
K. Chatterjee, R. Ehlers, and S. Jha (Eds.):
Third Workshop on Synthesis (SYNT 2014)
EPTCS 157, 2014, pp. 117–133, doi:10.4204/EPTCS.157.12

c© Rüdiger Ehlers & Vasumathi Raman
This work is licensed under theCreative Commons
Attribution-No Derivative WorksLicense.

Low-Effort Specification Debugging and Analysis

Rüdiger Ehlers
University of Bremen & DFKI GmbH

Bremen, Germany

Vasumathi Raman
California Institute of Technology

Pasadena, CA, United States

Reactive synthesis deals with the automated construction of implementations of reactive systems
from their specifications. To make the approach feasible in practice, systems engineers need effec-
tive and efficient means of debugging these specifications. In this paper, we provide techniques for
report-basedspecification debugging, wherein salient properties of a specification are analyzed, and
the result presented to the user in the form of a report. This provides a low-effort way to debug
specifications, complementing high-effort techniques including the simulation of synthesized imple-
mentations. We demonstrate the usefulness of our report-based specification debugging toolkit by
providing examples in the context of generalized reactivity(1) synthesis.

1 Introduction

A modern approach to the engineering of correct-by-construction reactive systems issynthesis, wherein
a reactive controller is constructed automatically from its specification, which it is guaranteed to satisfy.
Recent work in robotics and control has shown the applicability of the approach to the construction of
a wide variety of systems [17, 33, 20]. The most commonly used synthesis workflow in this context
has beengeneralized reactivity(1) synthesis[2], in which the full expressivity of a temporal logic such
as linear-time temporal logic (LTL) [23] is traded against the existence of a more efficient symbolic
synthesis algorithm (in this case for a subset of LTL).

As appealing as the concept of reactive system synthesis maybe, it merely reformulates the challenge
of constructing a reactive system fromdesigning the right systemto designing the right specification.
While a specification must arguably always be written in order to verify the correctness of a manually
engineered system, designing such a specification is usually harder in the context of synthesis. This is
because, when verifying a system that has already been constructed, the system and its specification can
be cross-checked: whenever an example trace of the system isfound that does not satisfy the speci-
fication, the trace can be manually inspected for whether it constitutes an error in the system or in the
specification. Thus, both the specification and the system can be iteratively refined during the verification
process. This is not an available option for synthesis, as there is no system to begin with, and so other
means for ensuring correctness of the specification are needed.

This motivates a systematicspecification debuggingprocess. Starting from acandidate specification,
the objective is to analyze the specification for missing or incorrect parts, and to correct it as needed.
Corrections should usually only be done manually, as they need to capture the designer’s intent, but
algorithmic support is often valuable for the analysis. Debugging techniques can be divided into two
categories:

1. those that find reasons for theunrealizabilityof a candidate specification when the specification is
over-constrained and no implementation exists, and

2. those that analyzerealizable specifications, and try to find missingguaranteesthat the synthesized
system needs to fulfill, or overly restrictiveassumptionsabout the operating environment for the
synthesized system.

http://dx.doi.org/10.4204/EPTCS.157.12
http://creativecommons.org
http://creativecommons.org/licenses/by-nd/3.0/

118 Report-Based Specification Analysis and Debugging

The classical approach to debugging a specification is bygame-based simulation[15, 19]. For a realiz-
able specification, a simulation of the synthesized system is offered, in which the user can provide inputs
to the system and observe its reactive behavior. For an unrealizable specification, the roles of the user and
the simulation are exchanged: the user is asked to simulate the system, and the simulated environment
provides inputs to the system that force it to violate its specification.

Game-based simulation can be considered a “high-effort” approach to specification debugging: it
requires the user to make choices during the simulation thatidentify missing environment assumptions
or system guarantees, and to keep track of system and environment obligations. Particularly for sys-
tems with many input and output variables, choosing next suitable actions is difficult and error-prone.
Interpreting the simulated moves in the game can be equally difficult, requiring domain-specific inter-
pretation and visualization support, which imposes a substantial implementation workload. Even custom
application support does not guarantee that the opponent’sbehavior in the simulation game is easy to
understand, especially when debugging unrealizable infinite-horizon goal or liveness specifications.

These observations motivate augmenting the specification designer’s toolbox with low-effort tech-
niques that reduce the number of scenarios in which a game-based simulation is required. Some such
techniques are practically folklore: e.g., it is easy to check whether an environment assumption is needed,
by removing it and checking that the specification remains realizable. Superfluous environment assump-
tions indicate potential problems with the specification, such as a poorly formulated system guarantee
whose fulfillment the assumption was originally introducedto ensure.

Despite the existence of these folklore approaches, a systematic and more fine-grained account of
low-effort specification debugging techniques is, to the best of our knowledge, still missing in the syn-
thesis literature. Our main contribution in this paper is a comprehensive set of tools for low-effort speci-
fication debugging. All of our techniques arereport-based, i.e., they analyze a specification and produce
a report identifying potential problems. All components of our toolset are push-button techniques, al-
lowing a one-step analysis of a specification. We discuss several folklore techniques as well as new
approaches, and extend the former to more fine-grained versions where applicable. For example, the
check for superfluity of an assumption can be refined by askingwhether the assumption can help the
controller achieve its goals sooner.

Our techniques bolster the main premise of reactive synthesis: they enable quick and efficient con-
struction of reactive systems from their specifications, without needing to construct a system from scratch
when the specification changes, and with minimum effort for the system engineer. In being report-based,
our techniques allow the easy detection of specification errors by the user, since the generated report can
simply be checked for unexpected results. While our techniques certainly do not identifyall problems
with a specification (e.g. we cannot detect the incorrect interpretation of a system’s objective by an en-
gineer), they substantially contribute to the appeal of reactive synthesis as an integral part of a system’s
engineer’s toolkit.

All of the techniques presented in this paper have been implemented for generalized reactivity(1)
specifications using the generalized reactivity(1) synthesis tool SLUGS. Some of the techniques are
implemented as scripts that simply callSLUGS, while others are implemented as plugins forSLUGS. We
also provide examples of the errors that can be discovered byapplying the proposed techniques.

1.1 Related Work

There is considerable prior work on debugging LTL formulas in the formal methods literature, and many
of these approaches take a report-based perspective. For example, the problem of identifying small causes
of failure has been studied from multiple perspectives. Forunsatisfiable LTL formulas, the authors of

Rüdiger Ehlers & Vasumathi Raman 119

[29] suggest several notions of unsatisfiable cores, with corresponding methods of extraction. Of these,
the technique of extracting an unsatisfiable core from a Bounded Model Checking (BMC) resolution
proof was used in [30] for debugging declarative specifications. There, the abstract syntax tree (AST)
of an inconsistent specification was translated to CNF, an unsatisfiable core extracted from the CNF,
and the result mapped back to the relevant parts of the AST. The authors of [6, 27] also attempted to
generalize the idea of unsatisfiable and unrealizable coresto the case of temporal logic using SAT-based
bounded model checkers. Complementary to these techniquesis the detection ofinherent vacuity[12]
in a specification, which intuitively means that a part of thespecification does not have any effect on its
overall satisfaction by any system. Such cases are typically undesirable, and a common consequence of
errors in the specification.

In the context of unrealizability, the authors of [5] define a notion of “helpful” assumptions and
guarantees, and compute minimal explanations of unrealizability by iteratively expelling unhelpful con-
straints. They assume an external black-box realizabilitychecker for iterated realizability tests. The
authors in [14] use model-based diagnosis to remove guarantees as well as irrelevant output signals from
the specification; these are output signals that can be set arbitrarily without affecting the unrealizability
of the specification. To identify and eliminate the source ofunrealizability, there are also efforts such
as those in [18, 3] that provide additional environment assumptions to make the specification realiz-
able. This is accomplished in [3] using efficient analysis of turn-based probabilistic games, and in [18]
by template-based mining of the environment counterstrategy. The techniques we present in this paper
have a spirit similar to the work in [5], but we consider a larger variety of interesting properties of the
specification to include in our reports.

In the context of game-based debugging, [15, 14] present a game for analyzing unrealizable specifica-
tions, and a tool implementation. The authors of [19] also present a game-based approach. As elaborated
in Section1, we instead focus on areport-basedmethodology.

The utility of both report-based analysis and game-based debugging was explored in the context of
robotics by [26, 25]. These works provide domain-specific information about unrealizable specifications
for high-level robot control. The ideas presented in this paper on the other hand are quite general, and
not tailored to any particular application domain.

1.2 Contributions

The report-based specification debugging techniques presented in this paper are divided into four cate-
gories:

1. Preventing the accidental writing of unintended specifications

2. Analyzing the interaction of theassumptionsandguaranteesin the specification

3. Analyzing the influence of the individual input and outputsignals on the realizability of a specifi-
cation

4. Generating concise “informative” strategies or traces of the synthesized system

After reviewing some preliminaries on generalized reactivity(1) synthesis in Section2, the contributions
in each of the above categories are presented in Sections3, 4, 5, and6, respectively. For most tech-
niques, we present examples to provide the reader with an intuition for how they help with specification
debugging. In order to be as illustrative as possible, all examples have intentionally been kept as simple
as possible. Thus, readers who are experienced specification designers will likely identify the problems
with the example specifications without the debugging techniques presented in the paper. Nevertheless,

120 Report-Based Specification Analysis and Debugging

such problems are much more difficult to observe in larger specifications (which the presented examples
could be contained within). Therefore, the techniques presented remain useful even for engineers with a
lot of specification engineering experience.

We have implemented the proposed techniques in the generalized reactivity(1) synthesis toolSLUGS.
This tool is open source and freely available for download athttp://github.com/ltlmop/slugs.
Versions later thanMay 3, 2014feature the scripttools/createSpecificationReport.py that runs
all the proposed analyses in one step and outputs an HTML report of the results.

2 Preliminaries

Words and Linear Temporal Logic: Given analphabetΣ, aword w=w0w1 . . . is defined as a finite or
infinite sequence ofletters wi ∈ Σ. For the rest of this paper, we will typically useΣ = 2AP for some set of
atomic propositionsAP. We can characterize subsets of such words by a formula inlinear temporal logic
(LTL). We only consider a sub-fragment of LTL here, where theformulas are built using the following
grammar:

ϕ = p∈ AP ||¬ϕ ||ϕ ′∨ϕ ′′ ||ϕ ′∧ϕ ′′ ||ϕ ′ → ϕ ′′ || Xϕ ′ || Gϕ ′ || Fϕ ′

For semantics and a more complete description, we refer the reader to [23].

Finite-State Machines and Synthesis: The importance of LTL in the context of this paper is that it
can describe the desired behavior of the system to be synthesized. Formally, we represent such systems
asfinite-state (Mealy) machinesM = (S,ΣI ,ΣO,s0,δ) with the set of statesS, the input alphabetΣI , the
output alphabetΣO, the initial states0, and the transition functionδ : S×ΣI → S×ΣO. The finite-state
machine (FSM) produces infinite tracesw= w1w2 . . ., such thatwi ∈ ΣI ×ΣO for everyi ∈ N. The FSM
has a unique trace for every input sequencewI ∈ (ΣI)

ω .
In the context of synthesis, we typically haveΣI = 2API for a set of atomic input propositionsAPI and

ΣO = 2APO for a set of atomic output propositionsAPO. An LTL formula overAPI ⊎APO can describe
properties to be satisfied by all executions (or traces) of a finite-state machine withsignature(ΣI ,ΣO).

Therealizability problem is to determine, givenAPI , APO and a temporal logic specificationψ over
API ⊎APO, whether there exists a finite-state machineM = (S,ΣI ,ΣO,s0,δ), all of whose traces satisfy
ψ . Thesynthesis problemadditionally asks for the construction of such a system if one exists.

Generalized Reactivity(1) Specifications and Synthesis:The synthesis problem for full LTL has
been shown to have a relatively high complexity (2EXPTIME inthe size of the formula [24]). To side-
step this prohibitive complexity, generalized reactivity(1) [2] has emerged as a fragment of LTL with only
singly-exponential time complexity of synthesis (see, e.g., [9]). In this approach, which is commonly
abbreviated asGR(1) synthesis, the allowed system specifications are restricted to the following form:

(ϕa
i ∧ϕa

s ∧ϕa
l)→b (ϕg

i ∧ϕg
s ∧ϕg

l) (1)

The specification in Equation1 has twocomponentsseparated by an implication operator. The two
components are in turn conjunctions of sub-formulas in LTL,which we will call specification partsfor
the scope of this paper. The parts left of the implication operator are called theassumptions, whereas
the parts right of the implication operator are theguarantees. The implication operator itself represents
a strict implication. As defined by Bloem et al. [2], this intuitively means that a system that satisfies the
specification must ensure that the right-hand side of the formula is not violated before the left-hand side
is violated. The specification partsϕa

i , ϕa
s , ϕa

l , ϕg
i , ϕg

s , andϕg
l also have a specific form:

http://github.com/ltlmop/slugs

Rüdiger Ehlers & Vasumathi Raman 121

• ϕa
i andϕg

i are conjunctions of initialization assumptions and guarantees, each of which are free
from temporal operators. In addition, no proposition fromAPO can be used inϕa

i .

• ϕa
s andϕg

s are conjunctions of safety assumptions and guarantees. Each such conjunct is a sub-
property represented by a temporal logic formulaGψ , where the only temporal operator occurring
in ψ can beX, and no nesting of temporal operators is allowed inψ . Moreover, no proposition
from APO may be used in the scope of anX operator inϕa

s .

• ϕa
l andϕg

l are conjunctions of liveness properties of the formGFψ , in which the only temporal
operators occurring inψ can be unnested occurrences ofX.

In contrast to some previous works that apply GR(1) synthesis, we allow the use of the next-time
operator in liveness properties. It has been shown that thisextension can be handled without changing
the synthesis algorithm significantly [28].

As a further extension, we will sometimes refer to the so-called robotics semanticsof GR(1) syn-
thesis. This means that the system must be able to start with every possible output satisfyingϕg

i . In
the robotics context, where the robotic system can control its position in the workspace, this usually
corresponds to the requirement that the robot is able to start from any admissible workspace position.

While the set of types of properties that are directly supported by GR(1) synthesis is relatively lim-
ited, some more complex properties can be encoded by performing pre-synthesis[31, 9], where essen-
tially the system is asked to output a certificate proving that it satisfies these more complex properties.
Constraints that enforce that the synthesized system outputs a correct certificate can then be encoded in
the form of GR(1) guarantees (see, e.g., [9]).

If a given specification isrealizable, i.e., there exists an implementation, the GR(1) synthesisal-
gorithm produces an implementation of a specific form, whereall states are labeled by the last input
character seenx ∈ ΣI , the last output charactery ∈ ΣO, and the currentgoal ψ of the system. We say
that an expressionψ is a goal of the system ifGFψ is a liveness guarantee in the specification. There
is at most one state for each such labeling, imposing an upperbound on the number of states in the
implementation.

In GR(1) specifications, liveness assumptions are introduced to allow the synthesized system to wait
for certain input events that are guaranteed to be eventually triggered. Given an(x,y,ψ)-labeled state in
a finite-state machine, thereactive distanceof the state is the maximum number of waiting phases and
transitions between waiting phases necessary foranyfinite-state machine to enforce that some transition
satisfyingψ is eventually taken when starting from that state. In GR(1) synthesis, the reactive distance
of a state is computed before an implementation is built. In particular, asynthesis gameis built from the
specification, in which a winning strategy for one of the players in the game, thesystem player, represents
an implementation for the system. The reactive distance of astate is then obtained as a by-product when
solving the gameto find this winning strategy.

Generalized reactivity(1) synthesis tools are typically implemented usingbinary decision diagrams
(BDDs) as the symbolic data structure for manipulating positionsets in the synthesis game. A BDD is a
directed acyclic graph with nodes representing boolean variables. Every node has afalse-successor and
a true-successor, and there is additionally afalsesink and atrue sink in the graph. A BDD represents
a boolean function, mapping variable valuations that induce paths leading to thetrue sink to true. We
call a partial assignment to some set of variables acubefor some boolean function over the same set of
variables if the function maps all assignments that are concretizations of the partial assignment totrue.

122 Report-Based Specification Analysis and Debugging

3 Facilitating Specification Writing

The simplest errors in specifications are those that stem from a mismatch of the designer’s intent with the
specification that they actually write down. Such a mismatchcan have a variety of causes, starting from
simple typos, to an erroneous manual encoding of complex value domains into boolean signal values,
to a misunderstanding of the semantics of the specification formalism. To counter such specification
writing errors, we propose two techniques:

• User support for more complex value domains in the specification language

• Analyzing whether the GR(1) strict implication semantics affects the specification at hand.

The first of these techniques is not strictly debugging-specific, as its purpose is to allow representing
the specification in a more concise and intuitive way. Thus, it reducesthe risk of introducing errors
rather thandetectingthem; we include it in this paper because it shares the goal ofeliminating errors
in specifications. Moreover, it complements the other specification debugging approaches presented, by
allowing information about states in the synthesis game or traces of the system to be represented in a
more human-readable form.

3.1 Supporting a Richer Variable Value Domain

Classically, GR(1) specifications govern purely boolean predicates, and there is no support for richer
variable domains. There are many applications in which variables from a richer domain naturally occur;
it is thus necessary to encode their values into boolean signal valuations. For example, in [16, 11], robot
location regions are binary-encoded in order to reason about the location of the robot. Integer numbers
are also a common occurrence in many specifications (see, e.g., [10, 32, 21]). This calls for user support
in order to specify such scenarios concisely, without needing to perform a manual boolean encoding.
Even if the encoding is already automated at the applicationlevel (as in [16, 11]), leaving the encoding
to the synthesis tool-chain enables debugging the specifications at a higher level. Many tools for verifying
systems, such as NUSMV [4] and UPPAAL [1] offer direct support for richer variable domains. For
synthesizing systems, fewer software packages (e.g. TUL IP [34]) support integers as data types.

Our toolSLUGSsupports the direct use of integer variables in specifications. All such variables have
a lower boundbl and an upper boundbu (such thatbu ≥ bl). We use a preprocessing script for translating
specifications with integer variables to boolean ones. Thisallows to treat the specification as purely
boolean for most specification analysis steps. The preprocessor allocates precisely⌈log2(bu− bl + 1)⌉
bits for an integer variable with bounds[bl ,bu]. For integer variables that are an input to the system,
initialization and safety assumptions are added that prevent the environment from picking a number that
is not in the range[bl ,bu], and corresponding guarantees are added for output variables.

Merely adding such support is however not quite enough to facilitate the writing of correct specifi-
cations. In order to allow operations such as integer addition, and to encode the synthesis game using
BDDs as contemporary synthesis tools do, we have to define howto handle under- and over-flows of
these integer ranges. Consider as an example the propertyφ = G(a+b< 7), wherea∈ {0, . . . ,7} is an
input to the system andb∈ {0, . . . ,7} is an output of the system. Ifφ is a system guarantee, then it is easy
to fulfill if the value of a+b wraps above 7, as the system can simply choose anyb∈ {1, . . . ,7} when
a= 7, andb= 0 otherwise. Ifa andb have different variable domains, things become even more compli-
cated. Alternatively, we could use saturation semantics for a+b, or just declare that an equation resolves
to false if either side exceeds the variable bounds. This would unfortunately lead to the inconvenient fact
thata+b< 7 is no longer equivalent to(a+b+ i)< (7+ i) for everyi ∈N. The system engineer would

Rüdiger Ehlers & Vasumathi Raman 123

need to consider the value domains of all variables at every step of writing the specification in order to
avoid such unintended effects.

As a far simpler alternative, we propose to apply the semantics introduced in [22], whereexpressions
never overflow, because all sub-expressions haveN as the range of variables. Using these semantics,
the expressiona+ b+ i < 7+ i is equivalent for all values ofi ∈ N, and havingφ = G(a+ b < 7) as
a guarantee in a specification leads to its unrealizability if a is an input signal. Accommodating this
semantics in a BDD-based synthesis workflow can be done by computing an upper bound on the number
of bits needed for storing the result of each sub-expression. As this number is always finite, a finite
number of bits suffices. This information is then used to bound the number of BDDs to be computed
when building the transition relation of the synthesis game.

3.2 Strict Implication Semantics Analysis

In GR(1) synthesis, the system to be synthesized may only violate some safety guaranteeafter an as-
sumption has been violated. Thus, the implication operatorthat separates assumptions and guarantees
in GR(1) synthesis has a non-standard semantics. This difference is of importance when encoding more
complex properties into GR(1) form, as it prevents the system from actively violating the guarantees in
order to enforce the environment assumptions to be violatedlater. As an example, consider a GR(1)
specification of the following form overAPI = {p,q} andr ∈ APO:

ψ = (G(q∨Xq) ∧ G(¬q∨ r)) →S
(

¬r ∧ G((X r)↔ (r ↔¬p)) ∧ ψ ′
)

In this specification,ψ ′ is a place-holder for additional guarantees, and not definedexplicitly. Intuitively,
the specification requires the system to track (with its signal r) whether the number of time steps or
rounds in whichp was set totrue is even or odd. The environment may set theq signal totrue only
when an odd number of such rounds has been seen. Additionally, we require the environment to set the
q signal to true at least once every two rounds.

This specification is unrealizable, because the strict semantics of the implication prevents the system
from proactively setting itsr signal tofalse for two successive rounds (in violation of the guarantees)
– doing so would force the environment to violate eitherG(q∨Xq) or G(¬q∨ r). With the non-strict
semantics, the system could in this manner make sure that theoverall specification is satisfied (as the
assumptions are violated). The use of additional signals asabove to encode more complex properties is
common practice in GR(1) synthesis. Verifying how the different semantics affect the realizability result
is a good sanity check for a specification when these more complex properties impose restrictions on the
environment behavior.

Example 1 Assume that, during the writing process of the specificationψ , a new liveness guarantee has
just been added toψ ′, making the specification unrealizable under the strict implication semantics. This
is not an uncommon occurrence in the specification engineering process, as specifications are typically
built step-by-step, with assumptions added as needed[8]. As the overall specificationψ is known to
be unrealizable due to the liveness guarantees, we would expect ψ to be realizable in the non-strict
semantics, as it can set r to erroneous values. If a specification analysis tool now reports that the
specification is also unrealizable in the non-strict semantics, then we know thatψ has an error in parts
other thanψ ′. In this way, we could, for example, detect a typo in the first assumption, such as having
G(q∨X p) instead ofG(q∨Xq).

From an implementation perspective, checking whether the strict implication semantics make a differ-
ence is not difficult – we just apply the classical semantics and see if this changes the realizability result.

124 Report-Based Specification Analysis and Debugging

A detailed explanation of how to use the classical implication semantics in GR(1) synthesis was provided
in [13].

4 Analyzing the Relationship between Assumptions and Guarantees

In many applications of reactive synthesis, we need to make assumptions about the possible environment
behavior in addition to stating the desired system guarantees. This calls for methods to analyze the
interaction of the assumptions and guarantees. We considerthe following approaches in this context:

• Computing statistics about which positions in thesynthesis gameare winning/losing for the system

• Computing information about positions from which the system can falsify the (safety) assumptions

• Detecting superfluous assumptions

• Analyzing the achievable levels of error-resilience against violations of the environment assump-
tions

The techniques in this section focus on analyzing a specification: in a debugging context, the analysis
results are meant to be compared against the expectations ofthe system designer. Results of such analyses
often indicate potential problems and justify a closer look, as demonstrated by the examples in this
section.

4.1 Winning and Losing Positions in Synthesis Games

The initialization assumptions and guarantees in GR(1) specifications ensure that the interaction between
the environment and the system has a well-defined starting condition. Depending on the specification
and the amount ofpre-synthesisperformed to encode it in GR(1) form, the number of admissible starting
positions that are winning for the system may be quite large or relatively small. By giving the specifica-
tion engineer the ability to check the true number of these winning states against the number expected,
we provide an easy-to-use sanity-check.

For a more fine-grained analysis, we distinguish between positions that satisfy the initialization
assumptions and and those that satisfy the initialization guarantees. Additionally, certain cubes of
winning/non-winning positions are also useful for sanity checking – if positions are found to be losing
that should not be, then this indicates a problem with the specification, even if the synthesized solution
seems to behave in a reasonable manner.

Example 2 Consider a simple mutual exclusion protocol with grant pre-announcement. The input sig-
nals to the system areAPI = {r1, r2}, the output signals areAPO = {g1,g2,promise1,promise2}, and we
are given the following specification:

(true) →S
(

¬g1∧¬g2∧G(¬Xpromise1∨¬Xpromise2)∧G(promise1 ↔ Xg1)∧G(promise2 ↔ Xg2)

(∧GF(r1 → promise1)∧GF(r2 → promise2)
)

Intuitively, the system is asked to use the signals promise1 and promise2 to pre-announce grants g1 and
g2. The requirement that two grants are never given at the same time is implemented by preventing the
system from taking a transition in which promise1 and promise2 are true at the same time, and requiring
the system to give precisely the grants that have been pre-announced.

However, an analysis of which positions are winning revealsthat there are no losing positions that
violate the initialization guarantees, not even the ones inwhich promise1 and promise1 are both set to

Rüdiger Ehlers & Vasumathi Raman 125

true. This indicates that theX operators in the third guarantee of the specification shouldbe removed in
order to prevent the system from giving two grants at the sametime in the second time step. Alternatively,
we could add¬promise1∧¬promise2 as an initialization guarantee. Then, the system has only one initial
variable valuation to choose from, and this would be reflected in the numbers of initial positions that
satisfy the initialization guarantees. If we instead change the third guarantee and run the analysis again,
we find that the system losing positions are precisely those in which promise1 and promise2 are both set
to true. Thus, we could confirm that by this change, the only remaining positions that are not winning
for the system are those we expect.

Counting the number of winning positions is easy once a BDD for the set of winning positions has
been computed. For computing cubes of winning/non-winningpositions, the naive approach is to search
for short paths to thetrue sink in the BDD. However, this can yield unnecessarily smallcubes (i.e.,
with unnecessarily many literals). Instead, we use theimplicit cube enumerationtechnique on BDDs
proposed by Coudert and Madre [7] in order to compute a so-calledmeta-productBDD. We can then
enumerate the largest possible cubes by enumerating paths in the meta-product BDD in which as many
variables as possible are mapped todon’t care.

4.2 Falsifying the (Safety) Assumptions

Positions in the synthesis game can be winning for several reasons: either the system can drive the
environment into falsifying the assumptions (i.e., ensurethat the assumptions are not fulfilled along any
trace beginning from that position), or the system can ensure the satisfaction of its guarantees along some
traces starting from that position, including all traces onwhich the assumptions are satisfied.

In general, the desired case is that all assumptions and guarantees are fulfilled on a trace. Yet,
for realizable specifications, there exists a possibility that the system enforces an assumption violation.
Depending on the application, this may be an intended outcome (e.g., after the environment provides an
input that is not explicitly disallowed by the assumptions,but is not possible in the environment in which
the system is intended to operate). By giving the user the ability to inspect such cases, we provide a
debugging tool for analyzing the interplay of assumptions and guarantees in a specification.

One way of providing this capability is by addingGF(false) to the guarantees and applying the
analysis described in the previous subsection. Due to the strict implication semantics in GR(1) synthesis,
all positions that remain winning for the system can only be winning by violating some environment
assumption.

Example 3 Let us consider the simple two-robot scenario depicted in Figure1. We want to synthesize a
high-level controller for the primary robot, whose task is to cycle between the lower-left and lower-right
cells. Both robots can move by one cell in the x- and y-direction at every step. Furthermore, in order
to avoid collisions, we assume that the secondary robot (whose location is an input to the controller)
can never choose the primary robot’s current position as itsnext position, and require that the primary
robot (whose location is updated by the controller) may not choose a next location that is the same as
the secondary robot’s next location. Lastly, we add the assumption that when the robots are adjacently
located, the secondary robot will eventually change its location if the primary one does not – this prevents
livelock.

The above specification is found to be realizable, and all positions are winning (or are labeled by
some robot location that is not within the workspace boundaries)1. We find that there are some positions

1Note that in the specification, we only require that the robots not perform location changes that lead to collisions. There is
no requirement that transitions do not start from collidingpositions – this would lead to fewer winning positions.

126 Report-Based Specification Analysis and Debugging

1 2 3 4

5

Figure 1: Robot workspace for Example3. The
primary robot starts in the lower left corner of
the workspace, while the secondary robot starts
in the upper right corner.

Figure 2: Robot workspace for Example4. Two
environment liveness assumptions are added to
the specification to ensure that the doors are open
infinitely often.

from which the system can enforce an assumption violation. For example, if the secondary robot is in cells
1, 2, or 3, and the primary robot is one cell right of the secondary one, then the system can enforce the
falsification of the assumptions. In particular, the secondary robot cannot avoid getting stuck, violating
the liveness assumptions. This is problematic, as synthesized controllers can exploit this fact (e.g., by
letting the primary robot move to cell 4 when the secondary robot is in cell 1 and the primary robot is in
cell 5), resulting in undesired system behavior. To preventthis from happening, we can alter the liveness
assumption to also be satisfied whenever the robot is in the top-most row. Applying our analysis shows
that doing so causes the specification to remain realizable,but there is now no position in the synthesis
game from which an assumption violation can be enforced.

4.3 Detecting Superfluous Assumptions

When a specification engineer adds an assumption for synthesis, it is typically either to give the system
more flexibility in achieving its objectives, or to make the specification realizable in the first place.
However, it can occur that some assumptions are not actuallyneeded; this can happen if, for example,
the other assumptions are already strong enough to ensure realizability, or there is already an error in one
of the other assumptions.

Detecting such assumption superfluity is easy: we can removeeach assumption and check if the
specification stays realizable. However, such an analysis is coarse-grained, and masks several interesting
properties. For example, some assumptions can make more positions in the game winning (which helps
to compute a reasonable controller that also works under certain assumption violations [10]). Some can
also simplify strategies in the synthesis game, leading to better controllers in certain applications. As a
remedy, we propose to test each assumption for whether

(a) it changes the realizability of a specification,

(b) it makes more positions in the game winning for the system,

(c) it reduces thereactive distance(see Section2) from some position to some goal, or

(d) it reduces thereactive distanceto the next goal from some position that is reachable in some
implementation of a GR(1) strategy.

If none of these conditions hold, then we classify an assumption as superfluous. Otherwise, the results
of these tests are supplied to the specification engineer.

Rüdiger Ehlers & Vasumathi Raman 127

Example 4 Consider the robot workspace given in Figure2. The setting is similar to the one in Exam-
ple3, with the exception that there is no secondary robot. Rather, there are two cells that serve asdoors.
The primary robot is not allowed to enter these cells when they are closed, but they are guaranteed to
be open in infinitely many time steps (rounds of the synthesisgame): for each door, there is a liveness
assumption stating that it will be open infinitely often.

Analyzing the example shows that all positions are winning for the system, and the specification stays
realizable without the two liveness assumptions. The liveness assumption for the top door is superfluous
when the system is trying to make progress towards the lower right corner, but sometimes helps for
reaching the lower left corner. However, in any implementation that a GR(1) synthesizer would compute,
this assumption is superfluous. We also find that the assumption that the bottom door is always eventually
open is useful for both system goals.

From this result, the system engineer may either realize that a part of the specification that makes use
of the door at the top has been forgotten, or find that the door at the topis useless, and the assumption
can be removed.

4.4 Analyzing the Achievable Levels of Error-resilience Against Violations of the Envi-
ronment Assumptions

Even if a (safety) assumption in a specification is not superfluous, it is sometimes possible to synthesize
a system that can tolerate a fewglitches, i.e., temporary violations. This is especially true for safety
assumptions that are only needed for the system to satisfy some liveness guarantee.

Example 5 Consider the robot delivery problem depicted in Figure3. The current position of the robot
is an input to the robot controller, and the robot can choose to move left, up, down, or right. Whenever
the robot obtains a “moveit” signal, is must eventually visit the striped region, and must always avoid
collisions with the obstacle (collisions with workspace boundaries do not need to be avoided in this
specification).

We want to synthesize a robot controller under the followingassumptions:

1. The x coordinate is always updated according to the robot’s requests

2. The y coordinate is always updated according to the robot’s requests

3. The robot’s position never jumps by more than one cell at a time (in each of the x and y coordi-
nates).

4. The “moveit” signal may only be issued if the robot controller set the “ready” output signal to
true in the previous round.

The specification is realizable, as one would guess. Furthermore, the expectation that the robot can tol-
erate one violation of one of the first two assumptions is met.However, an automated analysis shows that
actually,5 violations can be tolerated. This hints to the specificationengineer that the specification might
contain errors. In fact, it is missing the guarantee that theready signal be set infinitely often. Adding
this guarantee yields the expected level of error-resilience, namely that one glitch can be tolerated, as
the goal region is one cell away from the obstacle.

The algorithm for computing the number of glitches tolerable by some implementation of a GR(1) spec-
ification is described in [10].

128 Report-Based Specification Analysis and Debugging

Figure 3: Robot workspace for Example5.

5 Input/Output Proposition Analysis

In this section, we present techniques to analyze the effects of individual atomic propositions on the
realizability of a specification. We first present an approach for analyzing the effect of shuffling the order
in which the atomic propositions are set, i.e., deviations from the strict input-first-then-output semantics
of system execution. Then we describe how determining the effect of stuck-at-0 or stuck-at-1 faults in
the input or output signals can help with specification debugging.

5.1 Changing the Signal Order

Recall that in GR(1) synthesis, a two-player game is used to decide realizability and to compute a finite-
state automaton implementing the specification. The two players take turns moving in accordance with
the assumptions and guarantees respectively, and a winningstrategy for the second player (also known
as the system player) yields the desired finite-state machine. The first player is usually called the envi-
ronment player, and has to ensure that the assumptions declared in the specification are met.

There is an implicit turn-taking semantics to the game. At each turn, the environment player moves
first, providing a truth assignment toAPI for that time step; this assignment must satisfy the assump-
tions. The system player gets to observe this assignment before providing a truth assignment toAPO,
satisfying the guarantees. This turn-based game yields infinite executions, all of which should satisfy the
specification. However, sometimes it might be desirable forthe system to move without having observed
the environment. In the robotics domain, for example, wherepropositions inAPO correspond to actions
such as motion that take non-trivial amounts of time, it may be desirable to move as soon as possible.
This motivates us to check at synthesis time which outputs inAPO can be assigned truth values at each
time step in a fashion that is agnostic to the environment player’s choice with respect toAPI at that time
step. The synthesized machine is thus no longer strictly a Mealy machine – some outputs may be fixed
before the inputs are read.

Example 6 Let us consider a robotics example in which the robot is trying to patrol five regions r1− r5

in some workspace. The regions are connected in a ring, i.e. r1 is connected to r2, r2 to r3 and so on, and
r5 is connected to r1. The robot also has a sensor that can sense the presence or absence of a person.
Finally, it has a camera, which it can turn on and off. The robot starts in r1, and is supposed to patrol
the five regions. It must also turn its camera on if and only if it is sensing a person. The input signals
to the robot system areAPI = {person}, and the output signals areAPO = {r1, r2, r3, r4, r5,person}, and

Rüdiger Ehlers & Vasumathi Raman 129

we have the following specification:

(true) →S
(

r1∧G(Xcamera↔ Xperson)∧
∧

r i 6=r j

G(¬r i ∨¬r j)

(∧G(r1 → X(r5∨ r1∨ r2))

(∧G(r2 → X(r1∨ r2∨ r3))

(∧G(r3 → X(r2∨ r3∨ r4))

(∧G(r4 → X(r3∨ r4∨ r5))

(∧G(r5 → X(r4∨ r5∨ r1))

(∧GF(r1)∧GF(r2)∧GF(r3)∧GF(r4)∧GF(r5)
)

When we analyze the signals to try and move decisions about the outputs to before the inputs have
been seen, we find that we can move the decisions about the region signals{r1, r2, r3, r4, r5}, but not the
camera. This is because we need to know if we are sensing a person in order to decide whether to turn on
the camera, but deciding what motion to take does not requireknowledge about the environment signal
(i.e. person). This is an expected consequence of the specification, and indicates that this aspect of the
specification has been formalized without introducing any errors.

5.2 Stuck-at-0 and Stuck-at-1 Faults

When testing hardware circuits, the most commonly found problems are stuck-at-0 and stuck-at-1 faults,
where some line of the circuit is rendered unable to represent a value other thanfalse or true, respec-
tively. In the context of synthesis, we can use this concept to check whether, for a realizable specification,
there is some easy way for the system to satisfy the specification without setting an output signal in a
reactive fashion. Likewise, for unrealizable specifications, we can check whether a specification stays
unrealizable if an input signal valuation is fixed. This provides information about the cause of unrealiz-
ability of a specification, especially when unrealizability is not completely due to the safety assumptions
and guarantees (and thus the approach in Section6.2cannot be applied).

Example 7 Reconsider the setting from Example5. An analysis of the (original, unfixed) specification
reveals that the specification is realizable even if the system is also required to set any of the propositions
“up”, “down”, “left”, “right”, or “ready” to false permanently. This suggests to the specification
engineer that the specification is incomplete.

6 Computing Concise Strategies and Traces

The specification debugging techniques discussed so far areconcerned with collecting statistics on the
specification and properties of the generated implementation. It is also interesting to see how a system
behaves at runtime. Typically, simulation is applied for this purpose. However, depending on the appli-
cation, it can be difficult to provide input to the synthesized system that leads to traces that are insightful
for the system engineer. To mitigate this problem, we present two approaches for automatically com-
puting artifacts that explain how a system interacts with its environment. In Section6.1, we present an
approach to computing a nominal-case behavior trace of the synthesized system. In Section6.2, we com-
pute an abstract trace-like strategy for the system in case it can enforce a safety assumption violation, or
a trace-like strategy for the environment in case it can enforce a safety guarantee violation.

130 Report-Based Specification Analysis and Debugging

6.1 Nominal-Case Trace Computation

The key advantage of allowing assumptions in specificationsis that it enables the system engineer to
restrict the set of environments in which an implementationmust work correctly, to those that are of
relevance for the application at hand. Thus, in order to observe if a specification is already complete, it
makes sense to look at the behavior of the system when the assumptions are satisfied.

However, when simulating a system in order to check whether it already exhibits the intended behav-
ior, it is a nontrivial task to provide inputs that satisfy all assumptions. This is especially true when there
are a large number of input propositions with many constraints on them.

To remedy this, we present an approach for finding a trace of the system that exhibits nominal-case
behavior. We would call such a traceinformative if that term had not already been taken2. To obtain
such a trace, we first restrict the behavior of the environment such that it only makes choices that are
consistent with the safety assumptions, and makes progresstowards satisfying the liveness assumptions.
In order to compute these choices (i.e. transitions), we inspect the game structure built during GR(1)
synthesis [2]. We treat this game as aBüchi gamein which it is the aim of the environment to satisfy the
liveness assumptions. We then compute a non-deterministicwinning strategy for this Büchi game. It is
non-deterministic because whenever there are multiple next moves that are equally good in terms of the
distance to the environment goal, both moves are part of the strategy.

The environment then moves using this non-deterministic strategy, and the system does the same
from the strategy computed during GR(1) synthesis. For efficient specification debugging, we augment
the trace by information about which goal the environment and system are trying to make progress
towards along each transition.

6.2 Abstract Strategies and Counter-Strategies

A specification that contains both safety and liveness partscan be rendered realizable or unrealizable due
to the safety assumptions and guarantees alone. In such a case, either the environment or the system can
win the synthesis gamein a finite number of steps. Analyzing such a case can be difficult – even if a
simulation environment is available, it is difficult to trigger the events that are informative to the system
engineer.

We propose the following approach to counter this problem. We compute anabstract strategyfor
the winning player (system or environment) in the synthesisgame. The strategy is a mapping from the
step number in the game and the atomic proposition controlled by the winning player to either the value
of the proposition in the respective round, or to a valuationthat depends on the other player’s choices.
When computing a strategy for the system, we only need to consider the next choice of input proposition
valuations that do not violate the safety assumptions.

Our abstract strategies are uncomparable to the outcomes ofprevious approaches to counter-strategy
generation (such as [15]), as we represent a strategy in an abstract way instead of introducing branching
in the strategy whenever needed. In many cases, this helps topinpoint the reason for the realizability or
unrealizability of a specification. Computing the abstractstrategy is performed by repeatedly solving the
synthesis game, while checking if constraining the behavior of the winning player in individual rounds
changes the outcome.

2In runtime verification, a prefix of a trace is calledinformativefor a linear-time specification if a proof of any extension of
the prefix to satisfy or violate the specification can be conducted just over the syntactical structure of the specification formula,
without quantifying over the possible suffix traces.

Rüdiger Ehlers & Vasumathi Raman 131

Atomic proposition / Round 0 1 2 3 4 5 6 7

r true false true false true false true X

counter 0 1 1 2 2 3 3 X

x 0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ X

y 0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ X

Table 1: An abstract counter-strategy for Example8. The values that depend on the inputs are shown as
⋆, the special valueX indicates that the previous transitions led to a violation of the safety guarantees.

Example 8 Consider a robot moving on a grid that has to be in some part of the workspace every4
times the input proposition r is set totrue. The system is asked to update a counter that keeps track of
the number of r requests (modulo4) so far. The signal r may be set totrue only in every second step.

Consider what happens when the specification guarantee thatrequires the counter to be updated
correctly is written incorrectly, such that it does not actually count modulo4, allowing the counter
to overflow. This means that the environment has a strategy toforce the system to violate its safety
guarantees. In a complex specification, this type of problemwould be hard to observe. However, the
abstract counter-strategy given in Table1, which we can compute automatically from the specification,
demonstrates the problem quite clearly.

7 Conclusion

In this paper, we presented a report-based specification-debugging approach for reactive synthesis. The
core idea is to perform a sequence of analysis steps that allow the system engineers to “sanity check”
various properties of the specification. Unexpected results indicate wrong or missing parts of the speci-
fication or, in some circumstances, potential for strengthening the specification in order to obtain a more
desirable reactive controller.

In addition to the fact that report-based specification debugging offers a push-button approach to
specification analysis, it allowed us to employ techniques with a high computational cost, which are
only feasible without real-time user interaction (for example, by running over-night). In particular, the
techniques in Sections4.4, 5.2, and6.2 require many calls to the synthesis engine, each of which takes
approximately as much time as realizability checking the original specification. Nevertheless, if a speci-
fication is compact enough to allow reactive synthesis, thensolving a sequence of synthesis problems of
a similar complexity will typically also be feasible.

Our techniques are available as part of the generalized reactivity(1) synthesis toolSLUGS, which is
available for download athttps://github.com/ltlmop/slugs.

The set of techniques presented here is certainly not comprehensive, and many further variations and
new ideas are conceivable. Several of the ideas presented inthis paper are also adapted to GR(1) spec-
ifications, and may need to be generalized before they can be applied to other specification languages.
It should be mentioned that the strict structure of a GR(1) specification actually helps with debugging
a specification, as it ensures that questions such as the onesin Section4 are actually well-defined. For
example, in general LTL synthesis, it would not make much sense to consider different starting positions
in a synthesis game, as the compilation from logic to automata during general LTL synthesis strips them
of any meaning with respect to the original specification, unlike in GR(1) synthesis.

Acknowledgements V. Raman is supported by TerraSwarm, one of six centers of STARnet, a Semi-
conductor Research Corporation program sponsored by MARCOand DARPA.

https://github.com/ltlmop/slugs

132 Report-Based Specification Analysis and Debugging

References

[1] Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R.D’Argenio, Alexandre David, Ansgar Fehnker,
Thomas Hune, Bertrand Jeannet, Kim Guldstrand Larsen, M. Oliver Möller, Paul Pettersson, Carsten Weise
& Wang Yi (2000): UPPAAL - Now, Next, and Future. In Franck Cassez, Claude Jard, Brigitte Rozoy
& Mark Dermot Ryan, editors:MOVEP, Lecture Notes in Computer Science2067, Springer, pp. 99–124,
doi:10.1007/3-540-45510-8_4.

[2] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli & Yaniv Sa’ar (2012):Synthesis of Reac-
tive(1) designs. J. Comput. Syst. Sci.78(3), pp. 911–938, doi:10.1016/j.jcss.2011.08.007.

[3] Krishnendu Chatterjee, Thomas A. Henzinger & Barbara Jobstmann (2008):Environment Assumptions for
Synthesis. In: International Conference on Concurrency Theory (CONCUR), Springer-Verlag, Berlin, Hei-
delberg, pp. 147–161, doi:10.1007/978-3-540-85361-9_14.

[4] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore, Marco
Roveri, Roberto Sebastiani & Armando Tacchella (2002):NuSMV 2: An OpenSource Tool for Symbolic
Model Checking. In Ed Brinksma & Kim Guldstrand Larsen, editors:CAV, Lecture Notes in Computer
Science2404, Springer, pp. 359–364, doi:10.1007/3-540-45657-0_29.

[5] Alessandro Cimatti, Marco Roveri, Viktor Schuppan & Andrei Tchaltsev (2008):Diagnostic Information for
Realizability. In: Verification, Model Checking, and Abstract Interpretation(VMCAI) , pp. 52–67, doi:10.
1007/978-3-540-78163-9_9.

[6] Alessandro Cimatti, Marco Roveri, Viktor Schuppan & Stefano Tonetta (2007):Boolean Abstraction
for Temporal Logic Satisfiability. In: Computer Aided Verification (CAV), pp. 532–546, doi:10.1007/
978-3-540-73368-3_53.

[7] Olivier Coudert & Jean Christophe Madre (1992):Implicit and Incremental Computation of Primes and
Essential Primes of Boolean Functions. In: DAC, pp. 36–39. Available athttp://portal.acm.org/
citation.cfm?id=113938.113929.

[8] Rüdiger Ehlers (2012):Symbolic bounded synthesis. Formal Methods in System Design40(2), pp. 232–262,
doi:10.1007/s10703-011-0137-x.

[9] Rüdiger Ehlers (2013):Symmetric and Efficient Synthesis. Ph.D. thesis, Saarland University.

[10] Rüdiger Ehlers & Ufuk Topcu (2014):Resilience to Intermittent Assumption Violations in Reactive Synthesis.
In: 17th International Conference on Hybrid Systems: Computation and Control (HSCC), pp. 203–212,
doi:10.1145/2562059.2562128.

[11] Cameron Finucane, Gangyuan Jing & Hadas Kress-Gazit (2011):Designing Reactive Robot Controllers with
LTLMoP. In: Automated Action Planning for Autonomous Mobile Robots, AAAI WorkshopsWS-11-09,
AAAI. Available at http://www.aaai.org/ocs/index.php/WS/AAAIW11/paper/view/3982.

[12] Dana Fisman, Orna Kupferman, Sarai Sheinvald-Faragy &Moshe Y. Vardi (2008):A Framework for Inherent
Vacuity. In Hana Chockler & Alan J. Hu, editors:Haifa Verification Conference, Lecture Notes in Computer
Science5394, Springer, pp. 7–22, doi:10.1007/978-3-642-01702-5_7.

[13] Uri Klein & Amir Pnueli (2010):Revisiting Synthesis of GR(1) Specifications. In: Haifa Verification Confer-
ence (HVC), pp. 161–181, doi:10.1007/978-3-642-19583-9_16.

[14] Robert Könighofer, Georg Hofferek & Roderick Bloem (2010): Debugging Unrealizable Specifica-
tions with Model-Based Diagnosis. In: Haifa Verification Conference, pp. 29–45, doi:10.1007/
978-3-642-19583-9_8.

[15] Robert Könighofer, Georg Hofferek & Roderick Bloem (2013):Debugging formal specifications: a practical
approach using model-based diagnosis and counterstrategies. STTT 15(5-6), pp. 563–583, doi:10.1007/
s10009-011-0221-y.

[16] Hadas Kress-Gazit, Georgios E. Fainekos & George J. Pappas (2007):Where’s Waldo? Sensor-Based Tem-
poral Logic Motion Planning. In: ICRA, IEEE, pp. 3116–3121, doi:10.1109/ROBOT.2007.363946.

http://dx.doi.org/10.1007/3-540-45510-8_4
http://dx.doi.org/10.1016/j.jcss.2011.08.007
http://dx.doi.org/10.1007/978-3-540-85361-9_14
http://dx.doi.org/10.1007/3-540-45657-0_29
http://dx.doi.org/10.1007/978-3-540-78163-9_9
http://dx.doi.org/10.1007/978-3-540-78163-9_9
http://dx.doi.org/10.1007/978-3-540-73368-3_53
http://dx.doi.org/10.1007/978-3-540-73368-3_53
http://portal.acm.org/citation.cfm?id=113938.113929
http://portal.acm.org/citation.cfm?id=113938.113929
http://dx.doi.org/10.1007/s10703-011-0137-x
http://dx.doi.org/10.1145/2562059.2562128
http://www.aaai.org/ocs/index.php/WS/AAAIW11/paper/view/3982
http://dx.doi.org/10.1007/978-3-642-01702-5_7
http://dx.doi.org/10.1007/978-3-642-19583-9_16
http://dx.doi.org/10.1007/978-3-642-19583-9_8
http://dx.doi.org/10.1007/978-3-642-19583-9_8
http://dx.doi.org/10.1007/s10009-011-0221-y
http://dx.doi.org/10.1007/s10009-011-0221-y
http://dx.doi.org/10.1109/ROBOT.2007.363946

Rüdiger Ehlers & Vasumathi Raman 133

[17] Hadas Kress-Gazit, Georgios E. Fainekos & George J. Pappas (2009):Temporal-Logic-Based Reactive Mis-
sion and Motion Planning. IEEE Transactions on Robotics25(6), pp. 1370–1381, doi:10.1109/TRO.2009.
2030225.

[18] Wenchao Li, Lili Dworkin & Sanjit A. Seshia (2011):Mining Assumptions for Synthesis. In: ACM-IEEE
International Conference on Formal Methods and Models for Codesign (MEMOCODE), pp. 43–50, doi:10.
1109/MEMCOD.2011.5970509.

[19] Shahar Maoz & Yaniv Sa’ar (2013):Two-Way Traceability and Conflict Debugging for AspectLTL Programs.
T. Aspect-Oriented Software Development10, pp. 39–72, doi:10.1007/978-3-642-36964-3_2.

[20] P. Nuzzo, H. Xu, N. Ozay, J.B. Finn, A.L. Sangiovanni-Vincentelli, R.M. Murray, A. Donze & S.A. Seshia
(2013): A Contract-Based Methodology for Aircraft Electric Power System Design. Access, IEEEPP(99),
pp. 1–1, doi:10.1109/ACCESS.2013.2295764.

[21] Necmiye Ozay, Ufuk Topcu, Richard M. Murray & TichakornWongpiromsarn (2011):Distributed Synthesis
of Control Protocols for Smart Camera Networks. In: ICCPS, IEEE, pp. 45–54, doi:10.1109/ICCPS.2011.
22.

[22] Hans-Jörg Peter, Rüdiger Ehlers & Robert Mattmüller (2011):Synthia: Verification and Synthesis for Timed
Automata. In Ganesh Gopalakrishnan & Shaz Qadeer, editors:CAV, Lecture Notes in Computer Science
6806, Springer, pp. 649–655, doi:10.1007/978-3-642-22110-1_52.

[23] Amir Pnueli (1977):The Temporal Logic of Programs. In: FOCS, IEEE, pp. 46–57.

[24] Amir Pnueli & Roni Rosner (1989):On the Synthesis of an Asynchronous Reactive Module. In: ICALP, pp.
652–671.

[25] Vasumathi Raman & Hadas Kress-Gazit (2011):Analyzing Unsynthesizable Specifications for High-Level
Robot Behavior Using LTLMoP. In: Computer Aided Verification (CAV), pp. 663–668, doi:10.1007/
978-3-642-22110-1_54.

[26] Vasumathi Raman & Hadas Kress-Gazit (2013):Explaining Impossible High-Level Robot Behaviors. IEEE
Transactions on Robotics29(1), pp. 94–104, doi:10.1109/TRO.2012.2214558.

[27] Vasumathi Raman & Hadas Kress-Gazit (2013):Towards minimal explanations of unsynthesizability for
high-level robot behaviors. In: IROS, IEEE, pp. 757–762, doi:10.1109/IROS.2013.6696436.

[28] Vasumathi Raman, Nir Piterman & Hadas Kress-Gazit (2013): Provably correct continuous control for high-
level robot behaviors with actions of arbitrary execution durations. In: ICRA, IEEE, pp. 4075–4081, doi:10.
1109/ICRA.2013.6631152.

[29] Viktor Schuppan (2009):Towards a Notion of Unsatisfiable Cores for LTL. In: Fundamentals of Software
Engineering (FSEN), pp. 129–145, doi:10.1007/978-3-642-11623-0_7.

[30] I. Shlyakhter, R. Seater, D. Jackson, M. Sridharan & M. Taghdiri (2003): Debugging Overconstrained
Declarative Models Using Unsatisfiable Cores. In: IEEE International Conference on Automated Software
Engineering (ASE), pp. 94–105, doi:10.1109/ASE.2003.1240298.

[31] Saqib Sohail & Fabio Somenzi (2009):Safety first: A two-stage algorithm for LTL games. In Armin Biere &
Carl Pixley, editors:FMCAD, IEEE, pp. 77–84, doi:10.1109/FMCAD.2009.5351138.

[32] Tichakorn Wongpiromsarn, Ufuk Topcu & Richard M. Murray (2011):Formal synthesis of embedded control
software for vehicle management systems. In: AIAA Infotech@Aerospace, doi:10.2514/6.2011-1506.

[33] Tichakorn Wongpiromsarn, Ufuk Topcu & Richard M. Murray (2012): Receding Horizon Temporal Logic
Planning. IEEE Trans. Automat. Contr.57(11), pp. 2817–2830, doi:10.1109/TAC.2012.2195811.

[34] Tichakorn Wongpiromsarn, Ufuk Topcu, Necmiye Ozay, Huan Xu & Richard M. Murray (2011):TuLiP: a
software toolbox for receding horizon temporal logic planning. In Marco Caccamo, Emilio Frazzoli & Radu
Grosu, editors:HSCC, ACM, pp. 313–314, doi:10.1145/1967701.1967747.

http://dx.doi.org/10.1109/TRO.2009.2030225
http://dx.doi.org/10.1109/TRO.2009.2030225
http://dx.doi.org/10.1109/MEMCOD.2011.5970509
http://dx.doi.org/10.1109/MEMCOD.2011.5970509
http://dx.doi.org/10.1007/978-3-642-36964-3_2
http://dx.doi.org/10.1109/ACCESS.2013.2295764
http://dx.doi.org/10.1109/ICCPS.2011.22
http://dx.doi.org/10.1109/ICCPS.2011.22
http://dx.doi.org/10.1007/978-3-642-22110-1_52
http://dx.doi.org/10.1007/978-3-642-22110-1_54
http://dx.doi.org/10.1007/978-3-642-22110-1_54
http://dx.doi.org/10.1109/TRO.2012.2214558
http://dx.doi.org/10.1109/IROS.2013.6696436
http://dx.doi.org/10.1109/ICRA.2013.6631152
http://dx.doi.org/10.1109/ICRA.2013.6631152
http://dx.doi.org/10.1007/978-3-642-11623-0_7
http://dx.doi.org/{10.1109/ASE.2003.1240298}
http://dx.doi.org/10.1109/FMCAD.2009.5351138
http://dx.doi.org/10.2514/6.2011-1506
http://dx.doi.org/10.1109/TAC.2012.2195811
http://dx.doi.org/10.1145/1967701.1967747

	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Preliminaries
	3 Facilitating Specification Writing
	3.1 Supporting a Richer Variable Value Domain
	3.2 Strict Implication Semantics Analysis

	4 Analyzing the Relationship between Assumptions and Guarantees
	4.1 Winning and Losing Positions in Synthesis Games
	4.2 Falsifying the (Safety) Assumptions
	4.3 Detecting Superfluous Assumptions
	4.4 Analyzing the Achievable Levels of Error-resilience Against Violations of the Environment Assumptions

	5 Input/Output Proposition Analysis
	5.1 Changing the Signal Order
	5.2 Stuck-at-0 and Stuck-at-1 Faults

	6 Computing Concise Strategies and Traces
	6.1 Nominal-Case Trace Computation
	6.2 Abstract Strategies and Counter-Strategies

	7 Conclusion

