ‖ p1 .(p3‖ p2)‖ p2 .$b .null‖ p3 .(p4 ‖ p1)‖ p4 .$a . p3

−→p0 . p1‖ p1 .(p3 ‖ p2)‖ p2 .$b .null ‖ p4‖ p1‖ p4 .$a . p3

−→p0 . p1‖ p1 .(p3 ‖ p2)‖ p2 .$b .null ‖ p1‖$a . p3

−→p0 . p1‖ p3 ‖ p2‖ p2 .$b .null‖$a . p3

−→p0 . p1‖ p3 ‖$b .null‖$a . p3
a

−→p3

−→ . . .

b
−→null

Therefore, we have received anull while the input string has become empty, resulting in a successful
match.

We need to prove that the construction above can correctly evolve and match any set of pointers. Let
S = {p1, . . . , pn} ⊆ dom(π)∪{null} be a set of pointers in the heap. We define

S = p1 ‖ . . .‖ pn

to represent this set as a parallel composition of messages.

Theorem 7.2 Let S,S′ ⊆ dom(π)∪{null}. We have

S =⇒
a

=⇒ S′

if and only if

S‖ [[π]] −→∗ a
−→ S′

Moreover, each−→ transition sequence starting fromS‖ [[π]] is finite.

Theorem 7.2 assures us that the parellel operational semantics correctly implements the lockstep
construction. The pointersp in the tree, represented as processesp, are evolved in parallel. Although
this evolution is non-deterministic, its end result is determinate. Moreover, the cycles in the pointer chain
do not lead to cyclic processes looping forever, since each receiving process becomes inactive once the
node has been visited.

The correctness proof of the parallel implementation relies on a factorisation of the processes into
four components. At each stepi, we have:

• A setSi of pointers, indicating nodes that should be evolved.

• A heap of receiversπi ⊆ π, representing nodes that have not been visited in the current macro step.

• A setEi of evolved nodes, whose process representations are of the form ready to match a character.

• A parallel compositionDi of messages to nodes that have already been processed.
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Let E be a set of pointersE = {p1, . . . , pn} such thatπ(p j) = a j andcont p j = q j. We write

$E = $a1 .q1‖ . . . ‖$an .qn

We need to consider transition sequences of the form

S0‖ [[π0]]‖$E0 ‖D0

−→
...

−→ Sn ‖ [[πn]]‖$En ‖Dn

whereπ0 = π andE0 = /0. The invariant we need to establish for all transition steps consists of:

�S0 = �(Si ∩dom(πi))∪Ei

�Ri ⊆ �(Si ∩dom(πi))∪Ei

{p | ∃D.Di ≡ (p‖D)} ⊆ Si ∪Ri

whereRi = dom(π) \dom(πi). The factorization of proceses at each step and the invariant are verified
by case analysis on the kind of nodeπ(p) and hence the possible−→ steps that its translation[[p]]π can
make using the rules from Figure 7.1.

In the final configuration we haveSn ∩dom(πn) = /0. Hence,

�S0 = �(Sn ∩dom(πn))∪En

= � /0∪En

= En

Therefore, we have�S0 = En, as required. From that configuration, there can only be an
a

−→ transition,
exactly matching the generic lockstep transitionS =⇒

a
=⇒ S′.

8 Implementation on a GPU

As a proof of concept, we have written a simple regular expression matcher where the evolution of
pointers is performed in parallel on a GPU.1 Programming the GPU was done via CUDA [3]. The main
points are:

• The regular expression is parsed, and the syntax tree nodes are packed into an arrayd. This array
represents our heapπ. A second pass through the syntax tree performs the wiring ofcontinuation
pointers, corresponding tocont.

• Two integer vectorsc, n of the same size as the regular expression vector above are created. Here a
value oft - the macro step count, onc[i] implies that regular expressiond[i] is to be simulated within
the current macro step. On the other hand a value of−t on c[i] implies that the corresponding
regular expression has already been simulated for the current macro step. This protocol realizes
the semantics of a process being consumed once it has received a message. The vectorn is used to
collect those search attempts which are able to match the current input character. A value oft +1
on n[ j] indicates that the regular expressiond[ j] is to be simulated on the next macro step.

1The code is available athttp://www.cs.bham.ac.uk/~hxt/research/regexp.shtml.

http://www.cs.bham.ac.uk/~hxt/research/regexp.shtml
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• Each regular expression noded[i] is assigned a GPU thread. This GPU thread is responsible for
conditionally simulating the regular expressiond[i] at each invocation (depending onc[i] value).
While simulating an expression, a GPU thread might scheduleanother GPU thread / expression
d[ j] by settingc[ j] to t (this could happen for an example in the case ofe = e1•e2). Note that one
thread scheduling another thread via thec vector corresponds to the sending of a messagep from
one process to another.

• At each invocation of the GPU threads (called akernel launch in CUDA terminology), each thread
which performs a successful simulation updates either of two shared flags which indicate if there
were more threads activated on thec or n vectors during the current invocation. A macro transition
involves swapping thec andn vectors while incremeting thet counter. It corresponds to then-way
synchronization transition.

• The initial state of the machine has onlyd[0], the root node process, scheduled for simulation.

However, note that this description corresponds to a minimalistic GPU-based parallel lockstep machine
and does not yet incorporate any optimizations from the literature [14], such aspersistent threads and
tasks queues.

9 Conclusions

We have derived regular expression matchers as abstract machines. In doing so, we have used a number of
concepts and techniques from programming language theory.The EKW machine zooms in on a current
expression while maintaing a continuation for keeping track of what to do next. In that sense, the machine
is a distant relative of machines for interpreting lambda terms, such as the SECD machine [7] or the
CEK machine [6]. On the other hand, regular expressions are amuch simpler language to interpret than
lambda calculus, so that continuations can be represented by a single pointer into the tree structure (or to
machine code in Thompson’s original implementation). While the idea of continuations as code pointers
is sometimes advanced as a helpful intuition, the representation of continuations in CPS compiling [1]
is more complex, involving an environment pointer as well. To represent pointers and the structures
they build up, we found it convenient to use a small fragment of separation logic [11], given by just the
separating conjunction and the points-to-predicate. (They are written as⊗ andπ(p) = e above, to avoid
clashes with other notation.) A similar use of these connectives to describe trees in the setting of abstract
machines was used in our earlier work on B+trees [12]. Here wetranslate a tree-shaped data structure
into a network of processes that communicate in a cascade of messages mirroring the pointers in the
tree structure. The semantics of the processes is inspired by the process algebra literature [8, 9, 10].
One reason why a process algebra is suitable for formalizingthe lockstep construction with redundancy
elimination is that receiving processes are eliminated once they have received a message; they are used
linearly, and so are reminiscent of linearly-used continuations [2].

We intend to extend both the process algebra view and our CUDAimplementation, while main-
taining a close correspondence between them. Regular expression matching is an instance of irregular
parallel [14] processing on a GPU, which presents some optimization problems. At the moment, the
parallel processing power of the GPU cores is not exercised,as each thread does little more than access
the expression tree and activate threads for other nodes. Weexpect the load on the GPU cores to become
more significant when more expensive constructs such as back-references (known to be NP-hard) are
added to our matching language. It remains to be seen whethera GPU implementation will become
more efficient than a sequential CPU-based one, particularly as the number of GPU cores continues to
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increase (it is currently in the hundreds of cores). More generally, the operational semantics and ab-
stract machine approach may be fruitful for reasoning aboutother forms of General Purpose Graphics
Processing Unit (GPGPU) programming.
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