
F. Mogavero, A. Murano, and M.Y. Vardi (Eds.):
1st Workshop on Strategic Reasoning 2013 (SR’13)
EPTCS 112, 2013, pp. 61–69, doi:10.4204/EPTCS.112.11

c© T. Pedersen, S. Dyrkolbotn, P. Kaźmierczak & E. Parmann

Concurrent Game Structures with Roles∗

Truls Pedersen† Sjur Dyrkolbotn‡ Piotr Kaźmierczak§ Erik Parmann¶

In the following paper we present a new semantics for the well-known strategic logic ATL. It is based
on adding roles to concurrent game structures, that is at every state, each agent belongs to exactly
one role, and the role specifies what actions are available to him at that state. We show advantages
of the new semantics, provide motivating examples based on sensor networks, and analyze model
checking complexity.

1 Introduction

ATL [1] is not only a highly-expressive and powerful strategic logic, but also has a relatively low (poly-
nomial) model checking complexity. However, as investigated by Jamroga and Dix [5], in order for the
complexity to be polynomial, the number of agents must be fixed. If the number of agents is taken as
a parameter, model checking ATL is ∆P

2 -complete or ∆P
3 -complete depending on model representation

[6]. Also, van der Hoek, Lomuscio and Wooldridge show in [3] that the complexity of model checking
is polynomial only if an explicit enumeration of all components of the model is assumed. For models
represented in reactive modules language (RML) complexity of model checking for ATL becomes as hard
as the satisfiability problem for this logic, namely EXPTIME [3].

We present an alternative semantics that interprets formulas of ordinary ATL over concurrent game
structures with roles. Such structures introduce an extra element – a set R of roles and associates each
agent with exactly one role which are considered homogeneous in the sense that all consequences of the
actions of the agents belonging to the topical role is captured by considering only the number of “votes”
an action gets (one vote per agent).

We present the revised formalism for ATL in Section 2, discuss model checking results in Section 3
and conclude in Section 4.

2 Role-based semantics for ATL

In this section we will introduce concurrent game structures with roles (RCGS), illustrate them with an
example and show in Theorem 1 that treating RCGS or CGS as the semantics of ATL are equivalent.

We will very often refer to sets of natural numbers from 1 to some number n ≥ 1. To simplify the
reference to such sets we introduce the notation [n] = {1, . . . ,n}. Furthermore we will let AB denote the
set of functions from B to A. We will often also work with tuples v = 〈v1, . . . ,vn〉 and view v as a function
with domain [n] and write v(i) for vi. Given a function f : A×B→C and a ∈ A, we will use fa to denote
the function B→C defined by fa(b) = f (a,b) for all b ∈ B.

∗A preliminary version of this paper was presented during LAMAS workshop held at AAMAS on June 4th 2012, and a talk
based on that version was given at LBP workshop during ESSLLI summer school, August 2012. It is available on arXiv [2].

†Dept. of Information Science and Media Studies, University of Bergen, Norway. truls.pedersen@infomedia.uib.no
‡Durham Law School, Durham University, UK. s.k.dyrkolbotn@durham.ac.uk
§Dept. of Computing, Mathematics and Physics, Bergen University College, Norway. phk@hib.no
¶Dept. of Informatics, University Bergen, Norway. erik.parmann@ii.uib.no

http://dx.doi.org/10.4204/EPTCS.112.11
truls.pedersen@infomedia.uib.no
s.k.dyrkolbotn@durham.ac.uk
phk@hib.no
erik.parmann@ii.uib.no


62 Concurrent Game Structures with Roles

Definition 1. An RCGS is a tuple H = 〈A ,R,R,Q,Π,π,A,δ 〉 where:

• A is a non-empty set of players. In this text we assume A = [n] for some n ∈ N, and we reserve n
to mean the number of agents.

• Q is the non-empty set of states.

• R is a non-empty set of roles. In this text we assume R = [i] for some i ∈ N.

• R : Q×A → R. For a coalition A we write Ar,q to denote the agents in A which belong to role r
at q, and notably Ar,q are all the agents in role r at q.

• Π is a set of propositional letters and π : Q→℘(Π) maps each state to the set of propositions true
in it.

• A : Q×R→ N+ is the number of available actions in a given state for a given role.

• For A = [n], we say that the set of complete votes for a role r in a state q is Vr(q) = {vr,q ∈
[n][A(q,r)] |∑1≤a≤A(q,r) vr,q(a)= |Ar,q|}, the set of functions from the available actions to the number
of agents performing the action. The functions in this set account for the actions of all the agents.
The set of complete profiles at q is P(q) = ∏r∈RVr(q). For each q ∈ Q we have a transition
function at q, δq : P(q)→ Q defining a partial function δ : Q×⋃q∈Q P(q)→ Q such that for all
q ∈ Q, P ∈ P(q), δ (q,P) = δq(P).

The following example illustrates how RCGS differs from an ordinary concurrent game structure:

Example 1 (Sensor networks). A wireless sensor network is a system composed of a number of (homo-
geneous) sensors that can be triggered by various stimuli. In Figure 1 we show a 1-tier (i.e., completely
homogeneous) sensor network with n sensors. There are two states in the system with labels correspond-
ing to an indicator of the network. ¬p stands for idle state of the network, while p indicates that the
network detected a stimulus. In this very simple example we say that k is our threshold, i.e. if at least
k number of sensors detect something, then p. Since all the sensors behave in the same way we say the
role of sensors is homogeneous. Hence the system can be modeled using only a single role. This gives
us the model depicted in Figure 1. One can easily add another role to the model if needed, for example
in a scenario with a “controller” who processes the reported signals, or in a 2-tier network with several
types of sensors.

¬p p

q0 q1

h(k0, n� k0)i

h(n, 0)i

h(k + 1, n� k � 1)i
h(k, n� k)i

h(n)i

Figure 1: A depiction of H1 – a simple 1-tier sensor network.

A more complex example is presented in Figure 2, where we add another role to our structure, that
of a supervisor or controller. The supervisor can act upon sensors’ actions, i.e. if the sensors report
that p, the supervisor can perform q. As illustrated by the drawing, the supervisor has three actions
available: he can wait, he can reject the message or he can accept the message and proceed to state
q2 performing q (e.g., call the police in an intrusion detection scenario). Finally, in Figure 3 we sketch



T. Pedersen, S. Dyrkolbotn, P. Kaźmierczak & E. Parmann 63

ph(k, n� k), 1i
hn, (1, 0, 0)i

hn,
(0

, 0
, 1

)ihn, 1i

hn, (0, 1, 0)ih(k0, n� k0), 1i

p, q

h(k + 1, n� k � 1), 1i

h(n, 0), 1i

q0 q1

q2

Figure 2: A sketch of structure H2: a 1-tier sensor network with a supervisor.

a multi-tier example, with two different types of sensors, n1 and n2, each type with its corresponding role.
The transition function with the addition of a new role looks like this:

δq0(〈(x1,n1− x1),(x2,n2− x2)〉) =
{

q1, x1 ≥ t1∧ x2 ≥ t2
q0, otherwise

δq1(〈n1,n2〉) = q0

where t1,t2 are thresholds set according to significance of the sensors.

¬p p

h(t1, n1 � t1), (t2, n2 � t2)i

q0 q1

Figure 3: A sketch of structure H3: a multi-tier sensor network example.

These simple structures show the benefit of using roles when modelling scenarios which involve
a high degree of homogeneity among agents. In this simplified sensor setting a sensor either signals
that he has made a relevant observation or he does not – a binary choice. If modelled using concurrent
game structures without roles, models would have 2n number of possible action profiles in state q0, since
the identity of the agents signaling that they have made an observation has to be accounted for. This,
however, is irrelevant for the high-level protocol – all that matters is how many sensors of a given type
signal that they have made an observation. With roles we can exploit this, and we only need to account
for the genuinely different scenarios that can occur – corresponding to the number of sensors of each
type that decide to signal that they have made an observation. In the case of just a single role, this
means that we get n as opposed to 2n number of different profiles, and the size of the model goes from
exponential to linear in the number of sensors. In general, as we will show in Section 3, we shift the
exponential dependence in the size of models from the number of agents to the number of roles.

Given a role r, a state q and a coalition A, the set of A-votes for r at q is Vr(q,A), defined as:

Vr(q,A) =

{
v ∈ [|Ar,q|][A(q,r)]

∣∣∣∣∣ ∑
a∈[A(q,r)]

v(a) = |Ar,q|
}
.



64 Concurrent Game Structures with Roles

The A-votes for r at q give the possible ways agents in A that are in role r at q can vote. Given a state q
and a coalition A, we define the set of A-profiles at q:

P(q,A) = {〈v1, . . . ,v|R|〉 | 1≤ i≤ |R| : vi ∈Vr(q,A)}.

For any v∈Vr(q,A) and w∈Vr(q,B) we write v≤w iff for all i∈ [A(q,r)] we have v(i)≤w(i). If v≤w,
we say that w extends v. If F = 〈v1, . . . ,vR〉 ∈ P(q,A) and F ′ = 〈v′1, . . . ,v′R〉 ∈ P(q,B) with vi ≤ v′i for
every 1 ≤ i ≤ |R|, we say that F ≤ F ′ and that F extends F ′. Given a (partial) profile F ′ at a state q we
write ext(q,F) for the set of all complete profiles that extend F ′.

Given two states q,q′ ∈ Q, we say that q′ is a successor of q if there is some F ∈ P(q) such that
δ (q,F) = q′. A computation is an infinite sequence λ = q0q1 . . . of states such that for all positions
i ≥ 0, qi+1 is a successor of qi. We follow standard abbreviations, hence a q-computation denotes a
computation starting at q, and λ [i], λ [0, i] and λ [i,∞] denote the i-th state, the finite prefix q0q1 . . .qi

and the infinite suffix qiqi+1 . . . of λ for any computation λ and its position i ≥ 0, respectively. An A-
strategy for A ⊆A is a function sA : Q→ ⋃

q∈Q P(q,A) such that sA(q) ∈ P(q,A) for all q ∈ Q. That is,
sA maps states to A-profiles at that state. The set of all A-strategies is denoted by strat(A). When needed
to distinguish between different structures we write strat(S,A) to indicate that we are talking about the
set of strategies for A in structure S. If s is an A -strategy and we apply δq to s(q), we obtain a unique
new state q′ = δq(s(q)). Iterating, we get the induced computation λs,q = q0q1 . . . such that q = q0 and
∀i ≥ 0 : δqi(s(qi)) = qi+1. Given two strategies s and s′, we say that s≤ s′ iff ∀q∈Q : s(q)≤ s′(q). Given
an A-strategy sA and a state q we get an associated set of computations out(sA,q). This is the set of all
computations that can result when at any state, the players in A are voting/acting in the way specified by
sA, that is out(sA,q) = {λs,q | s is an A -strategy and s≥ sA}.

Given the definitions above, we can interpret ATL formulas in the following manner, leaving out the
propositional cases and abbreviations:

Definition 2. Given a RCGS S and a state q in S, we define the satisfaction relation |= inductively:

• S,q |= 〈〈A〉〉©φ iff there is sA ∈ strat(A) such that for all λ ∈ out(sA,q), we have S,λ [1] |= φ

• S,q |= 〈〈A〉〉φU φ ′ iff there is sA ∈ strat(A) such that for all λ ∈ out(sA,q) we have S,λ [i] |= φ ′ and
S,λ [ j] |= φ for some i≥ 0 and for all 0≤ j < i

Towards the statement that interpreting formulas over CGS and RCGS is equivalent (Theorem 1) we
will describe a surjective translation function f translating each RCGS to a CGS. The following two
lemmas will be useful in formulating the proof of Theorem 1.

The translation function f from RCGS to CGS is defined as follows:

f 〈A ,R,R,Q,Π,π,A,δ 〉= 〈A ,Q,Π,π,d,δ ′〉

where:

da(q) = A(q,r) where a ∈R(q,r)

δ
′(q,α1, . . . ,αn) = δ (q,v1, . . . ,v|R|) where for each role r

vr = 〈|{i ∈R(q,r) | αi = 1}|, . . . , |{i ∈R(q,r) | αi = A(q,r)}|〉

We describe a surjective function m : strat( f (S))→ strat(S) mapping action tuples and strategies
of f (S) to profiles and strategies of S respectively. For all A ⊆ A and any action tuple for A at q,



T. Pedersen, S. Dyrkolbotn, P. Kaźmierczak & E. Parmann 65

tq = 〈αa1 ,αa2 , ...,αa|A|〉 with 1 ≤ αai ≤ dai(q) for all 1 ≤ i ≤ |A|, the A-profile m(tq) is defined in the
following way:

m(tq) = 〈v(tq,1), . . . ,v(tq, |R|)〉 where for all 1≤ r ≤ |R| we have

v(tq,r) = 〈|{a ∈ Ar,q | αa = 1}|, . . . , |{a ∈ Ar,q | αa = A(q,r)}|〉

Lemma 1. For any RCGS S and any A⊆A , the function m : strat( f (S),A)→ strat(S,A) is surjective.

Proof. Let pA be some strategy for A in S. We must show there is a strategy sA in f (S) such that
m(sA) = pA. For all q∈Q, we must define sA(q) appropriately. Consider the profile pA(q) = 〈v1, . . . ,v|R|〉
and note that by definition of a profile, all vr for 1 ≤ r ≤ |R| are A-votes for r and that by definition of
an A-vote, we have ∑1≤i≤A(q,r) vr(i) = |Ar,q|. Also, for all agents a,a′ ∈ Ar,q we know, by definition of f ,
that da(q) = da′(q) = A(q,r).

It follows that there are functions α : A→ N+ such that for all a ∈ A, α(a) ∈ [da(q)] and |{a ∈ Ar,q |
α(a) = i}|= vr(i) for all 1≤ i≤ A(q,r), i.e.

vr = 〈|{a ∈ Ar,q|α(a) = 1}|, . . . , |{a ∈ Ar,q|α(a) = A(q,r)}|〉

We choose some such α and sA = 〈α(a1), . . . ,α(a|A|)〉. Having defined sA in this way, it is clear that
m(sA) = pA.

It will be useful to have access to the set of states that can result in the next step when A⊆A follows
strategy sA at state q, succ(q,sA) = {q′ ∈ Q | ∃F ∈ ext(q,sA) : δ (q,F) = q′}. Given either a CGS or an
RCGS S, we define the set of sets of states that a coalition A can enforce in the next state of the game:

f orce(S,q,A) = {succ(q,sA) | sA is a strategy for A in S}.

Using the surjective function m we can prove the following lemma, showing that the “next time”
strength of any coalition A is the same in S as it is in f (S).

Lemma 2. For any RCGS S, and state q ∈ Q and any coalition A ⊆ A , we have f orce(S,A,q) =
f orce( f (S),A,q).

Proof. By definition of f orce and Lemma 1 it is sufficient to show that for all sA ∈ strat( f (S),A), we
have succ(S,m(sA),q) = succ( f (S),sA,q). We show ⊆ as follows: Assume that q′ ∈ f orce(S,m(sA),q).
Then there is some complete profile P = 〈v1, . . . ,v|R|〉, extending m(sA)(q), such that δ (q,P) = q′. Let
m(sA)(q) = 〈w1, . . . ,w|R|〉 and form P′ = 〈v′1, . . . ,v′|R|〉 defined by v′i = vi−wi for all 1 ≤ i ≤ |R|. Then
each v′i is an (A \ A)-vote for role i, meaning that the sum of entries in the tuple v′i is |(A \ A)r,q|.
This means that we can define a function α : A → N+ such that for all a ∈ A , α(a) ∈ [da(q)] and
for all a ∈ A, α(a) = sa(q) and for every r ∈ R and every a ∈ (A \ A), and every 1 ≤ j ≤ A(q,r),
|{a ∈ (A \A)r,q | α(a) = j}| = v′r( j). Having defined α like this it follows by definition of m that for
all 1 ≤ j ≤ A(q,r), |{a ∈ Ar,q | α(a) = j}| = wr( j). Then for all r ∈ R and all 1 ≤ j ≤ A(q,r) we
have |{a ∈ Aq,r | α(a) = j}| = vr( j). By definition of f (S) it follows that q′ = δ (q,P) = δ ′(q,α) so
that q′ ∈ f orce( f (S),sA,q). We conclude that f orce(S, f (sA),q) ⊆ f orce( f (S),sA,q). The direction ⊇
follows easily from the definitions of m and f .

We now state and prove the equivalence.

Theorem 1. For any RCGS S, any φ and any q ∈ Q, we have S,q |= φ iff f (S),q |=CGS φ , where f is the
surjective model-translation function.



66 Concurrent Game Structures with Roles

Proof. Given a structure S, and a formula φ , we define true(S,φ) = {q ∈ Q | S,q |= φ}. Equivalence of
models S and f (S) is now demonstrated by showing that the equivalence in next time strength established
in Lemma 2 suffices to conclude that true(S,φ) = true( f (S),φ) for all φ .

We prove the theorem by showing that for all φ , we have true(S,φ) = true( f (S),φ). We use in-
duction on complexity of φ . The base case for atomic formulas and the inductive steps for Boolean
connectives are trivial, while the case of 〈〈A〉〉© φ is a straightforward application of Lemma 2. For
the cases of 〈〈A〉〉�φ and 〈〈A〉〉φU ψ we rely on the following fixed point characterizations, which are
well-known to hold for ATL, see for instance [4], and are also easily verified against definition 2:

〈〈A〉〉�φ ↔ φ ∧〈〈A〉〉©〈〈A〉〉�φ

〈〈A〉〉φ1U φ2↔ φ2∨ (φ1∧〈〈A〉〉©〈〈A〉〉φ1U φ2
(1)

We show the induction step for 〈〈A〉〉�φ , taking as induction hypothesis true(S,φ) = true( f (S),φ). The
first equivalence above identifies Q′ = true(S,〈〈A〉〉�φ) as the maximal subset of Q such that φ is true
at every state in Q′ and such that A can enforce a state in Q′ from every state in Q′, i.e. such that
∀q ∈ Q′ : ∃Q′′ ∈ f orce(q,A) : Q′′ ⊆ Q′. Notice that a unique such set always exists. This is clear since
the union of two sets satisfying the two requirements will itself satisfy them (possibly the empty set).
The first requirement, namely that φ is true at all states in Q′, holds for S iff if holds for f (S) by induction
hypothesis. Lemma 2 states f orce(S,q,A) = f orce( f (S),q,A), and this implies that also the second re-
quirement holds in S iff it holds in f (S). From this we conclude true(S,〈〈A〉〉�φ) = true( f (S),〈〈A〉〉�φ)
as desired. The case for 〈〈A〉〉φU ψ is similar, using the second equivalence.

Example 2 (Sensor networks contd.). To further illustrate the use of ATL interpreted over RCGS, we
provide example formulas that are related to the structures shown in Example 1.

In the structure depicted in Figure 1, if at least k sensors signal something, p becomes true (e.g. the
alarm is raised). This is expressed by formula 〈〈A〉〉© p which is satisfied in the structure from Figure 1,
i.e. H1,q0 � 〈〈A〉〉© p whenever |A∩R(q0,1)| ≥ k. In Figure 2, the supervisor decides whether signals
that indicate p are strong enough in order for him to signal q, e.g. raise the alarm. In this scenario, the
sensors alone cannot raise the alarm, hence H2,q0 6|= 〈〈A〉〉♦q whenever A∩R(q1,2) = /0 (which means
that whenever the coalition A does not include the supervisor, q cannot be enforced). On the other hand,
H2,q0 |= 〈〈A〉〉© 〈〈B〉〉© q whenever |A∩R(q0,1)| ≥ k and B∩R(q1,2) 6= /0 (which means that the
coalition of agents without a supervisor can enable the supervisor to take action).

3 Model checking and the size of models

In this section we will see how using roles can lead to a dramatic decrease in the size of ATL models.
We first investigate the size of models in terms of the number of roles, players and actions, and then we
analyze model checking of ATL over concurrent game structures with roles.

Given a set of numbers [a] and a number n, it is a well-known combinatorial fact that the number
of ways in which to choose n elements from [a], allowing repetitions, is (n+(a−1))!

n!(a−1)! . Furthermore, this
number satisfies the following two inequalities:1

(n+(a−1))!
n!(a−1)! ≤ an and (n+(a−1))!

n!(a−1)! ≤ na. (2)

1If this is not clear, remember that na and an are the number of functions [n][a] and [a][n] respectively. It should not be hard
to see that all ways in which to choose n elements from a induce non-intersecting sets of functions of both types.



T. Pedersen, S. Dyrkolbotn, P. Kaźmierczak & E. Parmann 67

These two inequalities provide us with an upper bound on the size of RCGS models that makes it easy to
compare their sizes to that of CGS models. Typically, the size of concurrent game structures is dominated
by the size of the domain of the transition function. For an RCGS and a given state q ∈ Q this is the
number of complete profiles at q. To measure it, remember that every complete profile is an |R|-tuple of
votes vr, one for each role r ∈ R. Also remember that a vote vr for r ∈ R is an A(q,r)-tuple such that the
sum of entries is |Aq,r|. Equivalently, the vote vr can be seen as the number of ways in which we can
make |Aq,r| choices, allowing repetitions, from a set of A(q,r) alternatives. Looking at it this way, we
obtain:

|P(q)|= ∏
r∈R

(|Aq,r|+(A(q,r)−1))!
|Aq,r|!(A(q,r)−1))!

.

We sum over all q ∈ Q to obtain what we consider to be the size of an RCGS S. In light of Equation 2, it
follows that the size of S is upper bounded by both of the following expressions.

O(∑q∈Q ∏r∈R |Aq,r|A(q,r)) and O(∑q∈Q ∏r∈RA(q,r)|Aq,r|). (3)

We observe that growth in the size of models is polynomial in a=maxq∈Q,r∈RA(r,q) if n= |A | and |R| is
fixed, and polynomial in p = maxq∈Q,r∈R|Aq,r| if a and |R| are fixed. This identifies a significant potential
advantage arising from introducing roles to the semantics of ATL. The size of a CGS M, when measured
in the same way, replacing complete profiles at q by complete action tuples at q, grows exponentially in
the players whenever the players have more than one action. We stress that we are not just counting the
number of transitions in our models differently. We do have an additional parameter, the roles, but this is
a new semantic construct that gives rise to genuinely different semantic structures. We have established
that it is possible to use them to give the semantics of ATL, but this does not mean that there is not more
to be said about them. Particularly crucial is the question of model checking over RCGS models.

3.1 Model checking using roles

For ATL there is a well known model checking algorithm [1]. It does model checking in time linear in
the length of the formula and the size of the model. Given a structure S, and a formula φ , the standard
model checking algorithm mcheck(S,φ) returns the set of states of S where φ holds.

for F ∈ P(q,A) do
p← true
for F ′ ∈ ext(q,F) do

if δ (q,F ′) 6∈ Q′ then
p← f alse

if p = true then
return true

return f alse

Figure 4: en f orce(S,A,q,Q′)

The algorithm depends on a function en f orce(S,A,q,Q′),
which given a structure S, a coalition A, a state q ∈ Q and a
set of states Q′ answers true or false depending on whether
or not A can enforce Q′ from q. This is the only part of the
standard algorithm that needs to be modified to accommo-
date roles.

For all profiles F ∈ P(q,A) the en f orce algorithm runs
through all complete profiles F ′ ∈ P(q) that extend F . It is
polynomial in the number of complete profiles, since for any
coalition A and state q we have |P(q,A)| ≤ |P(q)|, meaning
that the complexity of en f orce is upper bounded by |P(q)|2.
Given a fixed length formula and a fixed number of states,
en f orce dominates the running time of mcheck. It follows that model checking of ATL over concurrent
game structures with roles is polynomial in the size of the model. We summarize this result.

Proposition 1. Given a CGS S and a formula φ , mcheck(S,φ) takes time O(le2) where l is the length of
φ and e = ∑

q∈Q
|P(q)| is the total number of transitions in S



68 Concurrent Game Structures with Roles

Since model checking ATL over CGSs takes only linear time, O(le), adding roles apparently makes
model checking harder. On the other hand, the size of CGS models can be bigger by an exponential
factor, making model checking much easier after adding roles. In light of the bounds we have on the size
of models, c.f. Equation 3, we find that as long as the roles and the actions remain fixed, complexity of
model checking is only polynomial in the number of agents. This is a potentially significant argument in
favor of including roles in the semantics.

Roles should be used at the modeling stage, as they give the modeler an opportunity for exploiting
homogeneity of the system under consideration. We think that it is reasonable to hypothesize that in
practice, most large scale multi-agent systems that lend themselves well to modeling by ATL exhibit
significant homogeneity.

The question arises as to whether or not using an RCGS is always the best choice, or if there are
situations when the losses incurred in the complexity of model checking outweigh the gains we make in
terms of the size of models. We conclude with the following proposition, also shown in [2], which states
that as long we use the standard algorithm, model checking any CGS M can be done at least as quickly
by model checking an arbitrary S ∈ f−(M).

Proposition 2. Given any CGS-model M and any formula φ , let c(mcheck(M,φ)) denote the complexity
of running mcheck(M,φ). We have, for all S ∈ f−(M), that complexity of running mcheck(S,φ) is
O(c(mcheck(M,φ))

Proof. It is clear that for any S∈ f−(M), running mcheck(S,φ) and mcheck(M,φ), a difference in overall
complexity can arise only from a difference in the complexity of en f orce. So we compare the complexity
of en f orce(S,A,q,Q′′) and en f orce(M,A,q,Q′′) for some arbitrary q ∈ Q, Q′′ ⊆ Q. The complexity in
both cases involves passing through all complete extensions of all strategies for A at q. The sizes of these
sets can be compared as follows, the first inequality is an instance of Equation 2 and the equalities follow
from definition of f and the fact that M = f (S).

∏
r∈R

(
(|Ar,q|+(A(r,q)−1))!
|Ar,q|!(A(r,q)−1)!

)
×∏

r∈R

(
((|Aq,r|− |Ar,q|)+(A(r,q)−1))!
(|Aq,r|− |Ar,q|)!(A(r,q)−1)!

)
≤
(

∏
r∈R

A(r,q)|Ar,q|×∏
r∈R

A(r,q)|Aq,r|−|Ar,q|
)

=∏
r∈R

(
∏

a∈Ar,q

A(r,q)

)
×∏

r∈R

(
∏

a∈Aa,r\Ar,q

A(r,q)

)

=

(
∏
a∈A

da(q)× ∏
a∈A \A

da(q)

)
= ∏

a∈A
da(q)

We started with the number of profiles (transitions) we need to inspect when running en f orce on S at q,
and ended with the number of action tuples (transitions) we need to inspect when running en f orce on
M = f (S). Since we showed the first to be smaller or equal to the latter and the execution of all other
elements of mcheck are identical between S and M, the claim follows.



T. Pedersen, S. Dyrkolbotn, P. Kaźmierczak & E. Parmann 69

4 Conclusions, related and future work

In this paper we have described a new type of semantics for the strategic logic ATL. We have provided
illustrating examples and argued that although in principle model checking ATL interpreted over con-
current game structures with roles is harder than the standard approach, it is still polynomial and can
generate exponentially smaller models. We believe this provides evidence that concurrent game struc-
tures with roles are an interesting semantics for ATL, and should be investigated further.

Relating our work to ideas already present in the literature we find it somewhat similar to the idea
of exploiting symmetry in model checking, as investigated by Sistla and Godefroid [7]. However, our
approach is different, since we look at agent symmetries in ATL as the basis of a new semantics. When
it comes to work related directly to strategic logics, we find no similar ideas present, hence concluding
that our approach is indeed novel.

For future work we plan on investigating the homogeneous aspect of our ‘roles’ in more depth. We
are currently working on a derivative of ATL with a different language that will fully exploit the role
based semantics.

Acknowledgments: We thank Pål Grønås Drange, Valentin Goranko and Alessio Lomuscio for helpful
comments. Piotr Kaźmierczak’s work was supported by the Research Council of Norway project 194521
(FORMGRID).

References
[1] Rajeev Alur, Thomas A. Henzinger & Orna Kupferman (2002): Alternating-time temporal logic. Journal of

the ACM (JACM) 49(5), pp. 672–713, doi:10.1145/585265.585270.
[2] Sjur Dyrkolbotn, Piotr Kaźmierczak, Erik Parmann & Truls Pedersen (2012): No big deal: introducing roles

to reduce the size of ATL models. Available at http://arxiv.org/abs/1204.3495.
[3] Wiebe van der Hoek, Alessio Lomuscio & Michael Wooldridge (2006): On the complexity of practical ATL

model checking. In: Proceedings of the fifth international joint conference on Autonomous agents and multia-
gent systems, ACM, pp. 201–208, doi:10.1145/1160633.1160665.

[4] Wojciech Jamroga (2009): Easy Yet Hard: Model Checking Strategies of Agents. In Michael Fisher, Fariba
Sadri & Michael Thielscher, editors: Computational Logic in Multi-Agent Systems, Springer-Verlag, pp. 1–
12, doi:10.1007/978-3-642-02734-5 1.

[5] Wojciech Jamroga & Jürgen Dix (2005): Do agents make model checking explode (computationally)? In
M. Pechoucek, P. Petta & L. Z. Varga, editors: Multi-Agent Systems and Applications IV (LNAI Volume
3690), doi:10.1007/11559221 40.

[6] François Laroussinie, Nicolas Markey & Ghassan Oreiby (2007): On the expressiveness and complexity of
ATL. In: Proceedings of the 10th International Conference on Foundations of Software Science and Compu-
tation Structures (FoSSaCS’07), volume 4423 of Lecture Notes in Computer Science, Springer, pp. 243–257,
doi:10.1007/978-3-540-71389-0 18.

[7] A. Prasad Sistla & Patrice Godefroid (2004): Symmetry and reduced symmetry in model checking. ACM
Trans. Program. Lang. Syst. 26(4), pp. 702–734, doi:10.1145/1011508.1011511.

http://dx.doi.org/10.1145/585265.585270
http://arxiv.org/abs/1204.3495
http://dx.doi.org/10.1145/1160633.1160665
http://dx.doi.org/10.1007/978-3-642-02734-5_1
http://dx.doi.org/10.1007/11559221_40
http://dx.doi.org/10.1007/978-3-540-71389-0_18
http://dx.doi.org/10.1145/1011508.1011511

	1 Introduction
	2 Role-based semantics for ATL
	3 Model checking and the size of models
	3.1 Model checking using roles

	4 Conclusions, related and future work

