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Concurrently accessing shared data without locking is usually a subject to race conditions resulting
in inconsistent or corrupted data. However, there are programs operating correctly without locking
by exploiting the atomicity of certain operations on a specific hardware. In this paper, we describe
how to precisely analyze lockless microcontroller C programs with interrupts by taking the hardware
architecture into account. We evaluate this technique in an octagon-based value range analysis using
access-based localization to increase efficiency.

1 Introduction

Static analysis based on abstract interpretation [7] is a formal method that found its way into practice
by several commercial code analysis tools. Proving the absence of run-time errors in microcontroller
programs is of particular importance as microcontrollers are often deployed in safety-critical systems.
However, C code analyzers usually do not cope with C extensions and hardware-specific control prevalent
in microcontroller programs. This control is not only necessary for data input/output but also needed to
implement interrupt service routines (ISRs), which allows some form of concurrency and can be used for
asynchronous hardware communication and periodic tasks. Since the control functions of the hardware
are often exposed through normal memory accesses, a sound analysis of microcontroller programs has
to reflect these registers in its memory model. On the Atmega16 [2], for example, it is possible to
enable/disable interrupts by a write to the SREG register which is located at the memory address 0x5F.

Beside these peculiarities in programming microcontrollers, software engineers often rely on additional
assumptions outside the scope of standard C semantics on how the compiler will translate a program and
on how the microcontroller behaves w. r. t. the atomicity of some operations. For example, they might
omit the locking of shared data because an 8 bit read/write is always executed atomically (such algorithms
are typically called lockless [10] or lockfree). This saves program space on the controller as well as
execution time but makes a precise analysis on C code level particularly challenging. In this paper, we
deal with atomicity assumptions when analyzing interrupts. We exploit the characteristics of interrupts
w. r. t. concurrency to design an efficient fixed-point computation.

1.1 Concurrency Induced by Interrupts

Compared to concurrency implemented by threads concurrency induced by interrupts exhibits some
essential differences [17]. While threads can preempt each other, interrupts can preempt the main program
but the main program cannot interrupt an ISR. An interrupt can only trigger if both the specific interrupt is
enabled and interrupts are globally enabled. Locks to guarantee atomic sections that are not interrupted
are, therefore, implemented by disabling interrupts globally. By default interrupts are disabled in ISRs
such that an ISR runs to completion. Explicitly enabling interrupts in ISRs is allowed but due to the
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limited stack size an error-prone approach. In this paper, we concentrate on programs without such
nested interrupts. Considering all these specifics of interrupts we can design a more precise analysis of
microcontroller C code.

1.2 Analysis Framework

We consider interrupts in the context of a data flow analysis evaluating pointers and value ranges based
on the octagon abstract domain [13], in which the relations between variables (memory locations) x, y
are expressed as inequalities ±x±y≤ c, where c is a constant. To consider hardware dependencies, our
memory model is augmented with hardware-specific knowledge [4] so as to capture, e. g., the setting
or resetting of interrupt enable bits. In this paper, we show how to extend this analysis to interrupts by
including hardware specifics and taking the C semantics into account.

1.3 Contribution and Outline

The contribution of this paper is twofold: (a) We develop a set of rules which lockless C programs
must follow to behave predictable under different compilers. (b) We present a combined analysis of
value ranges, pointers and interrupts for lockless microcontroller C programs. This analysis combines
ramifications of the C memory model with understanding of the underlying hardware to allow a sound
representation of lockless code.

Our paper is laid out as follows. First, Sect. 2 introduces our technique exemplified on a lockless
UART driver. Then, Sect. 3 details the notion of atomicity we implemented to analyze such programs
on a C and hardware-specific level. Our analysis is described in Sect. 4 and is evaluated in Sect. 5. The
papers ends with a survey of related work in Sect. 6 and a concluding discussion in Sect. 7.

2 Motivating Example

In this section, we introduce a UART driver that operates without locking shared data by exploiting the
atomicity of certain operations on the specific hardware architecture. We discuss different approaches to
analyze such a program.

2.1 Lockless UART driver

Consider the source code excerpt in Fig. 1 implementing the receiver of a UART (Universal Asynchronous
Receiver Transmitter) driver that is supposed to run on an AVR microcontroller1. The driver uses a FIFO
rx_buff to buffer incoming data software-based in addition to the hardware-implemented buffer. An
integer variable rx_in (rx_out) is used as an index to denote the position where the next byte is to be
stored (where the next byte is to be read). The function getNextPos is called to increment the index by
one or to reset it to 0 when the index is out of bounds. Reading a byte out of the hardware register called
UDR and storing it in the FIFO buffer is performed by ISR, an interrupt service routine that is triggered by
hardware. The function getByte returns the data located at position rx_out. We assume that the global
interrupt enable bit is set initially and remains set all the time, while the specific interrupt used by the
UART is disabled when the buffer is full (line 36) and enabled when there is at least one free position
(line 27). Hence, the functions getByte and isEmpty might be interrupted anywhere in between two

1This is a slightly modified excerpt of the code found here http://www.mikrocontroller.net/topic/101472#882716
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1 #define vu8(x) (*( volatile uint8*)&(x))
2
3 uint8 rx_buff[RX0_SIZE ];
4 uint8 rx_in;
5 uint8 rx_out;
6
7
8 uint8 getNextPos(uint8 pos , size){
9 pos ++;

10 if (pos >= size){
11 return 0;
12 }
13 return pos;
14 }
15
16
17 uint8 isEmpty (){
18 return rx_out == vu8(rx_in);
19 }
20
21

22 uint8 getByte (){
23 uint8 data;
24 while( isEmpty () );
25 data = rx_buff[rx_out ]; // get byte
26 rx_out = getNextPos(rx_out , RX0_SIZE);
27 URX0_IEN = 1; // enable RX interrupt
28 return data;
29 }
30
31
32 ISR( USART0_RX_vect ){
33 uint8 i = rx_in;
34 i = getNextPos(i,RX0_SIZE);
35 if( i == rx_out ){ // buffer overflow
36 URX0_IEN = 0; // disable RX interrupt
37 return;
38 }
39 rx_buff[rx_in] = UDR;
40 rx_in = i;
41 }

Figure 1: UART driver

operations. By way of contrast, the ISR always runs to completion due to the automatic global interrupt
disable implemented by hardware. As both the main program and the ISR access rx_out and rx_in and
one of the accesses is a write access, these variables could be subject to a data race. However, as reading
and writing an 8-bit variable on an 8-bit processor architecture is atomic, locking is unnecessary in this
case.

2.2 Analyzing Interrupts

A typical question verified by static analyses is that of all array accesses being within the bounds of the
array. This requires a value range analysis of variables to determine possible values for variables used as
indices to access an array. Interrupts have to be considered during the analysis in two ways: First, as calls
to ISRs are not visible in the code, ISR code has to be added to the control flow and taken into account
appropriately. For example, this can be done by nondeterministic calls to the ISR between two control
flow nodes. Second, we need to deal with shared variable accesses, i. e., an access to a variable in the
main program that might be performed incompletely before an interrupt is triggered. As this may result in
corrupted data, care has to be taken for such race conditions to design a sound value range analysis. Next,
we discuss the assumptions made during analysis, first in case the analysis is designed for an arbitrary
hardware platform and second in case of hardware specifics that can be used to refine the analysis.

2.2.1 Hardware Agnostic Approach

Static analyzers for C code usually do not consider any hardware specifics such as interrupts. To analyze
microcontroller C programs using generic static analyzers, the user is advised to annotate the program
to provide the analyzer with further constraints. Without an appropriate annotation, for example, the
analyzer will take the ISR function as dead code since it cannot see the implicit calls by the hardware.
Further annotations are required to deal correctly with atomic sections that can be defined by toggling the
interrupt bit in some microcontroller dependent absolute address. The analysis of ISRs is integrated into
another analysis by interleaving all expressions outside of atomic sections with non-deterministic calls to
ISRs. If the analysis encounters an expression in the main program that accesses a variable that is also
accessed by an ISR and one of the accesses is a write access then there is a race condition. Therefore, to
be sound, a value range analysis unaware of the hardware architecture has to assume that this variable
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may take any value within its type bounds. We find such race conditions in the UART example in Fig. 1:

• Read access to rx_in in line 18, concurrent write access to rx_in in line 40

• Write access to rx_out in line 26, concurrent read access to rx_out in line 35

Unfortunately, assuming type bounds for these variables that are used as an index to the buffer rx_buffer
results in a presumed array out of bounds access which is spurious. In the next section we discuss how
considering a hardware-specific memory model can refine the analysis and avoid this false alarm.

2.2.2 Considering Hardware Specifics

Programming microcontrollers is intrinsically tied to dealing with the specific hardware. Taking hardware
specifics into account as well when designing static analyses avoids tedious user annotations while
increasing precision of analyses. In a hardware-specific memory model, an access to an absolute address
(register) is linked to the semantics of this register [4]. This way, interrupts can be identified and added
automatically to the control flow wherever they may occur. We delay the discussion of reducing the
number of ISR analyses further to Sect. 4. With respect to the shared read/write access mentioned above,
hardware considerations enhance the precision of the analysis significantly. Knowing that the target
platform is an 8-bit architecture, we conclude that reading or writing to 8-bit variables will always be
performed atomically. Thus, rx_in and rx_out always have consistent values. To make sure that all
possible values are considered when reading rx_in, it is sufficient to compute a fixed-point over the ISR
in advance and propagate it non-deterministically. Similarly, before writing to rx_out, the analysis of the
ISR takes account of the old abstract value of rx_out while the analysis of the ISR after the write access
will consider its new abstract value. Note that it is not the C expression that we assume to be atomic, but
the eventual load or store instruction executed by the processor. In the following section, we will detail
this notion of atomicity.

3 Requirements for Lockless Code

Precisely analyzing shared data in concurrent programs on a high abstraction level such as C code is
usually not possible as we are unaware how a compiler translates a C code expression into processor
instructions. On the other hand, stable concurrent programs should not depend on a certain compiler
version or compilation options. In this section, we try to infer basic rules under which lockless C programs
can operate in a well-defined manner. We then enrich these rules by certain hardware specifics: In the
last section, e. g., we argued that writing or reading to an 8-bit variable cannot be interrupted on an 8-bit
hardware architecture, which gives rise to a basic form of atomic access.

With the rules derived in this section, we achieve two goals: First, we can detect program errors
(which might manifest themselves depending on compiler specifics) by checking whether a program
follows these rules. Second, we can formulate the foundations of a sound and precise analysis for each
program which follows these rules.

3.1 Atomicity at the Level of C

In the absence of locks, we assume that all data shared between the main function and the ISRs is
performed using volatile accesses only (i. e., either by casting the access to a volatile data type or declaring
the variable volatile in the first place). Accessing non-volatile shared data is prone to failure and thus
reported, since an optimizing compiler might eliminate seemingly unnecessary reloads and dead stores.
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...

Translation of one C expression

Figure 2: Possible Control Flow on Instruction Level

In the following, we call a C expression competing if it contains an access to volatile data. The term
competing stresses that competing expressions should be evaluated in a well-defined order.

C compilers are allowed to schedule loads, stores and calculations of expressions in arbitrary order
as long as this does not alter the visible behavior of the program (as-if rule). In the presence of volatile
accesses, however, at least all volatile objects must be stable at sequence points [11, Sect. 5.1.2.3]. To
illustrate this, consider the shared variables a, b and the statement a = ++b; which writes twice to shared
data between sequence points. Let us further assume that we have the precondition a ≤ b. Although
we know that a and b must be stable after this statement, the assignment operator forms no sequence
point, and a compiler might thus translate this expression into one of the following two pseudo-assembly
snippets:

1 LOAD temp , b
2 INC temp
3 STORE b, temp
4 STORE a, temp

1 LOAD temp , b
2 INC temp
3 STORE a, temp
4 STORE b, temp

In the right snippet, a is stored before b. An ISR invoked between line 3 and line 4 might thus observe
that a> b, while a≤ b is an invariant in the left snippet. Hence, we want to detect and warn about such
statements.

Now, consider an arbitrary C expression between two sequence points. Fig. 2 shows the control
flow graph for such an expression assuming that the compiler translated it into a certain sequence of
instructions (white nodes), where each instruction might be followed by one or more calls to an ISR (gray
nodes). Between the two sequence points, we do not know how the compiler translated the expression.
This gives rise to two requirements for writing stable lockless code:

1. The effect of the execution of an ISR between two sequence points must be covered by executing
the ISR at the sequence point before or after the expression.

2. The effect of the execution of an ISR must not depend on the exact instructions generated by the
compiler.

The first requirement stems from the fact that the analysis – as well as the programmer – can predict the
program state only at sequence points, and thus, the ISR behavior should only depend on this predictable
state. The second requirement can be regarded as a corollary of the first: If a compiler creates a different
set of instructions (because of, e. g., different options), we still want requirement 1 to hold. We call
expressions that fulfill these requirements well-formed.

Observe that the well-formedness of expressions depends on two distinct properties: How much
freedom the compiler has to translate an expression (especially scheduling loads and stores) and which
atomic primitives are provided by the underlying hardware. We will defer the discussion of the latter to
Sect. 3.2 and for now assume that all loads and stores of shared variables cannot be interrupted by the
ISRs. We will first formally define well-formed expressions inductively:
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1. A constant expression expr ::= const and a variable expression expr ::= v is well-formed.

2. A unary expression expr ::=	expr1 with 	 ∈ {−, !,˜} is well-formed iff expr1 is well-formed.

3. Let expr ::= expr0�expr1 be a binary expression, �∈ {+,−,/,∗,%,�,�, |,&, ˆ,<,<=,>,>=,
==, ! =}. Then, expr is well-formed iff (a) expr0 and expr1 are well-formed and (b) at most one of
expr0 and expr1 is competing.

4. Let expr ::= expr0 ./ expr1 be a comma or logic expression, ./ ∈ {||,&&,“,”}. Since ./ forms a
sequence point, expr is well-formed iff expr0 and expr1 are well-formed.

5. Let expr ::= fun(expr0, . . . ,exprn) be a function call. Function calls are sequence points, yet the or-
der in which the arguments are evaluated is not defined. Thus, expr is well-formed if expr0, . . . ,exprn
are well-formed and at most one expri is competing. Additionally, expr is competing iff the body of
fun accesses shared data.

6. An assignment expr ::= lvalue = expr1 is well-formed iff (a) lvalue is not competing and expr1 is
well-formed or (b) expr1 is well-formed and does not write shared data (this does not span into
functions which are being called).

Intuitively, a well-formed expression is an expression in which the order of all accesses of shared data
is determined by the C standard, i. e., the evaluation of competing expressions is ordered by sequence
points. Additionally, we require that we have at most one write to shared data in a well-formed expression
(follows from 6.). Furthermore, note that the second part of bullet point 5. forbids delicate cases such as a
= f()+g() where f and g access shared data (the order in which f and g are invoked is not defined). Yet,
expressions such as a = f()+1 are well-formed even if a is shared and f is competing.

The latter point deserves a more detailed study: The assignment operator = does not form a sequence
point. Hence, expressions such as a = b = 0 are not well-formed, since the store to a and b can be
performed in arbitrary order. However, the compiler must only generate one store to the left-hand-side
of an assignment, which depends on the evaluation of the right-hand-side. Thus, if the right-hand-side
contains no writes to shared data, such as in a = b, an assignment is well-formed. We allow this construct
because it is typically used in lockless code. Alternatively, this construct could be avoided by introducing
temporary (unshared) variables.

The design rules that we derive to achieve robustness of lockless programs against compiler reordering
are simple. Function call expressions should be either full expressions or should adhere to bullet point 5.
Further, the programmer is advised to avoid subexpression with side effects (accessing a volatile object
is a side effect, too). By splitting up complex expression in several simple ones without side effects in
subexpression or by at least encapsulating them in simple assignments the desired order of evaluation is
made explicit. These are well-known design rules that usually aim at well-defined (compiler-independent)
behavior of single-threaded code. However, it also contributes to well-formed expressions which matter in
lockless concurrent programs only.

Finally, we require the compiler to behave sensible. That is, in essence, that loads and stores to volatile
data are translated to elementary load and store operations (one instruction where possible). Note that this
requirement is, to the best of our knowledge, fulfilled by all compilers used in industry and is exactly what
a programmer expects – and exploits – when writing lockless code. In the next section, we will connect
the general requirements of C to the specific offerings of the hardware to create a concise memory model.

3.2 Atomicity on the Hardware Level

Crucial for our approach is a hardware model that reflects atomicity at the assembly level. In the last
section, we assumed that each elementary load and store of shared data can be performed atomically,
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i. e., it cannot be interrupted. Depending on the type and size of the data object, this is in general not the
case. However, accessing data of the size of general purpose registers can usually be performed by one
instruction, which then is not interruptible. Loading and storing data of different sizes, on the other hand,
is usually performed by a sequence of instructions. Thus, an ISR might interrupt this sequence and read
or modify corrupted data. Our analysis allows to configure the size of atomic data types beforehand and
aims to detect cases where atomic accesses are required but not possible.

Additionally, some processors provide atomic primitives such as compare-and-swap as one instruction.
These instructions can only be accessed using compiler specific functions, which are usually built-in
or provided as inline assembly. Our analysis can simulate these instructions atomically if the functions
provided by the compiler are annotated appropriately. With this structure in place, we can now describe
our analysis in the context of interrupts and lockless code.

4 Designing Analyses Considering Interrupts

Analyzing ISRs and the sound handling of shared data requires adaptations of the existing data flow
analysis. In the following, we first describe the original analysis and subsequently discuss how to integrate
ISR analysis and shared data handling.

4.1 Original Analysis

The original analysis is a combined analysis of pointers and value range analysis based on octagons [13].
It is a fixed-point computation iterating over the nodes in the control flow graph (CFG) and propagating
the computed results along control flow edges until old and new results coincide. The analysis is flow and
context sensitive, i. e., it determines an abstract value for each node in the CFG and distinguishes different
calling contexts for function calls. The octagon analysis evaluates nodes concerning value ranges while an
address taking node is handled by the pointer analysis.

In order to increase efficiency of the octagon based analysis, we apply access-based localization, a
technique that reduces the abstract state that is propagated when analyzing a function to the subset of
the abstract state that is actually accessed in this function or in subroutines [3, 15]. The set of accessed
variables in each function is over-approximated by a pre-analysis based on a flow-insensitive pointer
analysis.

4.2 Invoking Interrupts in Fixed-Point Computation

For efficiency reasons, ISRs shall only be analyzed if necessary. Therefore, we make use of our memory
model [4] in order to find accesses to absolute addresses that correspond to setting or clearing the global
or individual interrupt bits. The current status of the interrupt bits is added to the abstract state propagated
along the CFG. The naïve approach would be to trigger ISR analysis in between two arbitrary nodes
where the interrupt is enabled. However, the execution of an ISR does not necessarily affect all subsequent
operations of the main program. Precisely stated, an ISR affects an operation in the main program if
and only if the operation accesses data that might be written by the ISR. In order to incorporate such
dependencies ISRs have to be analyzed before analyzing a shared data access. In our analysis, we trigger
ISR analysis after each node that enables interrupts (globally or individually). This way we also ensure
that ISRs are analyzed at least once between two atomic sections.

With respect to the control flow, the ISR analysis corresponds to an extra node calling the ISRs added
between an interrupt-enabling node and its successor node while the direct connection between these
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1 main(){
2 ...
3 sei(); // interrupt enable
4 ...
5 a = b; // shared data access
6 ...
7 cli(); // interrupt disable
8 ...
9 }

10
11 ISR(){
12 ...
13 b = c; // shared data access
14 ...
15 }

sei();

...

a = b

...

cli();

ISR();

ISR();

Figure 3: Code example (left) and its control flow graph (right) enhanced with necessary non-deterministic
calls to the ISR that need to be considered in the analysis

nodes is kept to consider the case that no interrupt is triggered (cf. Fig 3). The analysis applies the join
operation to the abstract states of both branches. We compute a fixed-point over all ISRs that might
be triggered considering every possible order and frequency of interrupts in order to over-approximate
the number of possibly occurring interrupts. Indeed, on an AVR microcontroller each ISR execution is
followed by at least one main program instruction. However, the exact number of possible ISR executions
cannot be determined on C level, as we are unaware how the compiler translates a given code sequence
into instructions.

Still, analyzing interrupts at one location between two atomic sections is not sufficient if shared data
is written in the main program and read by the ISR. Therefore, we trigger another analysis of ISRs after
analyzing a shared access node (cf. Fig 3). As previously noted, interrupts in the analysis are considered
non deterministic but possibly occurring infinitely often. Note that analyzing ISRs both before and after a
shared access node is sufficient if the requirements in Sect. 3.1 are fulfilled.

Finally, to speed up the analysis, we apply access-based localization as explained above also to
ISRs. For this purpose, we arrange the pre-analysis collecting accessed variables to analyze ISRs as
well. Additionally, we subdivide accessed variables into read and written variables in order to be able to
distinguish the different cases of shared access.

4.3 Sound Analysis of Shared Data

Shared data handling depends on whether a full expression (cf. [11, Sect. 6.8]) is well-formed. As our
control flow nodes often represent subexpressions of a full expression, we add to each node whether the
corresponding full expression is well-formed. Table 1 reviews the cases of shared accesses and indicates
the behavior of the analysis. We omitted the case where both the main program and an ISR only read the
same variable as it does not raise any problem.

The first row of the table shows the case that the shared accesses are atomic, the main program
writes(reads) and an ISR read (writes) the shared variables and the corresponding full expression is
well-formed. In this case the octagon analysis is performed as usual. All issues of concurrency are in this
case considered by triggering the ISR analysis somewhere before and immediately after this node. In the
second row we consider a well-formed full expression that includes an atomic write of a variable that is
also written in an ISR. Though it does not cause corrupted data, one write may immediately overwrite the
other one. As this might be unintended by the programmer, we issue a warning that data loss might occur.

The third row considers the case that the analysis encounters a full expression where all shared accesses
are atomic but the expression is not well-formed. In this case the analysis sets all shared variables to type
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atomic access well-formed
analysis behavior

access type expression

yes r/w yes no special behavior
yes w/w yes issue a warning
yes * no set shared variables to type bounds, issue a warning
no * * set shared variables to type bounds, issue a warning

Table 1: Cases of shared access

Program Loc # global vars Time # of ISR analyses # Warnings # Warnings
(legitimate) (spurious)

UART buffer 175 32 7.3 s 136 0 1
RGB-LED 95 22 0.8 s 27 1 0
Traffic Light 68 5 0.1 s 30 0 0

Table 2: Results of the case study

bounds thereby overapproximating any possible order of execution. Note that these overapproximations
are also propagated to the subsequent ISR analysis. We issue a warning that this expression is unspecified
behavior. The case that the access is non-atomic (row 4) is handled by the analysis the same way. Here,
we issue the warning that a non-atomic access might result in inconsistent or corrupted data.

5 Case Studies

Our implementation is written in JAVA and builds on the Eclipse Framework. We used it to analyze several
microcontroller programs written for the AVR ATmega 16 microcontroller unit. For this processor our
analysis assumes that only 8 bit memory accesses are performed atomically.

The results of the case study are presented in Table 2. For each checked program, we provide the lines
of code, number of global variables, time for analysis, number of times we have to check the ISRs and
the number of (spurious) warnings. The analyzer was able to prove the absence of array out of bounds
accesses in the UART buffer. Yet, we still had a spurious warning, since this program writes to the data
buffer without locking from both the ISR and the main function. The correctness of such an operation
has to be checked manually. In the RGB-LED program, we found an unlocked shared access to a 16-bit
variable, which was a legitimate warning. Finally, the Traffic Light program, controlling an intersection
with two traffic lights, could be checked without triggering a warning.

6 Related Work

Traditionally, model checking has been used to verify concurrent programs such as in [9] where partial
order reduction is used to increase efficiency. Schlich et al. [18] implement this technique for model
checking embedded software on the assembly level. Atig et al. [1] describe how to model check in the
presents of a weak memory model, which corresponds to the lockless programs described in this paper.

Regehr and Cooprider [17] describe how to map microcontroller programs (interrupt-driven code) to
thread-driven code. In particular, they point out the differences between threads and interrupts and show
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how to exploit existing techniques for verification tools for multithreaded code to verify interrupt-driven
embedded software. Cooprider [6] describes how to increase efficiency by only analyzing ISRs at certain
locations. His approach, however, is restricted to properly locked programs.

Pratikakis et al. describe in [16] the LOCKSMITH tool which can check automatically for proper lock-
ing of shared data in an abstract interpretation framework. We focus on the verification of microcontroller
programs even in the absence of locks.

Recently, Miné presented an extensive work [14] on analyzing embedded real-time parallel C programs
based on abstract interpretation. He defines the semantics of expressions based on interference, i. e.,
whenever a thread reads a variable x, all abstract values another thread might set x to are also considered.
These interference sets are non-relational and flow-insensitive information while we interchange relational
and flow-sensitive information between the main program and ISRs. Due to the flow-insensitivity dealing
with the order of execution of C expressions is superfluous in Miné’s approach, while it is essential in
our approach. Additionally, his approach differs from ours in considering all primitive statements to be
atomic independent of types and the underlying hardware. This way shared data access is not handled
correctly in case of incomplete assignments.

In [8] Fehnker at al. extend the generic (unsound) static analyzer Goanna to detect microcontroller
specific bugs. In their approach, the CFG is labeled with occurrences of syntactic constructs of interest,
while the desired behavior is put into a CTL formula that can be checked by model checking techniques.
Their work focuses on integrating hardware information to specify and check simple rules that should
be followed when programming the specific microcontroller. Instead, this paper advocates the use of a
hardware-specific memory model to enhance precision of data flow analyses and to avoid false alarms.

Finally, there is an ongoing effort to formalize memory models for existing languages, which recently
cumulated in a memory model for the new C++ standard [5]. Yet, programmers of microcontroller software
still rely on non-strictly defined semantics and “sensible” compiler behavior mixed with knowledge about
the underlying hardware. Our approach aims to implement these assumptions, which are sometimes quite
subtle, in a verification framework.

7 Concluding Discussion

This paper advocates a static analysis for lockless microcontoller C programs combining different
techniques to make the approach precise as well as tractable. To achieve precision for such programs, it is
necessary to deal both with C semantics and hardware specifics. Our memory model reflects what the
user can (and will) expect from the compiler on the one side and what atomic primitives the hardware can
provide on the other side. Using the derived rules for well-formed expressions, we can detect latent bugs
that would manifest themselves only in certain circumstances (such as different compiler options) and we
can detect bugs that result from improper communication between the main program and the ISR using
our fine-grained value analysis.

Still – as Meyers and Alexandrescu [12] point out – thread-unaware languages such as C pose inherent
difficulties to write thread-aware code. It makes proper (manual) synchronization exceptionally hard
since all corner cases of the languages have to be considered. Additionally, as we have shown in this
paper, it poses obstacles for the program analysis, since the order of certain operation is often unclear.
In such cases, either imprecise non-relational analyses have to be deployed or a careful analysis of all C
expressions is necessary.
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