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A number of extensions exist for Alternating-time TemporalLogic; some of these mix strategies and
partial observability but, to the best of our knowledge, no work provides a unified framework for
strategies, partial observability and fairness constraints. In this paper we proposeATLKF

po, a logic
mixing strategies under partial observability and epistemic properties of agents in a system with
fairness constraints on states, and we provide a model checking algorithm for it.

1 Introduction

A number of extensions exist for Alternating-time TemporalLogic; starting from [7], partial observability
has been investigated by many authors, see for instance [8] and references therein. But, to the best of
our knowledge, no work provides a unified framework for strategies, partial observability and fairness
constraints. For example, Jamroga and van der Hoek proposed, among other logics, ATOL, mixing
partial observability with strategies of agents [10]. Along the same lines, Schobbens studied ATLir [14],
seen as the minimal ATL-based logic for strategies under partial observability [9]. On the other hand,
some efforts have been made on bringing fairness to ATL. For instance the work of Alur et al. [1], or
the work of Klüppelholz and Baier [11] introduce the notionof fairness constraints on actions, asking
for an infinitely often enabled action to be taken infinitely often. For temporal and epistemic logics,
however, fairness conditions are normally provided onstates. Furthermore, it has been shown that (weak,
strong or unconditional) fairness constraints on actions,can be reduced to (weak, strong or unconditional,
respectively) fairness constraints on states (see [2], forinstance). In this paper we proposeATLKF

po, a
logic mixing strategies under partial observability and epistemic properties of agents in a system with
unconditional fairness constraintson states, and we provide a model checking algorithm for it.

To motivate the need for fairness constraints in ATL under partial observability, consider the simple
card game example in [10]. The game is played between a playerand a dealer. It uses three cards,A,
K andQ; A wins overK, K wins overQ and Q wins overA. First, the dealer gives one card to the
player, keeps one and leaves the last one on table. Then the player can keep his card or swap it with
the one on the table. The player wins if his card wins over the dealer’s card. Under ATLir semantics,
the player cannot win the game: he cannot distinguish between, for example,< A,K > and< A,Q >

(where< a,b > means ”player has carda, dealer has cardb”) and thus has to make the same action in
both states, with a different result in each case. Consider now a variation of this game: the game does
not terminate after the first round. Instead, if the player does not win, cards are redistributed. In this case,
too, the player cannot win the game: for instance, he will have to choose between keeping or swapping
cards in< A,K > and< A,Q>, so he won’t be able to enforce a win because the dealer (that chooses
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the given cards) can be unfair and always give the losing pair. But if we add one fairness constraint per
intermediate state—i.e. the states in which the player has to choose between swapping or keeping—the
player has a strategy to finally win the game. In this case, we only consider paths along which all fairness
constraints are met infinitely often: this situation corresponds to a fair dealer, giving the cards randomly.
The player can thus finally win because< A,K > will eventually happen—even if he cannot distinguish
it from < A,Q>—, so he knows a strategy to win at least a round: keeping his card.

Another example of application of fairness constraints in ATL is Multi-Agent Programs [5]. These
programs are composed of interleaved agent programs and fairness constraints are used to avoid unfair
interleaving. Dastani and Jamroga express fairness as formulae of the logic ATL* [5]; in this paper,
instead, we deal only with ATL and therefore fairness constraints cannot be expressed as formulae of the
logic. The situation is similar to the case of LTL versus CTL model checking: in the first case model
checking fairness is reduced to model checking a more complex formula using the same verification
algorithms; in the second case fairness is incorporated into bespoke verification algorithms. In our work
we chose ATL over ATL* because of complexity considerations(see Section 3).

The rest of the paper is structured as follows: Section 2 presents the syntax and semantics ofATLKF
po

and Section 3 presents two model checking algorithms for thelogic. Finally, Section 4 summarizes the
contribution and draws some future work.

2 Syntax and Semantics

This section presents the syntax and semantics ofATLKF
po, an extension of ATL with partial observability

under fairness constraints on states. An extension with full observability under the same fairness con-
straintsATLKF

f o is also presented because the model checking algorithm forATLKF
po relies on the one

for ATLKF
f o.

Syntax Both logics share the same syntax, composed of the standard Boolean connectors (∨, ∧, ¬,
etc.), CTL operators (EX, EU, EG, etc.) [4], knowledge operators (Kag, EΓ, DΓ, CΓ) [6] and strategic
operators (〈Γ〉X, 〈Γ〉G, 〈Γ〉U , 〈Γ〉W and their[Γ] counterparts) [1].

Models and notation ATLKF
f o andATLKF

po formulae are interpreted over modelsM = 〈Ag,S,Act,T, I ,
{∼i},V,F〉 where (1)Ag is a set ofn agents; (2)S=S1× ...×Sn is a set of global states, each of which is
composed ofn local states, one for each agent; (3)Act= Act1× ...×Actn is a set of joint actions, each of
which is composed ofn actions, one for each agent; (4)T ⊆ S×Act×S is a transition relation between
states inSand labelled with joint actions (we writes

a
−→ s′ if (s,a,s′) ∈ T); (5) I ⊆ S is the a set of initial

states; (6){∼i} is a set of equivalence relations between states, and∼i partitions the set of states in terms
of knowledge of agenti—s∼i s′ iff si = s′i , i.e two states are indistinguishable for agenti if they share
the same local state fori; (7) V : S→ 2AP labels states with atomic propositions ofAP; (8) F ⊆ 2S is a
set of fairness constraints, each of which is a subset of states.

A joint actiona= (a1, ...,an) completesa partially joint actionaΓ = (a′i , ...,a
′
j) composed of actions

of agents inΓ ⊆ Ag—writtenaΓ ⊑ a—if actions ina for agents inΓ correspond to actions inaΓ. Further-
more, we define the functionimg : S×Act→ 2S asimg(s,a) = {s′ ∈ S|s

a
−→ s′}, i.e. img(s,a) is the set of

states reachable in one step froms througha.
A model M represents a non-deterministic system where each agent hasan imperfect information

about the current global state. One restriction is made onT: ∀s,s′ ∈ S,s∼i s′ =⇒ enabled(s, i) =
enabled(s′, i) whereenabled(s, i) = {ai ∈ Acti|∃s′ ∈ S,a ∈ Act s.t. (ai) ⊑ a∧ s

a
−→ s′}. This means that
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the actions an agent can perform in two epistemically equivalent states are the same. Theenabled
function is straightforwardly extended to groups of agents.

A path in a modelM is a sequenceπ = s0
a1−→ s1

a2−→ ... of elements ofT. We useπ(d) for sd. A
states is reachablein M if there exist a pathπ andd ≥ 0 such thatπ(0) ∈ I andπ(d) = s. A pathπ is
fair according to a set of fairness conditionsF = { f1, ..., fk} if for each fairness conditionf , there exist
infinitely many positionsd ≥ 0 such thatπ(d) ∈ f . A states is fair if there exists a fair path starting ats.

A strategyfor agenti is a functionfi : S→ Acti where, for any states, fi(s) ∈ enabled(s, i); a strategy
maps each state to an enabled action. We call these strategies global strategies. A uniform strategyfor
agenti is a global strategyfi where∀s,s′ ∈ S,s′ ∼i s =⇒ fi(s) = fi(s′), i.e. agenti cannot choose two
different actions for two indistinguishable states. Thestrategy outcomesfrom a states for a strategyfi,
denoted without(s, fi), is the set of paths a strategy can enforce, i.e.out(s, fi) = {π = s0

a1−→ s1...|s0 =
s∧∀d ≥ 0,sd+1 ∈ img(sd,ad+1)∧ ( fi(sd))⊑ ad+1}. The definition of outcomes is naturally extended to
sets of strategies for a subset of agents.

Semantics The semantics of both logics are defined over states of a modelM by defining the relations
M,s |=F

f o φ andM,s |=F
po φ , for ATLKF

f o andATLKF
po, respectively.M can be omitted when clear from

the context. Both relations share a part of their semantics;we writes |=F φ if s |=F
f o φ ands |=F

po φ . The
s |=F

f o φ ands |=F
po φ relations are recursively defined over the structure ofφ and follow the standard

interpretation for most of the operators.s |=F p if p∈V(s); ∨ and¬ are interpreted in the natural way.
s |=F Kiφ if φ is true in all fair reachable states indistinguishable froms for agenti, s |=F EΓφ if all
agents inΓ know φ , s |=F DΓφ if, by putting all their knowledge in common, agents ofΓ would knowφ ,
ands |=F CΓφ if φ is common knowledge among agents ofΓ [6]. s |=F Eψ if there is a pathπ starting
at s satisfyingψ , π |=F Xφ if π(1) satisfiesφ , π |=F φ1Uφ2 if φ1 is true along the path untilφ2 is true,
π |= Gφ if φ is always true alongπ, andπ |= φ1Wφ2 if π |= (φ1Uφ2)∨Gφ1 [4].

The meaning of the〈Γ〉 operator is different in the two semantics:
(i) s |=F

f o 〈Γ〉ψ iff there exists a set ofglobal strategies fΓ, one for each agent inΓ, such that for allfair
paths π ∈ out(s, fΓ),π |=F ψ ;
(ii) s |=F

po 〈Γ〉ψ iff there exists a set ofuniform strategies fΓ, one for each agent inΓ, such that for all
s′ ∼Γ s, for all fair paths π ∈ out(s′, fΓ),π |=F ψ .

The[Γ] operator is the dual of〈Γ〉: s |=F [Γ]ψ iff s |=F ¬〈Γ〉¬ψ .

3 Model CheckingATLKF
f o and ATLKF

po

Model checkingATLKF
f o The model checking algorithm forATLKF

f o is defined by the functionJ.KF
f o :

ATLKF
f o → 2S returning the set of states of a given modelM satisfying a givenATLKF

f o property. This
function is defined in the standard way for Boolean connectors, CTL and knowledge operators [4, 13].
The [Γ] operators are evaluated as follows:

J[Γ]XφKF
f o = Pre[Γ](JφKF

f o∩Fair[Γ])

J[Γ]φ1Uφ2K
F
f o = µZ.(Jφ2K

F
f o∩Fair[Γ])∪ (Jφ1K

F
f o∩Pre[Γ](Z))

J[Γ]GφKF
f o = νZ.JφKF

f o∩
⋂

f∈F

Pre[Γ](µY.(Z∩ f )∪ (JφKF
f o∩Pre[Γ](Y)))

J[Γ]φ1Wφ2K
F
f o =

νZ.(Jφ2K
F
f o∩Fair[Γ])

∪ (Jφ1K
F
f o∩

⋂
f∈F Pre[Γ](µY.(Jφ2K

F
f o∩Fair[Γ])∪ (Z∩ f )∪ (Jφ1K

F
f o∩Pre[Γ](Y))))
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wherePre[Γ](Z) = {s|∀aΓ ∈ enabled(s,Γ),∃a s.t. aΓ ⊑ a∧ img(s,a)∩Z 6= /0} andFair[Γ] = J[Γ]G trueKF
f o.

µZ.τ(Z) and νZ.τ(Z) are the least and greatest fix points of functionτ(Z). Intuitively, thePre[Γ](Z)
operator returns the set of states in whichΓ cannot avoid to reach a state ofZ. Thus,J[Γ]GφKF

f o returns
the set of states in whichΓ cannot avoid a path of states ofJφKF

f o going through all fairness constraints
infinitely often;Fair[Γ] is the set of states in whichΓ cannot avoid a fair path. Note that the〈Γ〉 operators
can be computed using the[Γ] and¬ operators, but can also be computed directly using the dual forms
from the ones above. For exampleJ〈Γ〉GφKF

f o = νZ.(JφKF
f o∪Fair[Γ])∩Pre〈Γ〉(Z), wherePre〈Γ〉(Z) =

Pre[Γ](Z) = {s|∃aΓ ∈ enabled(s,Γ) such that∀a,aΓ ⊑ a =⇒ img(s,a) ⊆ Z}. Z ⊆ S is the complement
of the setZ ⊆ S.

The correctness of the model checking algorithm forATLKF
f o follows from Theorem 1.

Theorem 1. For all states s∈ S, s|=F
f o φ if and only if s∈ JφKF

f o.

Proof sketch.First, Reach[Γ](P1,P2) = µY.P2 ∪ (P1∩Pre[Γ](Y)) computes the set of states in whichΓ
cannot avoid a finite path of states ofP1 to a state ofP2. We can prove it by induction over the computation
of the least fix point. It is true by definition of the least fix point and thePre[Γ] operation.

Then, for the[Γ]Gφ operator,J[Γ]GφKF
f o = νZ.JφKF

f o∩
⋂

f∈F Pre[Γ](µY.(Z∩ f )∪(JφKF
f o∩Pre[Γ](Y)))

= νZ.JφKF
f o∩

⋂
f∈F Pre[Γ](Reach[Γ](JφKF

f o,Z∩ f )) computes the set of states in whichΓ cannot avoid a
fair path (i.e. going through eachf ∈ F infinitely often) that satisfiesGφ . We prove it by induction over
the computation of the greatest fix point and by using what hasbeen proved just above.

Thanks to this, we can easily prove thatFair[Γ] = J[Γ]GtrueKF
f o computes the set of states in whichΓ

cannot avoid a fair path (it is just a particular case of the[Γ]G operator).
Then,[Γ]X and[Γ]U operators compute the set of states in whichΓ cannot avoid a successor inJφKF

f o
in which Γ cannot avoid a fair path, respectively in whichΓ cannot avoid a finite path through states of
Jφ1K

F
f o to a state ofJφ2K

F
f o, in whichΓ cannot avoid a fair path. In particular, the proof for[Γ]U directly

follows from the proof forReach[Γ].
Finally, the proof for the[Γ]W operator is similar to the one for[Γ]G operator. The proof of correct-

ness of the algorithms for〈Γ〉 operators follows from the proof for[Γ] operators, the duality of these
operators and standard fix point properties.

Model checkingATLKF
po – basic algorithm A basic algorithm is presented in Algorithm 1. It relies

on the model checking algorithm forATLKF
f o. It uses two sub-algorithms:Split andJ.KF

f o|strat, where
strat is a strategy represented as a set of state/action pairs. Thelatter is a modified version of the
algorithm described in the previous section withPre〈Γ〉|strat replacingPre〈Γ〉 wherePre〈Γ〉|strat(Z) =
{s|∃aΓ ∈ enabled(s,Γ) such that〈s,aΓ〉 ∈ strat∧∀a,aΓ ⊑ a =⇒ img(s,a) ⊆ Z}, i.e., Pre〈Γ〉|strat(Z) is
Pre〈Γ〉(Z) restricted to states and actions allowed bystrat. Furthermore,J.KF

f o|strat recursively callsJ.KF
po

on sub-formulae, instead ofJ.KF
f o.

TheSplit algorithm is given in Algorithm 2.Split(S×ActΓ) returns the set of uniform strategies of
the system (a uniform strategy is represented by the action for groupΓ allowed in each state, and this
action needs to be the same for each state in the same equivalence class).

Intuitively, Algorithm 1 computes, for each possible uniform strategystrat, the set of states for which
the strategy is winning, and then keeps only the statess for which the strategy is winning for all states
equivalent tos.

Before proving the correctness of the basic algorithm, let’s prove the correctness of theSplit algo-
rithm.
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Algorithm 1: J〈Γ〉ψKF
po

Data: M a given (implicit) model,Γ a subset of agents ofM, ψ anATLKF
po path formula.

Result: The set of states ofM satisfying〈Γ〉ψ .

sat= {}
for strat∈ Split(S×ActΓ) do

winning= J〈Γ〉ψKF
f o|strat

sat= sat∪{s∈ winning|∀s′ ∼Γ s,s′ ∈ winning}

return sat

Algorithm 2: Split(Strats)
Data: Strats⊆ S×ActΓ.
Result: The set of all the largest subsetsSAof Strats⊆ S×ActΓ such that no conflicts appear in

SA.

C = {〈s,aΓ〉 ∈ Strats|∃〈s′,a′Γ〉 ∈ Strats s.t. s′ ∼Γ s∧aΓ 6= a′Γ}
if C= /0 then return {Strats}
else

〈s,aΓ〉= pick one inC
E = {〈s′,a′Γ〉 ∈ Strats|s′ ∼Γ s}
A= {aΓ ∈ ActΓ|∃〈s,aΓ〉 ∈ E}
strats= {}
for aΓ ∈ A do

S= {〈s′,aΓ〉 ∈ E|a′Γ = aΓ}
strats= strats∪Split(S∪ (Strats\E))

return strats

Theorem 2. Split(Strats) computes the set of all the largest subsets SA of Strats⊆ S×ActΓ such that
no conflicts appear in SA.

Remark 1. A conflict appears in SA⊆ S×ActΓ if there exist two elements〈s,aΓ〉 and〈s′,a′Γ〉 in SA such
that s′ ∼Γ s and aΓ 6= a′Γ, i.e. there is a conflict if SA proposes two different actionsin two equivalent
states.

Proof sketch of Theorem 2. Splitgets all the conflicting elements ofStrats. If there are no such elements,
thenStratsis its own largest non-conflicting subset; otherwise,Split takes one conflicting equivalence
classE and, for each of its largest non-conflicting subsetsS—i.e. subsets of states using the same
action—it callsSplit on the rest ofStratsaugmented with the non-conflicting subsetS.

We can prove the correctness ofSplit by induction over the number of conflicting equivalence classes
of Strats. If Stratsdoes not contain any conflicting equivalence classes,Stratsis its own single largest
subset in which no conflicts appear. Otherwise, let’s assumethat Split(Starts\E) with E a conflicting
equivalence class ofStratsreturns the set of all the largest non-conflicting subsets ofStrats\E; then, by
what has been explained above,Split returns the cartesian product between all the largest non-conflicting
subsets ofE and all the largest non-conflicting subsets ofStrats\E. Because these cannot be conflicting
as they belong to different equivalence classes, we can conclude thatSplit returns the set of the largest
non-conflicting subsets ofStrats.
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The correctness of Algorithm 1 is then given by the followingtheorem.

Theorem 3. J〈Γ〉ψKF
po computes the set of states of M satisfying〈Γ〉ψ , i.e.

∀s∈ S,s∈ J〈Γ〉ψKF
po iff s |=F

po 〈Γ〉ψ .

Proof sketch.First, Split(S×ActΓ) returns all the possible uniform strategies of the system, where a
uniform strategy is represented by the only action allowed in each equivalence class of states—states
equivalent in terms of the knowledge ofΓ—, this action being the same for every state of the class.

Indeed, the set of the largest non-conflicting subsets ofS×ActΓ is the set of possible uniform strate-
gies. A non-conflicting subset ofS×ActΓ provides at most one action for each equivalence class of states,
otherwise it would not be non-conflicting; second, a largestnon-conflicting subset ofS×ActΓ provides
exactly one action for each equivalence class of states, otherwise there would be a larger subset giving
one action for the missing equivalence classes and this subset would not be conflicting. Finally, a largest
non-conflicting subset ofS×ActΓ is a uniform strategy because it is exactly the definition of auniform
strategy: giving one possible action for each equivalence class. This thus ends the proof thatSplit returns
the set of all possible uniform strategies.

Second,winning= JΓKψKF
f oψ |strat returns the set of states for which the strategystrat is winning.

Indeed, it usesATLKF
f o model checking algorithm, restricted to actions instrat. It thus returns the set

of states for which there is a (global) winning strategy instrat. As strat is, by construction, a uniform
strategy,winning is the set of states for which there exists a uniform winning strategy—in fact, it isstrat
itself.

Finally, the set{s∈ winning|∀s′ ∼Γ s,s′ ∈ winning} is the set of statess for which strat is a winning
strategy for alls′ ∼Γ s. sat thus accumulates all the statess for which there is a winning strategy for all
states indistinguishable froms. As this is exactly the semantics of the property, i.e.sat is exactly the set
of states of the system satisfying the property, the proof isdone.

Improving the basic algorithm The first improvement proposed for the basic algorithm is thepre-
filtering of states to the ones satisfying the property underATLKF

f o ; we can filter them because if a state
s does not satisfy〈Γ〉ψ underATLKF

f o, s cannot satisfy〈Γ〉ψ underATLKF
po. The second one is the

alternation between filtering and splitting the strategies. Both improvements are aimed at reducing the
number of uniform strategies to consider. The improved algorithm is presented in Algorithm 3. Using
this algorithm, we can computeJ〈Γ〉ψKF

po asImprovedJ〈Γ〉ψKF
po|S×ActΓ . The intuition behind Algorithm 3

is to start by computing the set of states satisfying the property and the associated actions (line 1), then
get all conflicts (line 2) and, if there are conflicts, choose one conflicting equivalence class of states and
possible actions (lines 6 to 8) and for each possible actionaΓ, recursively call the algorithm with the
strategies followingaΓ (lines 11 and 12)—i.e. split the class into uniform strategies for this class and
recursively call the algorithm on each strategy.

More in detail, Algorithm 3 returns the set of states satisfying the property inStrats. So, to get the
final result, we have to take all the states satisfying the property inS×ActΓ. Algorithm 3 uses the func-
tion J.KF,ac

f o |strats. This function is a modification of theJ.KF
f o|strats function where actions are linked to

states. More precisely, every sub-call toJ.KF
po or Fair[Γ] is enclosed byStatesActionsΓ|strats to get all en-

abled actions in these states, restricted tostrats—StatesActionsΓ |strats(Z) = {〈s,aΓ〉 ∈ strats|s∈ Z∧aΓ ∈
enabled(s,Γ)}—, andPre〈Γ〉|strats is replaced byPreac

〈Γ〉|strats(Z) = {〈s,aΓ〉 ∈ strats|aΓ ∈ enabled(s,Γ)∧
∀a,aΓ ⊑ a =⇒ img(s,a) ⊆ Z}. For example,J[Γ]GφKF,ac

f o |Strats= νZ.(StatesActionsΓ|Strats(JφKF
po∪

Fair[Γ]))∩Preac
〈Γ〉|Strats(Z).
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Algorithm 3: ImprovedJ〈Γ〉ψKF
po|Strats

Data: M a given (implicit) model,Γ a subset of agents ofM, ψ anATLKF
po path formula,

Strats⊆ S×ActΓ.
Result: The set of states ofM satisfying〈Γ〉ψ in Strats.

1 Z = J〈Γ〉ψKF,ac
f o |Strats

2 C = {〈s,aΓ〉 ∈ Z|∃〈s′,a′Γ〉 ∈ Z such thats∼Γ s′∧aΓ 6= a′Γ}
if C= /0 then

4 return {s∈ S|∃aΓ ∈ ActΓ s.t.∀s′ ∼Γ s,〈s′,aΓ〉 ∈ Z}

else
6 〈s,aΓ〉= pick one inC
7 E = {〈s′,a′Γ〉 ∈ Z|s∼Γ s′}
8 A= {aΓ ∈ ActΓ|∃〈s,aΓ〉 ∈ E}

sat= {}
for aΓ ∈ A do

11 strat= {〈s′,a′Γ〉 ∈ E|a′Γ = aΓ}∪ (Z\E)
12 sat= sat∪ ImprovedJ〈Γ〉ψKF

po|strat

return sat

Intuitively, StatesActionsΓ |strats(Z) returns all the states ofZ with their enabled actions allowed by
stratsandPreac

〈Γ〉|strats(Z) returns the states that can enforce to reachZ in one step, and the actions that

allow them to do so, restricted to actions instrats. J〈Γ〉ψKF,ac
f o |strats thus returns the states satisfying〈Γ〉ψ

associated to the actions ofstratsthat allow them to do so.
The correctness of Algorithm 3 is given by the following theorem.

Theorem 4. ImprovedJ〈Γ〉ψKF
po|S×ActΓ computes the set of states of M satisfying〈Γ〉ψ , i.e.

∀s∈ S,s∈ ImprovedJ〈Γ〉ψKF
po|S×ActΓ iff s |=F

po 〈Γ〉ψ .

Proof sketch.First, J〈Γ〉ψKF,ac
f o |Strats returns the set of statess (and associated actions) such that there

exists a global strategy inStratsallowing Γ to enforce the property ins. This means that if a state/action
pair is not returned,Γ has no global strategy to enforce the property from the givenstate by using the
action given in the pair. By extension, there is no uniform strategy to enforce the property neither. Thus,
only state/action pairs returned byJ〈Γ〉ψKF,ac

f o |Stratshave to be considered when searching for a uniform

strategy inStrats. This also means thatJ〈Γ〉ψKF,ac
f o |Stratsfilters Stratsto winning global strategies; if the

result is also a uniform strategy, all the states in the returned set have a uniform strategy to enforce the
property.

Second,ImprovedJ〈Γ〉ψKF
po|Strats returns the set of states satisfying the property inStrats. We can

prove this by induction on the number of conflicting equivalence classes ofStrats: this is true if there are
no conflicting classes because Line 1 computes a winning uniform strategy—as discussed above—and
Line 4 returns the set of states for which the strategy is winning for all indistinguishable states. This is
also true in the inductive case because (1) filtering withJ〈Γ〉ψKF,ac

f o |Stratsdoesn’t lose potential state/action
pairs and (2) the algorithm takes one conflicting class and tries all the possibilities for this class.

The final result thus is correct since it returns the set of statess for which there is a uniform strategy
in S×ActΓ that is winning for all states equivalent tos.
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Complexity considerations Model checkingATL with perfect recall and partial observability is an
undecidable problem [14], while model checkingATLir is a∆P

2-complete problem [9].ATLKF
po subsumes

ATLir and its model checking problem is therefore∆P
2-hard. Algorithm 1 performs a call to[[.]]Ff o for

each uniform strategy:[[.]]Ff o is in P, but in the worst case there could be exponentially many calls to this

procedure, as there could be up to∏i∈Γ |Acti ||Si | uniform strategies to consider.

4 Conclusion

A number of studies in the past have investigated the problemof model checking strategies under partial
observability and, separately, some work has provided algorithms for including fairness constraints on
actionsin the case of full observability. To the best of our knowledge, the issue of fairness constraints
and partial observability have never been addressed together.

In this paper we presentedATLKF
po, a logic combining partial observability and fairness constraints

on states(which is the standard approach for temporal and epistemic logics), and we have provided a
model checking algorithm.The proposed algorithm is similar to the one of Calta et al. [3]. They also split
possible actions into uniform strategies, but they do not provide a way to deal with fairness constraints.

Finally, the structure of our algorithm is compatible with symbolic model checking using OBDDs,
and we are working on its implementation in the model checkerMCMAS [12], where fairness constraints
are only supported for temporal and epistemic operators.
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