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Specifications for reactive systems often consist of environment assumptions and system guarantees.
An implementation should not only be correct, but also robust in the sense that it behaves reasonably
even when the assumptions are (temporarily) violated. We present an extension of the requirements
analysis and synthesis tool RATSY that is able to synthesize robust systems from GR(1) specifica-
tions, i.e., system in which a finite number of safety assumption violations is guaranteed to induce
only a finite number of safety guarantee violations. We show how the specification can be turned
into a two-pair Streett game, and how a winning strategy corresponding to a correct and robust im-
plementation can be computed. Finally, we provide some experimental results.

1 Introduction

Property synthesis automatically creates systems from formal specifications [6, 11, 2]. Synthesized sys-
tems are correct-by-construction. Recently there has been a lot of progress in making property synthesis
practical [10, 4, 3]. One remaining problem is that synthesized systems often do not behave reasonably
in unexpected situations, e.g., when environment assumptions are violated.

Many specifications consist of environment assumptions and system guarantees. For both we dis-
tinguish between safety and fairness properties. Safety guarantees must be fulfilled only if all safety
assumptions are satisfied. If a safety assumption is violated, the system is allowed to behave arbitrarily.
Safety assumptions may be violated due to a buggy environment, operator mistakes, radiation-related
bit-flips, etc. The latter issue in particular is becoming more serious, due to continuously decreasing
feature sizes [12]. Clearly, if safety assumptions are violated, the system may not be able to fulfill all
safety guarantees. However, it should try to recover if the environment does. Unfortunately, synthesized
systems sometimes stop performing any useful interaction once a safety assumption has been violated.

We present an extension of the requirements analysis and synthesis tool RATSY [2], which synthe-
sizes robust systems from GR(1) specifications [10]. In [5], we introduced a notion of a failure in a safety
specification, along with a notion of recovery. A system is robust if finitely many environment failures
induce only finitely many system failures, where a system failure is a violation of a safety guarantee, and
an environment failure is a violation of a safety assumption. Note that this condition can be encoded as
a Streett pair.

In [1], we described how a GR(1) specification can be turned into a one-pair Streett game such that a
winning strategy corresponds to a correct implementation. Consequently, the combination of the Streett
pair for the GR(1) game and the Streett pair for robustness leads to a two pair Streett game, which we
solve using the algorithm of [9]. In this paper, we show this approach using an example and show
experimental results for robust synthesis.
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Different notions of robustness have been studied in different settings. In [5], robustness for safety
specifications is considered. Synthesis is done using one-pair Streett games. We use the same notion of
robustness but consider GR(1) specifications. Robustness for liveness is addressed in [1]: for any number
of violated assumptions, the number of violated guarantees must be as low as possible. We use their idea
of transforming GR(1) into Streett games via a counting construction. In [8], robustness is not defined
in terms of assumption and guarantee violations, but using metrics on the state of a system. Synthesis
is performed via special automata incorporating these metrics. Robustness of sequential circuits is also
addressed in [7]. Inputs are divided into control and disturbance variables. A system is robust if a finite
number of changes in disturbance inputs result in a bounded number of changes in the output. Synthesis
is not addressed.

The rest of this paper is organized as follows. Section 2 presents an example to illustrate the problem.
Section 3 explains our method to synthesize robust systems. Section 4 explains the computation of a
winning strategy for two-pair Streett games in more detail. In section 5, our method is applied to an
example. Section 6 presents experimental results and concludes.

2 Illustration of the Problem

Consider the specification of a simple arbiter for a resource shared between two clients. The input
signals r1 and r2 are used by the clients to request access to the resource. The arbiter grants access
via the output signals g1 and g2. The system must fulfill the following safety requirements. First, the
system is never allowed to raise both grant signals at the same time. In LTL syntax, this can be written as
G1 =G¬(g1∧g2). Second, a request has to be followed immediately by a grant, which can be formalized
by the guarantees G2 =G(r1→Xg1) and G3 =G(r2→Xg2). Finally, it is assumed that the environment
never raises both request signals at the same time: A = G¬(r1∧ r2). Combining the three guarantees and
the assumption results in the specification ϕ = A→ G1 ∧G2 ∧G3. It requires the arbiter to satisfy all
three guarantees, if the assumption is fulfilled.

Figure 1: Synthesized Finite State Machines.

One possible implementation of ϕ (in form of a finite state machine) is shown in Figure 1(a). If the
environment assumption is violated, i.e., r1 and r2 are raised at the same time, the machine enters state
S3, and will remain there forever. Irrespective of future inputs, both grant signals stay low, therefore G2
and G3 will not be fulfilled anymore. This is not robust: a finite number of environment errors leads
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to an infinite number of system errors, i.e., the system does not recover. Our new synthesis algorithm
guarantees that this cannot happen. Instead, our approach may lead to an implementation as shown in
Figure 1(b), which does not exhibit the aforementioned weakness. If two requests occur simultaneously
now, one will be discarded while the other one will be granted. Once the environment resumes correct
behavior, the system will also fulfill all its guarantees again.

3 Robust Synthesis from GR(1) Specifications

A GR(1) specification consists of environment assumptions and system guarantees. There are two kinds
of assumptions and guarantees. Safety properties encode conditions which have to hold in all time
steps. Fairness properties are conditions which have to hold infinitely often. The safety specifications
are given as safety automata that are deterministic but not complete. Intuitively, a word fulfills safety
specification if it has a run in the safety automaton.

GR(1) synthesis is performed as follows [1]. First, the specification is transformed into a one-pair
Streett game via a counting construction. The safety properties are encoded directly into the transition
relation of the Streett game. The fairness properties are expressed via the Streett pair. For m fairness
assumptions GFAi (with 1 ≤ i ≤ m) and n fairness guarantees GFG j (with 1 ≤ j ≤ n), the state-space
is extended with two counters x ∈ {0, . . .m} and y ∈ {0, . . .n}, which can be encoded with dlog2(m+
1)e+dlog2(n+1)e additional bits. The counter x is incremented modulo m+1 whenever assumption Ax

(corresponding to the current counter value) is satisfied; similarly for y, Gy, modulo n+ 1. If a counter
has the special value 0, it is always incremented. The counter value x = 0 indicates that all Ai have been
satisfied in a row; y = 0 indicates the same for all G j. Hence, the condition (GFx = 0)→ (GFy = 0),
expressed by the Streett pair 〈(x = 0),(y = 0)〉, ensures that the liveness part of the specification is
encoded properly in the game. A winning strategy for this game corresponds to a correct implementation.

In order to obtain a system which is also robust, we extend the safety specifications. We add
Boolean variables oke and oks. We then label all existing edges in the environment safety automaton
with oke = true and add edges from any state to any other state with oke set to false, and similar for the
system automaton. Thus, the automata become complete, but variable oke is set to false whenever the
environment violates some safety assumption, oks is set to false iff the system violates a safety guarantee.
Our notion of robustness can now be formulated using the condition (GF¬oks)→ (GF¬oke), which is
expressed by the Streett pair 〈(¬oks),(¬oke)〉. An infinite number of system errors is only allowed if
there is an infinite number of environment errors.

A winning strategy for the two-pair Streett game corresponds to a correct and robust implementation.
We use a recursive fixpoint algorithm to compute the winning region [9]. Intermediate results of this
computation can be used to obtain the winning strategy.

4 Computing a Winning Strategy for Streett(2)

Figure 2 shows the algorithm to compute the winning region of a Streett game [9]. The input Set is a
set of Streett pairs 〈a,b〉. The function pr(X) returns the set of states from which the system can force
the play into X in one step. LFix and GFix represent least and greatest fixpoint computations over sets
of states. The operators &, | and ! perform intersection, union, and complementation of sets.

The following discussion assumes Set={〈a1,b1〉,〈a2,b2〉}. Let Y1 be the fixpoint in Y for the first
Streett pair in the top-level call to Str. Y2 is the result for the second pair. We denote the iterates of
these fixpoint computations by Y1,0 . . .Y1,C1 and Y2,0 . . .Y2,C2 . For both Streett pairs, the function Str
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1 Func main_Streett ( Set )
2 If ( | Set |= 0 )
3 Return mStr ( true , false ) ;
4 Return Str ( Set , true , false ) ;
5 End −− Func main_Streett ( Set )

1 Func mStr ( sng , rt )
2 GFix ( X )
3 X = rt | sng & pr ( X ) ;
4 End −− GFix ( X )
5 Return X ;
6 End −− mStr

1 Func Str ( Set , sng , rt )
2 GFix ( Z )
3 Foreach (<a , b> in Set )
4 nSet = Set − <a , b>;
5 p1 = rt | sng & b & pr ( Z ) ;
6 LFix ( Y )
7 p2 = p1 | sng & pr ( Y ) ;
8 If ( | nSet |= 0 )
9 Y = mStr ( sng & !a , p2 ) ;

10 Else

11 Y = Str ( nSet , sng&!a , p2 ) ;
12 End −− LFix ( Y )
13 Z = Y ;
14 End −− Foreach (<a , b>)
15 End −− GFix ( Z )
16 Return Z ;
17 End −− Str

Figure 2: Algorithm to compute the winning strategy.

Figure 3: Illustration of the iterates of the fixpoint computation.

is called recursively. The iterates of Y in the recursive call during the computation of Yi, j are denoted
Yi, j,0 . . .Yi, j,Ci, j for i ∈ {1,2} and j ∈ {0, . . .Ci}.

Figure 3 illustrates the intuitive meaning of the iterates. As long as a1 and a2 hold, it is possible
to proceed to the next lower iterate of Yi. Y2 is reachable from Y1,1 and Y1 is reachable from Y2,1. The
resulting cycle allows to visit b1 and b2 infinitely often. If a2 is not satisfied, the next lower iterate of
Y2 may not be reachable. Not reaching b2 ever again is fine if a2 is also never satisfied again. However,
the other Streett pair still has to be handled. This is ensured through the iterates from the recursive step.
Figure 3 shows them for Y2,2 only. If a1 holds, it is possible to proceed to the next lower iterate of Y2,2
and from Y2,2,1 back to Y2,2. This cycle ensures that b1 is visited infinitely often if a1 holds infinitely often
but a2 does not. Analogously for all other iterates Yi, j.

To define a strategy, we introduce one bit m of memory. m = 0 means b1 should be fulfilled next,
m = 1 means b2 should be fulfilled next. The strategy is composed of several parts, which we enumerate
in the following table. They are prioritized from top to bottom. If a particular sub-strategy cannot be
applied (because of violated assumptions), the next one is tried.
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Nr. present state in: next state in: informal description
1 Y1,i \Y1,i−1,¬m Y1,i−1,¬m step towards b1
2 Y2,i \Y2,i−1,m Y2,i−1,m step towards b2
3 Y1,1,¬m Z,m b1 reached; switch towards b2
4 Y2,1,m Z,¬m b2 reached; switch towards b1
5 Y1,i, j \Y1,i, j−1,¬m Y1,i, j−1,¬m ¬a1; sub-game towards b2
6 Y2,i, j \Y2,i, j−1,m Y2,i, j−1,m ¬a2; sub-game towards b1
7 Y1,i,1,¬m Y1,i,¬m b2 reached in sub-game
8 Y2,i,1,m Y2,i,m b1 reached in sub-game
9 Y1,i, j \Y1,i, j−1,¬m Y1,i, j,¬m ¬a1,¬a2; stay
10 Y2,i, j \Y2,i, j−1,m Y2,i, j,m ¬a2,¬a1; stay

5 Example of Robust Synthesis

To demonstrate our approach, this section gives an example. Consider the specification of a full-
handshake protocol with a request input signal r and a grant output signal g. For the environment, the
safety assumption A1 = G((r∧¬g→ Xr)∧ (¬r∧g→ X¬r)) and the fairness assumption A2 = GF(¬r∨
¬g) are defined. The system has to satisfy the safety guarantee G1 =G((¬r∧¬g→X¬g)∧(r∧g→Xg))
and the fairness guarantee G2 =GF((r∧g)∨(¬r∧¬g)). Combining the assumptions and the guarantees
results in the specification ϕ = A1∧A2→ G1∧G2.

First, the specification is transformed into a one-pair Streett game. In this example there is no need
for a counting construction, since there is only a single fairness assumption and guarantee. Figure 4(a)
illustrates the encoding of the safety properties in the transition relation of the Streett game. The first bit
of each state corresponds to the request signal r and the second bit to the grant signal g. For example,
the transitions require that, if there is a request, r has to stay high until the request is granted.

Figure 4: arbiter example (a) Encoding of the safety properties in the transition relation. (b) Extension
of the state space.
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The following step is to extend the state space with the variables oke and oks, as shown in Figure
4(b). The third bit of each state corresponds to the signal oke, which encodes an error caused by the
environment. If this bit is true, no error occurred. Black solid lines indicate that there is no system error
(oks = 1) and red dashed-lines indicate that there is one (oks = 0). Colored states represent states where
an environment error has occurred. E.g., assume we start in state 101. In this state, a request occurred
which has not been granted yet, and no environment error occurred. The safety assumption prohibits the
environment from lowering the request. If it does anyway, depending on the choice of the system, either
the state ”010” or ”000” is entered, which are both colored states.

Next, the winning region and the strategy are computed. Figure 5 illustrates the iterates of the fix-
point computation. We have a1 = ¬(r∧g),b1 = (r∧g)∨ (¬r∧¬g),a2 = ¬oks,b2 = ¬oke. To illustrate
strategy computation, we consider the following scenario. Assume that m = 1 and the arbiter is in a state
out of Y2,2\Y2,1. The value of m = 1 dictates to visit a state out of Y2,1 next, if possible. Y2,1 contains all
states with an environment error. If we assume that the environment always behaves correctly, the set
Y2,1 becomes unreachable. In order to win the game anyway, the system is not allowed to make a mistake
either, so the arbiter stays in Y2,2. This way the second Streett pair 〈(¬oks),(¬oke)〉 is fulfilled, because
both sets are only visited finitely often. To win the game, the first Streett pair also has to be fulfilled.
Therefore the subgame is entered, trying to reach states in b1 while staying in Y2,2. Through the loop in
Y2,2, it is possible to visit these states infinitely often, fulfilling the first Streett pair as well.

Figure 5: Illustration of the iterates of the fixpoint computation.

6 Results and Conclusions

We tested our implementation in RATSY with an arbiter, with N request and acknowledge lines (cf. Sec-
tion 2). Table 1 compares the synthesis time (seconds) and the implementation size (lines of Verilog),
with and without robustness. As expected, the robust approach takes more time and creates larger circuits
than RATSY’s original synthesis algorithm. This is due to the higher complexity of the new method.
Simulating the synthesized systems shows that the number of system errors needed to recover after one
environment error is really small. In most practical cases only one or even no system errors are needed.

The original synthesis algorithm of RATSY gave no formal guarantees for robustness. The exten-
sion presented in this paper guarantees that synthesized systems are correct-and-robust-by-construction.
This comes at the cost of larger circuits and longer synthesis times, due to the increased computational



R. Bloem et al. 53

Table 1: Performance results
N size w/o robustness size with robustness time w/o robustness time with robustness
2 85 501 0.04 0.15
3 145 1,234 0.08 1.07
4 230 2,829 0.14 3.37
5 324 5,614 0.18 11.13
10 1,072 90,215 0.81 3,485
15 2,215 6.2 ·106 3.30 26,172

complexity. Experimental results show that synthesized robust systems are able to recover with just very
few system errors. In many practical cases, the ratio between system errors and environment errors is
less than one. Since in practice, one has to be prepared for environment errors, guaranteed robustness is
an important property enhancing the quality of a system.
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