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We study infinite two-player games where one of the players isunsure about the set of moves avail-
able to the other player. In particular, the set of moves of the other player is a strict superset of what
she assumes it to be. We explore what happens to sets in various levels of the Borel hierarchy under
such a situation. We show that the sets at every alternate level of the hierarchy jump to the next higher
level.

1 Introduction

Infinte two-player games have attracted a lot of attention and found numerous applications in the fields
of topology, descriptive set-theory, computer science etc. Examples of such types of games are: Banach-
Mazur games, Gale-Stewart games, Wadge games, Lipschitz games, etc. [7, 6, 11, 3], and they each
characterize different concepts in descriptive set theory.

These games are typically played between two players, Player 0 and Player 1, who take turns in
choosing finite sequences of elements (possibly singletons) from a fixed setA (finite or infinite) which
is called the alphabet. This process goes on infinitely and hence defines an infinite sequenceu0u1u2 . . .
of finite strings which in itself is an infinite string over thesetA. In addition, the game has a winning
conditionWinwhich is a subset of the set of infinite strings overA, Aω . Player 0 is said to win the game
if the sequenceu0u1u2 . . . is in Win. Player 1 wins otherwise.

In addition to their applications in descriptive set-theory and topology, such games have also been
used in computer science in the fields of verification and synthesis of reactive systems [4]. The verifica-
tion problem is modeled as a game between two players: the system player and the environment player.
The winning setWin is specified using formulas in some logic, LTL, CTL,µ-calculus etc. The goal of
the system player is to meet the specification along every play and that of the environment player is to
exhibit a play which does not meet it. To verify the system then amounts to show that the system player
has a winning strategy in the underlying game and to find this strategy.

WhenWin is specified using the usual logics, it corresponds to sets inthe low levels of the Borel
hierarchy. It is known that the complexity of the winning strategy increases with the increase in the level
of the Borel hierarchy to whichWin belongs [10]. For instance, in Gale-Stewart games,reachability,
safety andMuller are winning conditions in theΣ0

1,Π
0
1 andΣ0

2 levels of the Borel hierarchy respectively
and a player has positional winning strategies for reachability and safety but needs memory to win for
the Muller condition. However it was shown in [5, 8] that a finite amount of memory suffices. The notion
of Wadge reductions also formalises this increase in complexity of the sets along the Borel hierarchy.

Such games (esp. Banach-Mazur and Gale-Stewart games) alsofind applications in linguistics. [2]
shows that conversations have a topological structure similar to that of Banach-Mazur games and explores
how the different types of objectives of conversations correspond to different levels in the Borel hierarchy
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depending on their complexity. [2] also applied of the classical results from the literature of Banach-
Mazur games to the conversational setting. [1] applies Gale-Stewart games to the study of politeness.

In this paper, we look at what happens to sets in the Borel hierarchy when the underlying alphabet
is expanded. That is, the alphabet is changed fromA to B such thatB is a strict superset ofA. We show
that sets at every alternate level of the Borel hierarchy undergo a jump to the next higher level. More
precisely, a set at leveln of the hierarchy with alphabetA moves to leveln+ 1 when the alphabet is
expanded toB. This process goes on for all countable levels and stabilises atω .

Our result has consequences for both formal verification andlinguistic applications some of which
we elucidate in the concluding section.

The rest of the paper is organised as follows. In Section 2 we formally introduce the necessary
concepts and give the required background for the paper. Then in Section 3 we state and prove the main
results of the paper. Finally we conclude with some interesting consequences in Section 4.

2 Preliminaries

In this section we present the necessary background required for the paper. Although we define most
of the concepts used in the paper, we assume some familiaritywith the basic notions of topology and
set-theory.

2.1 Open and closed sets

Let A be a non-empty set. We sometimes refer toA as thealphabet. For any subsetX of A, as usual,
we denote byX∗ the set of finite strings overX and byXω , the set of countably infinite strings overX.
For any stringu∈ A∗∪Aω we denote theith element ofu by u(i). The set ofprefixes of u are all strings
v∈ A∗ such thatu= vv′ for v′ ∈ A∗∪Aω .

We define a topology onAω , the standard topology (also known as the Cantor topology) on the set
of infinite strings overA. This topology can be defined in at least three equivalent ways. The first way
is to define the discrete topology onA and then assignAω the product topology. The second way is to
explicitly define the open sets of the topology. The open setsare given by sets of the formXAω where
X is a subset ofA∗. Thus an open set is a set of finite strings overX followed by their all possible
continuations. For a setX ⊆ A∗, we denote the open setXAω by OA(X) or simply byO(X) when the
underlying alphabetA is clear from the context. WhenX is a singleton{u}, we abuse notation to denote
the open setuAω by OA(u). Example 1 illustrates these concepts.

Example 1. Let A= {a,b,c}. ThenabcAω is an open set and so isabAω ∪baAω . The complement of
the setabcAω is the setX of all strings that do not haveabcas their prefix. This is a closed set.

Yet another equivalent way to define the topology is to give anexplicit metric for it. Given two
strings,u1,u2 ∈ Aω , the distance between themd(u1,u2) is defined to be 1/2n(u1,u2), wheren(u1,u2) is
the first index whereu1 andu2 differ from each other. Thus the above topology is metrisable. Henceforth,
when we use the term ‘set’ we shall mean a subset ofAω .

Note that the set(abcAω) in the above example is also open. That is because it is a unionof the open
setsO(aa),O(ac),O(b) andO(c). Such sets, which are both open and closed are calledclopen sets. So
what is a set which is open but not closed (and vice versa)?

Proposition 1 ([9]) If A is a finite alphabet, a subset of Aω is clopen if and only if it is of the form XAω

where X is a finite subset of A∗.
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Thus if A is finite then a set of the formXAω whereX is an infinite subset ofA∗ is open but not
closed. IfA is infinite, the subsets ofAω of the formXAω , whereX is a set of words of bounded length
of A∗ are clopen. However there might exist clopen sets which are not of this form.

2.2 The Borel hierarchy

A set of subsets ofAω is called aσ -algebra if it is closed under countable unions and complements. Given
a setX, the smallestσ -algebra containingX is called theσ -algebragenerated by X. It is equivalent to
the intersection of all theσ -algebras containingX. The sigma algebra generated by the open sets of a
topological space is called theBorel σ -algebra and its sets are called theBorel sets.

The Borel sets can also be defined inductively. This gives a natural hierarchy of classesΣ0
α andΠ0

α
for 1≤ α < ω1. Let Σ0

1 be the set of all open sets.Π1 = Σ0
1 is the set of all closed sets. Then for any

α > 1 whereα is a successor ordinal, defineΣ0
α to be the countable union of allΠ0

α−1 sets and define
Π0

α to be the complement ofΣ0
α . For a limit ordinalη , 1< η < ω1, Σ0

η is defined asΣ0
η =

⋃
α<η Σ0

α and

Π0
η = Σ0

η . The infinite hierarchy thus generated is called theBorel hierarchy and they together form the
Borel algebra. It is known [9] that if the space is metrisableand the underlying alphabet contains at least
two elements, then the hierarchy is indeed infinite, that is,the containments,Σ0

α ⊂ Σ0
α+1 andΠ0

α ⊂ Π0
α+1

are strict.

2.3 Wadge reductions and complete sets

Let A andB be two alphabets. A functionf : Aω → Bω is said to be continuous if for every open subset
Y ⊆ Bω , f−1(Y) is also open.

A set X ⊆ Aω is said toWadge reduce to another setY ⊆ Bω , denotedX ≤W Y, if there exists a
continuous functionf : Aω → Bω such thatf−1(Y) = X.

Let A be an alphabet. A setX ⊆ Aω is said to beΣ0
α (resp.Π0

α ) complete if X ∈ Σ0
α (resp.X ∈ Π0

α )
and for any other alphabetB and for anyΣ0

α (resp.Π0
α ) setY ⊆ Bω , Y ≤W X. Intuitively, given a class of

setsΓ, the complete sets of that class represent the sets which arestructurally the most complex in that
class.

For the Borel hierarchy, completeness can be characterisedin the following simple way:

Proposition 2 ([9]) Let X⊆ Aω . Then X isΠ0
α (resp. Σ0

α ) complete if and only if X∈ Π0
α \Σ0

α (resp.
Σ0

α \Π0
α−1).

2.4 Infinite games

Let A be an alphabet. An infinite game onA is played between two players, Player 0 and Player 1,
who take turns in choosing finite sequences of elements (possibly singletons) from a fixed setA (finite
or infinite) which is called the alphabet. This process goes on infinitely and hence defines an infinite
sequenceu0u1u2 . . . of finite strings which in itself is an infinite string over thesetA. In addition, the
game has a winning conditionWin which is a subset of the set of infinite strings overA, Aω . Player 0 is
said to win the game if the sequenceu0u1u2 . . . is in Win. Player 1 wins otherwise.

In a Banach-Mazur game, each player at her turn chooses a finite non-empty sequence of elements
from A while in a Gale-Stewart game the players are restricted to choosing just single elements fromA.
An infinite game can also be imagined to be played on a graphG= (V,E) where the set of verticesV is
partitioned intoV0 andV1 which represent the Player 0 and 1 vertices respectively. The game starts at an
initial vertexv0 ∈V and the players take turns in moving a token along the edges ofthe graph depending
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on whose vertex it is currently. This process is continued adinfinitum and thus generates an infinite path
p in the graphG. Player 0 wins if and only ifp∈ WinwhereWin is a pre-specified set of infinite paths.

3 Results

In this section we present the main results of this paper. Given a subsetB of an alphabetA the topology
of Bω where the open sets are given byO∩Bω for every open setO of Aω is called the relative topology
of Bω with respect toAω . However we are interested in the opposite question. What happens when the
alphabet expands? In particular, we show that when the alphabet set changes fromA to B (say) such that
B is a strict superset ofA then the sets in the alternative levels of the Borel hierarchy undergo a jump in
levels.

Lemma 1 Let A and B be two alphabets such that A( B. An open set O in the space Aω jumps toΣ0
2 in

the space Bω . A closed set C in the space Aω remains closed in Bω .

Proof The proof is by carried out by coding the open setO in the spaceBω and demonstrating a
complete set forBω .

Let O be an open set inAω . ThenO is of the formXAω whereX ⊆ A∗. Let Xβ be an indexing of the
setX.

Each elementu of X gives the open setOA(u) which is a subset ofAω . Now, when we move to the
alphabetB, the setOB(u) is the set of strings which haveu as a prefix and all possible continuations using
letters ofB. ThusOB(u) is a strict superset ofOA(u). Hence, we need to restrictOB(u) in Bω such that
we obtain a set which is equal toOA(u) in Aω . One way to do do so is as follows. Consider all the finite
continuations ofu in letters fromA. Let Uγ be an indexed set of all these continuations. ThenOA(u) is
the set

OA(u) =
⋂

OB(u
′), u′ ∈ Uγ (1)

which is a closed set, being an arbitrary intersection of closed sets.
Thus the setO can be represented inBω as

O=
⋃

OA(u), u∈ Xβ

each of which by (1) is a closed set. HenceO∈ Σ0
2 in the spaceBω .

Next we demonstrate aΣ0
1 setO in a spaceAω which is complete forΣ0

2 in a spaceBω whereA( B.
Let A = {a,b} andB = {a,b,c}. Let X = {ab,abab,ababab, . . .} ⊂ A∗ and letO = XAω . ThenO is
open. Each subsetOA(u), u∈ X is represented inBω as

OA(u) = OB(u)∩OB(ua)∩OB(ub)∩OB(uaa)∩OB(uab)∩OB(uba)∩OB(ubb)∩ . . .

and
O= OA(u1)∪OA(u2)∪ . . . , ui ∈ X

HenceO is aΣ0
2 set inBω .

To show thatO is Σ0
2 complete forBω we use Proposition 2.O is not open inBω . Indeed, because

otherwise, there exists a finite stringu whose all possible continuations with letters fromB are inO and
that is a contradiction.O is also not closed inBω . To see this, note that the complement ofO, O in Aω

is the setXAω whereX ⊆ A∗ is given asX = {b,aa,abb,abaa, . . .}. ForO to be closed inBω , O should
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be open inBω . This means that there should exist a finite stringv whose all possible continuations with
letters fromB are inO which is again a contradiction.

ThusO /∈ Σ0
1 andO /∈ Π0

1 in Bω and hence it is complete forΣ0
2 in Bω .

Next supposeC is a closed set inAω . We show how to representC in Bω . Let Uβ be the indexed set
of prefixes ofC. ThenC can be represented inBω as

C=
⋂

OB(v), v∈ Uβ

EachOB(v) is a closed set inBω and henceC being an arbitrary intersection of closed sets inBω is
closed. ThusC∈ Π0

1 in Aω remainsΠ0
1 in Bω .

We generalise the above Lemma to the entire Borel hierarchy in the following theorem.

Theorem 1 Let A and B be two alphabets such that A(B. We have the following in the Borel hierarchy:

1. For 1≤ α < ω andα odd,

(a) a set X∈ Σ0
α in the space Aω jumps toΣ0

α+1 in the space Bω

(b) a set X∈ Π0
α in the space Aω remainsΠ0

α in the space Bω .

2. For 1≤ α < ω andα even,

(a) a set X∈ Σ0
α in the space Aω remainsΣ0

α in the space Bω

(b) a set X∈ Π0
α in the space Aω jumps toΠ0

α+1 in the space Bω .

3. For α ≥ ω , a Σ0
α (resp.Π0

α ) set remainsΣ0
α (resp.Π0

α ) on going from the space Aω to Bω . That is,
the sets stabilise.

Proof The proof is by induction onα . For the base case,α = 1, the result follows from Lemma 1.
The inductive case is relatively straightforward, given the inductive structure of the Borel hierar-

chy. For convenience, we subscript the sets withA or B to denote whether they are sets inAω or Bω

respectively.
Suppose 1< α < ω andα is odd. Then

Σ0
α ,X =

⋃
Π0

α−1,X [by definition]

=
⋃

Π0
α ,Y [by induction hypothesis]

=Σ0
α+1,Y

Π0
α ,X =Σ0

α ,X =
⋃

Π0
α−1,X =

⋂
Π0

α−1,X =
⋂

Σ0
α−1,X [by definition]

=
⋂

Σ0
α−1,Y [by induction hypothetis]

=Π0
α ,Y

Now, suppose 1< α < ω andα is even. Then

Σ0
α ,X =

⋃
Π0

α−1,X [by definition]

=
⋃

Π0
α−1,Y [by induction hypothesis]

=Σ0
α ,Y
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Π0
α ,X =Σ0

α ,X =
⋃

Π0
α−1,X =

⋂
Π0

α−1,X =
⋂

Σ0
α−1,X [by definition]

=
⋂

Σ0
α ,Y [by induction hypothetis]

=Π0
α+1,Y

Finally,
Σ0

ω ,X =
⋃

n<ω
Σ0

n,X =
⋃

n<ω
Σ0

n,Y = Σ0
ω ,Y

and
Π0

ω ,Y = Σ0
ω ,Y = Π0

ω ,X

The above result can be concisely summarised by Figure 1.

Σ0
1 Σ0

2 Σ0
3 Σ0

4 Σ0
ω Σ0

ω+1 Σ0
ω1

Π0
1 Π0

2 Π0
3 Π0

4 Π0
ω Π0

ω+1 Π0
ω1

Figure 1: Jumps in the Borel hierarchy

4 Applications

The result we showed has interesting consequences in the fields of both formal verification and linguis-
tics.

4.1 Formal verification

As we mentioned in the introduction, to formally verify a reactive systemM (a piece of hardware or
software which interacts with users/environment), we often model the system as a finite graphG(M).
Two players, the system player and the environment player then play an infinite game onG(M). The goal
of the system player is to meet a certain specification on all plays onG(M) and that of the environment
player is to exibit a play which does not meet it.

The result stated in this paper represents situations wherethe system player is unsure about the exact
moves of the environment player. This shows that in such a situation, the system player might have to
strategise at a higher level of the hierarchy in order to account for this uncertainty.

It can also be used to represent situations where the underlying model might change (expand). Let
M be the original system andM′ be the expanded system (which is generated fromM by the addition
of a module say). If the objective of the system player inG(M) was to reach one of the states in some
subsetR of G(M) (reachability) then it is enough for her to play positionally. However, in the bigger
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graphG(M′) she not only has to reachRbut also has to stay within the states of the original graphG(M)
in order to achieve the same objective. This is the Muller objective which is a level higher.

Example 2. Consider the example shown in Figure 2. Player 0 nodes have been depicted as© and
Player 1 nodes as�. Suppose initially the system isM and the objective of Player 1 inG(M) is to reach
v3. Then the winning set is the set of all sequences inV = {v0,v1,v2,v3} in which v3 occurs in some
position. That is,Win= {u | ∃i, u(i) = v3}. This is a reachability condition where the reachability set
R= {v3}. To win, Player 0 can either playv1 or v2 from v0 and hence both these strategies are winning
strategies for her. Now suppose the system expands toM′ where, inG(M′), it is possible for Player
1 to go to the new nodev4 from v1. Also supposeWin remains the same. ThenWin is no longer a
reachability condition because then it would also include sequences involving the vertexv4. It is rather a
Muller condition where the Muller setF = {{v0,v1,v2,v3}}. However, note that Player 0 does not have
a winning strategy in this game. That is because to win, she has to visit vertexv1 infinitely often from
which Player 1 can force the play throughv4 infinitely often.

v0v1 v2

v3

G(M)

v0v1 v2

v3

v4

G(M′)

Figure 2: Jump from reachability to Muller

4.2 Linguistics

In [2] we demonstrated what seems to be a compelling similarity between human conversations and
Banach-Mazur games. We showed how various conversational objectives correspond to various levels of
the Borel hierarchy and how strategies of increasing complexity are called for to attain such objectives.
Our result shows that when Player 1 is unsure about what Player 2 might say, it might be wise for her to
strategise at a higher level to account for this uncertainty. She engages in a conversation, believing she
is equipped with a strategy for all the situations the other player might put her into when suddenly the
other player says something and she is left dumbfounded.

An example which still sticks in the memory of one of the authors after almost 20 years is the mem-
orable line by Senator Lloyd Bentsen in his Vice-Presidential debate with Dan Quale in 1984. Quayle’s
strategy in the debate was to counter the perception that he was too inexperienced to have the job, and
he did this by drawing similarities between his political career and former President John Kennedy’s.
Quayle seemed to be doing a good job in achieving his objective or winning condition, when Bentsen
interrupted and said:

Sir, I knew Jack Kennedy. I knew Jack Kennedy. And you, sir, are no Jack Kennedy.
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Quayle’s strategy at that point fell apart. He had no effective come back and by all accounts lost the
debate handily.

The way we model this as follows. Building on [2], we take eachmove in a game to be a discourse
which may be composed of several, even many clauses. Abstractly, we consider such discourses as
sequences of basic moves, which we will be the alphabet. In a situation of incomplete information about
the discourse moves, the set of moves (or the alphabet) of theBanach Mazur game being played by the
players is different for the two players. Player 0 has an alphabetA (say) while Player 1 has an alphabet
B such thatA( B. Player 0 may or may not be aware of this fact.

Thus, from the point of view of Player 0, if she is playing a Banach-Mazur game where she is unsure
of the set of moves available to Player 1, it is better for her to strategise in such a way so as to account
for this jump in the winning set. In other words, if Player 0’swinning condition is at a leveln (say) of
the hierarchy, she is better off strategising for leveln+1 given that she is unsure of Player 1’s moves and
given that a set at leveln might undergo a jump to leveln+1. Thus Quayle might have even won the
debate had he strategiesed at a higher level expecting the unexpected.
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