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Electric boolean games are compact representations of games where the players have qualitative ob-
jectives described by LTL formulae and have limited resources. We study the complexity of several
decision problems related to the analysis of rationality in electric boolean games with LTL objectives.
In particular, we report that the problem of deciding whether a profile is a Nash equilibrium in an
iterated electric boolean game is no harder than in iterated boolean games without resource bounds.
We show that it is a PSPACE-complete problem. As a corollary, we obtain that both rational elimi-
nation and rational construction of Nash equilibria by a supervising authority are PSPACE-complete
problems.

1 Introduction

We study multiagent systems populated with self-interested agents who interact repeatedly and are lim-
ited in their actions by a limited amount of energy. We investigate the computational aspects of deciding
whether a collective, non-cooperative, behaviour is rational.

Electric boolean games The formalism under consideration was introduced in the second part of [19]
but the decision problems were left open. They extend naturally the models of multi-player boolean
games [7], one-shot electric games [19], and iterated boolean games [17]. Boolean games have occupied
an important position in the recent formal AI literature. This line of work is an effort in formalisation of
game theoretical situations with boolean games (see previously cited work and e.g., [24, 15]).

Strategically, the players in Iterated Electric Boolean Games (Sec. 2) are intricately mixing qualitative
and quantitative considerations. Not only do they need to find a strategy that helps them satisfy their
qualitative objective over time, they need to do so, seeking to keep the interaction alive so as not to run
out of energy and fail to be able to perform a single action. This can be illustrated by the next simple
example.

Example 1. Isabella and Jules are two demanding kids. Isabella’s objective towards happiness is to be
granted a new comic book on a regular basis, and Jules’ objective is to be granted a new jigsaw puzzle
just as often. Their mom’s objective is naturally to have all requests eventually fulfilled. Whether they
ask for a new item or not, it costs zero to the kids either way. They never incur any costs. Buying a new
comic book however, will cost $4 to their mother, and getting a new jigsaw puzzle will cost her $6. Each
day, each item that is not bought will earn Mom $1. Isabella and Jules, being what they are, decide that
their behaviour to satisfy their objective is to ask a new item all the time. Fortunately, Mom is going to
cope with it by waiting 5 days, buying a new comic book and a new jigsaw puzzle on the 6-th day, and
repeating. It results in a collective behaviour which is rational as we shall explain later on.
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Boolean games as compact game representations Solving problems on an input only makes sense
when the input is reasonable. Possible worlds and relational semantics are commonly used to model mul-
tiagent systems. However, describing a complex system in terms of possible worlds is often unpractical.
In fact, the size of the description of a system as a transition system typically grows exponentially in the
number of variables in the system. For instance, model checkers for Alternating-time Temporal Logic
make use of Reactive Modules [2] or Interpreted Systems [21] to overcome the difficulty. The powers
of agents and coalitions are derived from the ability to control the value of some variables, thus bring-
ing about some change to the system. Boolean games [18, 8] are such compact representations which
in addition also integrate agents’ preferences. They recently have been widely used to study various
phenomena relevant to artificial intelligence [15, 6, 5, 16, 24].

Boolean Games are multi-player games where each player controls a set of propositional variables
and has a qualitative preference represented by a propositional formula over the set of variables in the
system. An action for a player is to assign a valuation to the propositional variables she controls. Iterated
Boolean Games [17] are a variant of Boolean games where the players repeat the interaction infinitely
often, and where their qualitative objectives are represented as LTL formulas over the set of variables in
the system.

Electric Boolean Games [19] are an extension of Boolean Games where agents are assigned an initial
energy endowment and taking actions has a cost, positive or negative. Already in [19], the authors define
an iterated version of Electric Boolean Games, but they do not investigate their strategic aspects.

Design of safe computer systems In theoretical computer science, and particularly in the design and
verification of computer systems, two-player zero-sum games have been extensively studied and used
with great success [3, 23]. Recently, researchers have brought their attention to introducing quantita-
tive restrictions for the players. For instance games where the system has to accomplish a task while
maintaining its resource level above zero was modelled using Mean payoff Parity games [13], or Energy
Parity Games [12]. This line of work was naturally extended by the study of the so-called multi-objective
games with actual implementation [9]. In a multi objective game, a protagonist player wants to achieve
a conjunction of goals, and the antagonist player wants to achieve the exact opposite. Nevertheless, the
pessimistic assumption that a system and its environment always have opposite interests is not always
realistic. Therefore, multiplayer games seem to be a more suitable formalism [10]. Indeed, the environ-
ment is considered to be another player with her own goal. In order to study those games, the solution
concept of choice was Nash equilibria as it is a sensible formalisation of rationality [11]. In an electric
boolean game, each agent has to partake in a cooperation that keeps the system alive. Namely, every
single player has to make sure that none of the other players is running out of resource. This approach
can be seen as an intermediate setting between non-cooperative and cooperative games. Actually, this
can also be seen as a new definition of multi-objective games in the setting of multi-player games; Every
player has a personal goal with no incentive to cooperate and second goal where it is best for her to
cooperate.

Engineering multiagent systems Some plays of a game may appear better than others by some su-
pervising authority. Some strategic equilibria in a game may be undesirable, while play which are not
equilibria might be seen as desirable. A supervising authority could have the power to redistribute the
resources available in the system so as to achieve better equilibria from their point of view. Dealing
with resources such as energy, it then becomes interesting to study how much different the game would
be, were the endowments of the players be different. As in [19], it is very natural to consider resource
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redistributions that allow one to eliminate ‘bad’ equilibria and/or construct ‘good’ equilibria.
Apart from [24] and [19], looking into ways of engineering a game’s outcome has also been consid-

ered in [1]. The authors propose a framework where the winning conditions can be modified at a cost,
thus changing the strategic equilibria of the game.

Contributions Our main result is the PSPACE membership for rational verification i.e., given a strat-
egy profile decide whether it is a Nash equilibrium (Sec. 3). Note that the computational complexity
in the electric case matches the one in the non-electric case. Our proof differs from the one in [17] for
the non-electric case. Indeed, a straightforward adaptation of their proof would fail for it relies on a
translation of the input into a well chosen LTL formula. In the electric case, one has to pay particular
attention to the electric constraints (c.f., Ex. 7). This is a quantitative ingredient that is absent from LTL.
We overcome this difficulty as follows. We construct a one-player game played on a weighted graph.
This allows us to encode the behaviour of the possible deviator together with the electric constraints in
an existing formalism, viz., Energy Büchi games [14]. We prove that a rational deviation exists iff this
one-player game contains a winning strategy. The size of the constructed one-player game may be expo-
nential in the size of the input. However, on-the-fly automata-theoretic techniques allow one to maintain
a PSPACE upper-bound for the problem of finding a winning strategy. Finally, to decide in PSPACE
whether a strategy profile is a Nash equilibrium, it suffices to guess a deviator and check whether she has
a winning strategy in her one-player game.

Solving rational verification facilitates the access to more problems. We show (Sec. 4) that the
problems of resource redistribution come out as corollaries. We leave open the more challenging problem
of rational synthesis for which rational verification is a stepping stone; Rational verification is to model
checking what rational synthesis is to model synthesis.

A full version is available in [22].

2 Iterated Electric Boolean Games

Definition 2 (Electric Boolean Games). An electric boolean game (EBG for short) is a tuple B =
(N,A,Φ,c,e) where: N = {1, · · · ,n} is a finite set of players. A = ∪n

i=1Ai with Ai are the atoms con-
trolled by player i and (A1, · · · ,An) forms a partition of A. Φ = {φ1, · · · ,φn} where φi is the objective of
player i. c : A×{⊥,>}→ Z is a cost function. e : N→ N is an endowment function.

We denote T the set {⊥,>} and for any set E, T E the set of mappings from E to T , the set of all
the finite sequences over E is E∗ , and Eω is the set of all the infinite sequences over E.

Let X be a set of atomic propositions, a valuation of X is a total function v ∈ T X . The cost of a
valuation v is given by cst(v) = ∑p∈X c(p,v(p)). An action of player i is to assign a valuation to each
variable in the set Ai of the atoms she controls.

We consider the setting of concurrent and infinitely repeated electric boolean games, where players
choose their actions simultaneously and for an infinite duration. We consider objectives in Φ which
are specified by LTL formulas over the atoms of A ([4, Chap. 5]). Formulas of LTL are defined by the
following grammar: φ ::= p | φ ∧φ | ¬φ | Xφ | φUφ where p ∈ A. The other propositional operands and
temporal operators (F, G) can be defined as usual.

We need to introduce some useful terminology to talk about repeated games and define the semantics
of LTL formulas over

(
T A
)ω .

A history in a repeated electric boolean game is a word in
(
T A
)∗. That is, a finite sequence of

valuations for the set A of boolean variables. A play is an infinite sequence in
(
T A
)ω . Given a play ρ ,
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we note ρ[t] the t-th valuation function in ρ . We note ρ[t . . .] the suffix of ρ starting at ρ[t], and ρ[. . . t]
the prefix of ρ ending at ρ[t] which is a history of size t +1.

LTL objectives are evaluated over a play ρ of the game. For p ∈ A, and for φ and ψ two LTL
formulas:

ρ |= p iff ρ[0](p) => ρ |= ¬φ iff ρ 6|= φ

ρ |= Xφ iff ρ[1 . . .] |= φ ρ |= φ ∧ψ iff ρ |= φ and ρ |= ψ

ρ |= φUψ iff ∃i≥ 0, ρ[i . . .] |= ψ and ∀0≤ j < i, ρ[ j . . .] |= φ

The formula Xφ holds true on ρ if φ is true next. The formula φUψ holds true on ρ if φ is true at
least until ψ is true.

In order to play, the players choose their actions according to a strategy. A strategy for player i is
a mapping that takes as input a history and outputs a valuation for each atom controlled by player i.
Formally a strategy σi for player i is a mapping σi :

(
T A
)∗→ T Ai . We note Σi the set of strategies of

player i.
A strategy profile σ is a vector (σ1, · · · ,σn) specifying one strategy σi for each player i ∈ N. Given

a strategy profile σ = (σ1, · · · ,σn) and a strategy τi for player i, we note (τi,σ−i) the strategy profile
(σ1, · · · ,τi, · · · ,σn). Each strategy profile induces a play, and since we consider pure strategies, there
is one and only one such play consistent with σ . We denote 〈σ〉 the play induced by the profile σ . It
is defined inductively as follows: if p ∈ Ai then 〈σ〉[0](p) = σi(ε)(p), and for t ≥ 0, 〈σ〉[t + 1](p) =
σi(〈σ〉[. . . t])(p).

The endowment e(i) of each player i specified in the definition of an electric boolean game, represents
the initial resources of the player. While playing the game following a strategy, this endowment grows
as the player takes an action of negative cost and shrinks as the player takes an action of positive cost.

We will say that the strategy profile σ is feasible in an iterated EBG if it does not over-consume the
endowed resources, in the sense that, every player’s strategy σi can be infinitely executed without ever
causing the player’s compound endowment to go under 0. We make it more formal.

Consider an EBG (N,A,Φ,c,e) and a strategy profile σ . The compound endowment of player i at the
t-th step of the play 〈σ〉 is defined with Eσ

i (0) = e(i), and

Eσ
i (t +1) = Eσ

i (t)− cst(σi(〈σ〉[. . . t]))

Thus, the strategy profile σ is feasible iff for each player i ∈ N, and for all t ≥ 0 we have Eσ
i (t)≥ 0. In

the strategy profile σ , we say that τi is a feasible deviation for player i iff (τi,σ−i) is a feasible strategy
profile.

Once an objective φi and a strategy profile σ are fixed, the payoff of σ for player i is defined as
follows:

Payoff i(σ) =

{
1 if σ is feasible, and 〈σ〉 |= φi ,

0 otherwise.

In the strategy profile σ , we say that τi is a rational deviation for player i iff Payoff i((τi,σ−i)) >
Payoff i(σ).

Example 3. We formalise the game of Example 1 and model a strategy for the three participants. Let
Bc,e be an EBG (N,A,Φ,c,e) where N = {I,J,M}, AI = {rI}, AI = {rJ}, AM = {gI,gJ}. Evaluated to>,
the atoms rI , rJ , gI , gJ , respectively represent the facts that Isabella asks for a comic book, Jules asks for a
jigsaw puzzle, Mom buys a comic book, and Mom buys a jigsaw puzzle. The costs are given by c(rI,>) =
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c(rI,⊥) = c(rJ,>) = c(rJ,⊥) = 0, and c(gI,⊥) = c(gJ,⊥) = −1, c(gI,>) = 4, and c(gJ,>) = 6. We
suppose that e(I) = e(J) = e(M) = 0. The objectives are given as ΦM = G((rI→ F(gI))∧(rJ→ F(gJ))),
ΦI = GF(gI), and ΦJ = GF(gJ). The strategies of the kids continuously asking a new item and of the
Mom buying one comic book and one jigsaw puzzle every 6 days result in a strategy profile whose payoff
is 1 for everyone.

0

rI

(a) Isabella’s strategy.

0

rJ

(b) Jules’ strategy.

0

(¬gI,¬gJ)

1

(¬gI,¬gJ)

2

(¬gI,¬gJ)

3

(¬gI,¬gJ)

4

(¬gI,¬gJ)

5

(gI,gJ)

(c) Mom’s strategy.
Figure 1: A finite memory profile
seen as finite graphs.

The strategies suggested at the end of Example 3 are depicted
in Figure 1. They are instances of what we call finite memory
strategies. We formalise the class of finite memory strategies next.
Definition 4 (Finite memory strategy). Let i ∈ N be a player, a
finite memory strategy σi for player i consists of a finite set M
called the memory, an initial memory state min in M, a mapping
σU

i : M×T A → M called the update function, and a mapping
σC

i : M→T A called the choice function.
We say that (σ1, · · · ,σn) is a finite memory profile if for every

i ∈ N, σi is a finite memory strategy. For instance, in the strat-
egy of Figure 1c, the set M is {0,1,2,3,4,5}, the initial memory
state is 0, the update function is the edge relation and the choice
function is illustrated by labels next to vertices1.

3 Nash Equilibria in Electric Boolean Games

In [19], the authors introduced iterated electric boolean games but
did not study their strategic aspects. Hence no solution concept
was defined. However, the concept of Nash equilibria is one of
most natural concept in multiplayer games.
Definition 5 (Nash equilibrium). Let Bc,e be an EBG and σ be
a strategy profile. We say that σ is a Nash equilibrium iff the
following holds:

1. ∀t ≥ 0, ∀i ∈ N, Eσ
i (t)≥ 0,

2. ∀i ∈ N, ∀τi ∈ Σi ,Payoff i((τi,σ−i))≤ Payoff i(σ).
Using our terminology, σ is a Nash equilibrium in Bc,e if and only if it is feasible and there is no

rational deviation for any player. We note NE(Bc,e) the set of Nash equilibria in the game Bc,e. For
instance, the strategy profile depicted in Figure 1 is a Nash equilibrium in the game of Examples 1 and 3
Definition 6 (Nash Equilibrium Membership). Let Bc,e be an electric boolean game, and σ be a fi-
nite memory strategy profile. The Nash Equilibrium Membership (NEM) problem asks whether σ ∈
NE(Bc,e).

In order to build intuition regarding deviations, consider the following example
Example 7. Let Bc,e be the following two-player game,

A1 = {p}, A2 = {q} ,

φ1 ≡ G((q→ Xp)∧ (¬q→ X¬p)) , φ2 ≡ Gq ,

c(p,>) = 1, c(p,⊥) =−1, c(q,>) = c(q,⊥) = 0, e(1) = e(2) = 0 .

1We omit the labels on the edges to highlight that for each player the update function depends only on the current memory
state.
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Consider the following strategy σ1 for player 1 that assigns > to p iff > was assigned to q the
previous round. We also consider the strategy σ2 for player 2 that always assigns ⊥ to q.

We argue that the profile (σ1,σ2) is a Nash equilibrium. Clearly (σ1,σ2) is feasible. Let us show
that player 2 does not have a rational deviation. In order to increase her payoff, player 2 has to always
assign > to q, call this new strategy τ . However, the deviation τ is not feasible. Indeed, player 1 is still
following σ1, we obtain

σ1 (ε)(p) =⊥ with E
(σ1,τ)
1 (1) = 1 ,

σ1 ({(p,⊥),(q,>)})(p) => with E
(σ1,τ)
1 (2) = 0 ,

σ1 ({(p,⊥),(q,>)}{(p,>),(q,>)})(p) => with E
(σ1,τ)
1 (3) =−1 ,

showing that the compound endowment drops below 0 after the third round. The plays induced by the
two profiles are depicted in Figure 2.

¬q

¬p

q
p

¬q

¬p

q
p

¬q

¬p

q
p

¬q

¬p

q
p

¬q

¬p

q
p

¬q

¬p

q
p

¬q

¬p

q
p

E(σ1 ,σ2) = (0,0)E(σ1 ,τ) = (0,0)

E=(1,0) E=(1,0)

E=(2,0)

E=(3,0)E=(−1,0)

E=(0,0)

(σ1,σ2)(σ1,τ)

Figure 2: plays induced by the profiles
(σ1,σ2) and (σ1,τ).

This example shows that in order to perform a rational
deviation, a player has to check the endowment of all the
players and not only her own. We are now ready to state the
main theorem of this paper.

Theorem 8. NEM is a PSPACE-complete problem. It is
PSPACE-hard even when there is only one player.

To prove the theorem, we exhibit two constructions,
c.f. Construction 1, and Construction 2. The former allows
one to check the feasibility of a profile, while the latter al-
lows one to check the existence of a rational deviation.

In Section 3.1, and Section 3.2 we let Bc,e be an EBG,
and σ be a finite memory profile. Let also (Mi,min

i ,σ
U
i ,σ

C
i )

be the finite memory strategy of player i in the profile σ .

3.1 Checking feasibility in PSPACE

We say that G is a d-weighted graph if G is associated with a weight function w : E → Zd . For a vertex
u and a vector w0 in Nd , a subset C of V is a nonnegative reachable cycle from u if the following holds.
(i) There exists v in C = {u j | l ≤ j ≤ k}, and a path u0, · · · ,ul, · · ·uk such that u0 = u, ul = v, and uk = v.
(ii) For all 0 ≤ t ≤ k−1 we have w0−∑

t
j=0 w(u j,u j+1) ≥ {0}d , and ∑

k−1
j=l w(u j,u j+1) ≤ {0}d . Positive

cycles are defined as expected.
In order to prove Proposition 10 we use the results of [20]. In particular, given a d-weighted graph

G, we can detect a nonnegative reachable cycle in polynomial time in the size of G.2

Our approach consists in constructing a n-weighted graph G[σ ] from the finite memory profile σ .
This is achieved by Construction 1. We show that G[σ ] contains such a cycle iff σ is feasible.

We start first by giving the details of how G[σ ] is obtained.

Construction 1. G[σ ] consists of a finite set of vertices V , an edge relation E ⊆ V ×V , and weight
function w : E→ Zn. G[σ ] is obtained as follows:

2The result of [20] is to find 0-cycles. To find nonnegative cycles, it suffices to transform a weighted graph G into G′ by
adding a reflexive edge of weight −1 to every vertice. This is a polynomial transformation. G has a nonnegative cycle iff G′

has a zero-cycle.
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– The vertices are V = ∏i∈N Mi.

– For v ∈ V we denote vi the i-th component of v. Let (u,v) ∈ V ×V be a couple of vertices, (u,v)
is an edge in E if for each i ∈ N we have σU

i (ui,X) = vi where X =
⋃

j∈N σC
j (u j) is the complete

valuation over A prescribed by the profile σ .

– Finally, for (u,v) ∈ E,

w(u,v) =
(

cst(σC
1 (u1)), · · · ,cst(σC

n (un))
)

.

The following lemma states the key property of Construction 1.
Lemma 9. The finite memory strategy profile σ is feasible iff G[σ ] has a nonnegative reachable cycle
from u0 = (min

1 , . . . ,m
in
n ) with initial credit e.

A consequence of the above lemma is
Proposition 10. We can check in PSPACE whether σ is feasible.

3.2 Checking the existence of rational deviation in PSPACE

Now that we can check whether a profile is feasible, we need to show how to check the existence of
rational deviation for a player.

We recall that Bc,e, σ , and σi = (Mi,min
i ,σ

U
i ,σ

C
i ) are still fixed.

We need to introduce some technical material. A Büchi automaton A is a tuple A = (Q,q0,A,∆,F)
where the Q is a finite set of states, q0 is an initial state, A is a finite alphabet, ∆ is relation in Q×A×Q,
and F is a subset of states called accepting. We say that an infinite word w is recognised by A if there
exists an infinite path ρ in A labelled by w such that ρ visits states in F infinitely many times. We also
say that ρ is a run induced by w on A . We define LA as the set of words recognised by A . The reason
we need Büchi automata is their strong link with LTL. Indeed, any LTL formula φ , can be associated to
a Büchi automaton accepting all its models. The following theorem formalises this idea.
Theorem 11. Let φ be a LTL formula, there exists a Büchi automaton Aφ accepting the language Lφ

consisting of all the models of φ .
The other formalism is one-player games. Let G = (V,E,W ) be a graph with a set of vertices V , a set

of edges E ⊆ V ×V , and winning objective W ⊆ V ω . Strategies for these games are formalised by the
following mapping V ∗V →V . Let σ be a strategy for the player, and u0 a vertex in V . The play ρ starting
in u0 and consistent with σ is obtained as follows: ρ[0] = u0, and for all i > 0, σ(ρ[. . . i]). The player
wins if the play ρ is in W . A strategy σ is winning for the player from u0 if the play consistent with
σ is in W . Finite memory strategies can be defined in a similar fashion as for EBGs. In this paper, we
use the so-called multi-objective games. Those are games where the player has to fulfil a combination of
objectives at once.

Büchi objectives. We choose a set F ⊆V of accepting vertices. The winning objective W is (V ∗F)ω .
We denote this winning objective Buchi.

Energy objectives. Let d > 0 be a natural, w0 ∈Nd be an initial vector, and w : E→Zd be an energy
function. The winning objective is the set {u0u1 · · · ∈ V ω | ∀k ≥ i, w0−∑

k
i=0 w(ui,ui+1) ≥ {0}d}. We

denote this winning objective Energy.
The winning objective we are interested in is EnergyBuchi defined by Buchi∩Energy.
Roughly speaking, given a profile σ and a player i, we construct a one-player EnergyBuchi game

G[σ−i]. The purpose of this game is to contain a winning strategy iff a rational deviation exists. Moreover,
the winning strategy in G[σ−i] will be the deviation that player i uses to increase her payoff. Let us explain
how to construct the one-player game G[σ−i].
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Construction 2. We note V the set of vertices in G[σ−i], E the edge relation defined over V ×T A×V ,
and the weight function w is a mapping from V ×T A→ Zn.

Let Ai = (Q,T Aφi ,q0,∆,F) be an automaton accepting the language Lφi .
The graph G[σ−i] is obtained as follows:

– The vertices are V = Q×∏ j∈N\{i}M j.

– Let v be a vertex in V , for j ∈ N \{i},v j refers to the j-th component of v and vi is the projection
over Q. For (u,v) ∈V ×V , and for every valuation X ∈T A we have (u,X ,v) in E if

i) there exists Y ∈T Aφi such that (ui,Y,vi) ∈ ∆ and Y ⊆ X,
ii) the set Z = Y ∪

⋃
j∈N\{i}σC

j (u j)⊆ X and is consistent over Aφi i.e.

∀p ∈ Aφi , (p,>) ∈ Z =⇒ (p,⊥) 6∈ Z ,

iii) for each j ∈ N \{i} we have σU
j (u j,X) = v j.

– The weight function is given by cst(σC
j (u j)) for every dimension j∈N\{i} and by ∑p∈Ai c(p,X(p))

for dimension i.

– Finally, a vertex v ∈V is accepting if vi ∈ F.

The intuition behind this construction is as follows. If player i can deviate rationally, then necessarily
the new profile satisfies φi. This is why we use automaton Aφi whose language is exactly those words
that satisfy φi. Also, since we consider only unilateral deviations, the actions leading to the satisfaction
of φi have to be compatible with the choices of other players, that is σ−i. This is ensured by ii). Item iii)
is a synchronisation between the action of the other player and the deviation of player i.

Thanks to the following lemma, we show that Construction 2 meets the desired intuition.

Lemma 12. Let σ be a finite memory profile, and i be a player such that Payoff i(σ) = 0 then, i has a
rational deviation iff there exists a winning strategy in G[σ−i].

As a consequence we obtain the core property for the existence of our PSPACE algorithm.

Proposition 13. Let σ be a finite memory profile, and i be a player such that Payoff i(σ) = 0. We can
check whether i has a rational deviation in PSPACE.

3.3 Proof of Theorem 8

We recall Theorem 8

Theorem 8. NEM is a PSPACE-complete problem. It is PSPACE-hard even when there is only one
player.

Proof. If the profile is not feasible, return “no”. Otherwise, guess a possible deviator i (among the
players with null payoff) and check whether she has a winning strategy in G[σ−i]. Return “no” iff she has
a winning strategy. Lemma 9 and Lemma 12 justify the correctness. Proposition 10 and Proposition 13
justify the upper-bound complexity.

To establish the hardness, one needs to notice that any BG is an EBG with endowment {0}N and
c : A×T → {0}. Thus the PSPACE lower bound established in [17, Prop. 2] holds for EBGs with
LTL specifications. Since the proof is a reduction from LTL satisfiability to one-player iterated boolean
games, NEM is hard even when there is only one player.
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4 Resource redistributions

Having characterised the complexity of the problem of deciding whether a strategy profile of an iter-
ated EBG is a Nash equilibrium, we will see how we can easily tackle derived decision problems for
engineering Electric Boolean Games.

A resource redistribution for an EBG B = (N,Σ,Φ,c,e) is an endowment function e′ : N→ N such
that

∑
i∈N

e(i) = ∑
i∈N

e′(i).

Remark 14. Let an EBG B = (N,Σ,Φ,c,e). There is finite number of resource redistributions for B.

In [19], the authors studied the problems of determining whether there is a resource redistribution
such that a strategy profile is a Nash Equilibrium (rational construction), and of determining whether
there is a resource redistribution such that a strategy profile is not a Nash Equilibrium (rational elimina-
tion). For the iterated setting we propose the following decision problems.

Definition 15 (Construction and elimination). Let B be an electric boolean game, and σ be a finite
memory strategy profile. The Rational Construction (RC) problem asks whether there is a resource
redistribution such that σ is a Nash equilibrium.The Rational Elimination (RE) problem asks whether
there is a resource redistribution such that σ is not a Nash equilibrium.

Theorem 16. The RC problem and the RE problem are PSPACE-complete.

The non-deterministic procedures outlined in the proof of Theorem 16 are sufficient to characterise
an optimal upper-bound of the problems. In the case of RE, there exists a more practical deterministic
algorithm. Indeed, the result of [19, Corr. 4] carries over in the iterated setting.

Proposition 17. Let an endowment e be given. The endowment ei is the resource redistribution of e
such that all resources are allocated to player i. The strategy profile σ is eliminable in Bc,e iff for some
player i, σ 6∈ NE(Bc,ei

).

This hints at a “more practical” algorithm to solve RE: for each player i, test whether σ 6∈NE(Bc,ei
).

Return “yes” as soon as a test succeeds. Return “no” when all |N| tests failed.

5 Conclusion

In this paper we presented a preliminary result on the Electric Boolean Games introduced in [19]. We
considered the iterated setting where the objectives are specified as LTL formulas. We showed the
PSPACE-completness of Nash equilibrium membership, thus matching the complexity bounds of [17]
for the non quantitative setting of iterated Boolean Games. In order to establish this result, we extended
existing techniques for plain LTL to an extension of LTL with electric constraints. This result is used to
characterise the complexity of two problems of resource redistribution that can serve at social-welfare
engineering.

As future research direction, we plan to investigate the Nash equilibrium non-emptyness and Nash
equilibrium synthesis. We believe that Construction 2 can be extended in order to construct a concurrent
game with the property that it contains a pure Nash equilibrium iff the electric boolean game does. To the
best of our knowledge, the obtained class of concurrent games is rather novel and has yet to be studied.
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