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We present an approach for synthesizing reactive robot motion plans, based on compilation to Syntax-
Guided Synthesis (SyGuS) specifications. Our method reduces the motion planning problem to the
problem of synthesizing a function that can choose the next robot action in response to the current
state of the system. This technique offers reactivity not by generating new motion plans through-
out deployment, but by synthesizing a single program that causes the robot to reach its target from
any system state that is consistent with the system model. This approach allows our tool to handle
environments with adversarial obstacles. This work represents the first use of the SyGuS formal-
ism to solve robot motion planning problems. We investigate whether using SyGuS for a bounded
two-player reachability game is practical at this point in time.

1 Introduction

Many robots operate in dynamic, nondeterministic environments. Although a variety of techniques have
been developed for synthesizing straight-line motion plans for robots in highly predictable environments,
it is often difficult to extend these approaches to robots that must react to sensor values. In particular,
exciting new work on using off-the-shelf SMT solvers to produce robot motion plans [21, 22, 19] has not
thus far been extended to the reactive motion planning problem.

In contrast to a standard motion plan, a reactive motion plan responds to changes in the environment.
Typically this means using sensors to observe the environment, and conditioning actions on the observed
sensor values. The ability to respond to a robot’s surroundings makes reactive motion plans well-suited
to changing environments, and especially to environments with adversarial agents.

In this paper, we present a compiler from high-level descriptions of reactive motion planning prob-
lems to Syntax-Guided Synthesis (SyGuS) specifications, allowing us to generate reactive motion plans
using off-the-shelf SyGuS solvers. We focus specifically on discretized environments with adversarial
moving obstacles. The goal is to generate a correct-by-construction motion plan for a given workspace
and a given set of moving obstacles.

More concretely, we are interested in generating motion plans for problems like the one portrayed
in Figure 1a. Figure 1a depicts a robot’s initial starting position, target final position, and its available
motion primitives (the set of moves it may make). It also depicts two obstacles, each with its own set of
available motion primitives. Figure 1b shows a motion plan that meets the problem specification. The
goal of our work is to generate such motion plans automatically.

2 Overview

Our approach to the reactive obstacle avoidance problem is to accept as input exactly the type of in-
formation displayed in Figure 1a and compile the motion planning problem to a SyGuS specification.
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(a) A pictorial representation of an input problem for
our tool. The blue ri circle represents the initial po-
sition of the robot. The red rt circle represents the
target position for the robot. The green o1 and o2
diamonds represent the initial positions of the two
obstacles. The arrows extending from the initial po-
sitions of each agent represent the motion primitives
available to the given agent.
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(b) A pictorial representation of one solution to the
problem posed in Figure 1a. Each arrow represents
the application of a motion primitive.

Figure 1: Pictorial representations of an input to our tool, and a candidate solution.

SyGuS offers a clean language for program synthesis [20, 2, 1]. It allows users to constrain synthesized
programs both via grammars, and via constraints on the outputs. The ease with which SyGuS allows
users to explore programs with differing abstract syntax trees makes it a natural fit for the reactive mo-
tion planning problem, which may demand different control flow for different input problems. While a
space of straight-line programs of a given length can be naturally expressed with SMT, the standard SMT
encoding essentially demands that all candidate programs share an AST. In contrast, SyGuS is explicitly
designed to facilitate exploring and comparing many program structures, as defined by a grammar. Since
a reactive motion plan may need at any point to react to changing environment conditions, custom con-
trol flow is central to the problem; thus, straight-line SMT encodings cannot be adapted to the problem
without building a SyGuS-like layer on top of them.

We use SyGuS to generate a function that selects a motion primitive from among the available set,
based on the current state of the system. The function accepts the current position of the robot and the
current position of all obstacles as inputs. The final motion plan applies the function to the current state
to select a motion primitive, then applies the returned motion primitive, then repeats these steps until the
robot reaches the target position.

We briefly emphasize a few important characteristics of our tool.

Synthesize-once. Our tool completes all synthesis before deployment. In contrast to receding horizon
techniques, our approach does not deploy the synthesizer with the robot or resynthesize the controller
throughout execution. Rather our tool generates, at design time, a single controller that can respond to
all allowable environment behaviors.
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Motion primitive agnostic. Our synthesis approach, like many previous approaches [21, 15, 4] de-
couples the generation of motion primitives from the selection of which motion primitive to use at any
given step. Our approach takes a set of pre-generated motion primitives as input, so it can be fruitfully
combined with any motion primitive generation strategy whose output primitives can be expressed in our
target format. We must be able to extract the set of positions relative to the starting point through which
a robot executing the primitive may pass, in the discretized space.

Relies on correct system model. Our work focuses on generating a controller that satisfies the spec-
ification for all executions described by the system model, rather than by the system itself. Like past
work on reactive motion plan synthesis [24, 15], our tool does not offer any guarantees of success if the
environment breaks the assumptions imposed by the model. Further, our work is not concerned with
verifying that the model accurately describes the actual system. Like past reactive synthesis tools, we
consider that validation problem to be outside the scope of our work.

Does not require a custom solver. Although substantial work has gone into synthesizing non-reactive
motion planners with off-the-shelf solvers, especially SMT solvers [21, 19, 22], work on synthesizing
reactive motion planners with off-the-shelf solvers is still in the early stages. To our knowledge, this
work is the first attempt to solve reactive motion planning problems by direct compilation to a functional
solver 1. Because we use a functional solver, we achieve more control over the shape of output motion
plans than we could exert using existing reactive solvers.

3 SyGuS for Reactive Motion Planning

In this section, we offer a formal model of our reactive motion planning problem. We describe our
approach for compiling an instance of the motion planning problem to a SyGuS specification. Finally,
we give an illustrative example.

3.1 Formal Model of Our Reactive Motion Planning Problem

Each instance of our motion planning problem is defined by information about the robot and its environ-
ment.

A motion primitive M is a 2-tuple: 〈pr f ,Pr〉. The relative final position after applying the motion
primitive is pr f . That is, given a current position 〈x,y〉, the final position after applying M is 〈x +
pr f .x,y+ pr f .y〉. Every pr ∈ Pr is an intermediate relative position through which the robot may pass
during execution of M. 2

An input problem instance P = 〈D,R,O, l〉. D represents the dimensions of the workspace, R is the
robot, O is the set of obstacles, and l is a limit on the length of the path.

D = 〈width, length〉 represents the dimensions of the workspace, width in the x direction, and length
in the y direction.

1We draw the same distinction between functional and reactive synthesis described by [16] and use the term functional
solver to refer to solvers that perform functional synthesis.

2As a concrete example to further clarify the role of Pr, consider that we may have multiple motion primitives that result in
a position one unit up and one unit right. Perhaps one primitive causes the actor to travel up then right and another causes it to
travel right then up. Since the intermediate positions associated with these actions would differ, the motion primitives would
differ. These primitives would be 〈〈1,1〉,{〈0,1〉}〉 and 〈〈1,1〉,{〈1,0〉}〉, respectively.
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1 (synth -fun move ((p-r Int) (p-o1 Int) ... (p-on Int)) Int

2 ((Start Int (

3 MoveId

4 (ite StartBool Start Start)

5 ))

6 (MoveId Int (

7 1

8 ...

9 m

10 ))

11 (CondInt Int (

12 (get -x p-r)

13 (get -y p-r)

14 (get -x p-o1)

15 (get -y p-o1)

16 ...

17 (get -x p-on)

18 (get -y p-on)

19 (+ CondInt CondInt)

20 (- CondInt CondInt)

21 -1

22 0

23 ...

24 d-1

25 ))

26 (StartBool Bool ((and StartBool StartBool)

27 (or StartBool StartBool)

28 (not StartBool)

29 (<= CondInt CondInt)

30 (= CondInt CondInt)

31 ))))

Listing 1: The form of the grammar, given that there are n obstacles and m robot motion primitives, and
d is the length of the longest dimension of the workspace.

R = 〈pi, pt ,M〉. The robot’s initial position is pi, the robot’s target final position is pt , and M is the
set of robot motion primitives.

Each O ∈O is a tuple: 〈pi,M〉. The obstacle’s initial position is pi, and M is the set of the obstacle’s
motion primitives.

3.2 Compilation to SyGuS Specifications

As input, our compiler takes an input problem P = 〈D,R,O, l〉, as described above. The limit l on the
length of the path bounds the number of motion primitive applications in the motion plan. Although our
compiler to SyGuS treats l as input, in practice the user does not provide l. Rather, the tool generates the
appropriate l by increasing l until the problem becomes satisfiable.

The output of our tool is a function for choosing the next motion primitive to apply. The function
takes the current position of the robot and the current positions of all obstacles as input. Applying the
function to the appropriate arguments for the target number of steps (l) produces the motion plan.

The grammar for the synthesized function is given in Listing 1. The synthesized function takes the
current state of the system as input and as output produces the next motion primitive that the robot should
apply. The grammar depends on the input problem in several ways. First, the number of obstacle position
parameters depends on the number of obstacles. Second, the candidate return values correspond to the
motion primitives available to the robot. Third, the return value may be conditioned on the position of the
robot, and also on the position of any of the obstacles. Finally, we reduce the depth of the programs that
the SyGuS solver must consider by including constants up to the maximum coordinate in the workspace.
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The constraint on the synthesized function takes the form (or (not obstaclePositionsAllowable)
(and correctFinalPosition noIntersections). Intuitively, this constraint requires that either an obstacle
made an illegal move — in which case our tool provides no guarantees — or the robot arrives in the
correct final position, without having collided with any obstacles.

We model the obstacle positions as universally quantified variables. Thus, some assignments to the
obstacle positions are not consistent with obstacles’ motion primitives. The obstaclePositionsAllowable
constraint requires that for each obstacle, for each step, there is a motion primitive associated with the
obstacle that could produce the next position. Let n be the number of obstacles, let l be the number of
steps the robot takes, let oi, j be the position of the ith obstacle (Oi) at time j, and let Mi be the motion
primitives of Oi. Then the obstaclePositionsAllowable constraint is:

n∧
i=1

[
l∧

j=1
[∃M ∈Mi.(oi, j−oi, j−1 = M.pr f )]]

The correctFinalPosition constraint requires only that the robot’s final position after l steps be the
target position pt specified in R. Because the synthesized function takes the current robot position as
an input, we find the final position by applying the synthesized function to its own output l times. Let
move be the synthesized function for selecting motion primitives. Then r j, the position of the robot at
time j, is move(r j−1,o1, j−1,o2, j−1, ...,on, j−1)+r j−1. Then the correctFinalPosition constraint is simply:
rl = R.pt .

The noIntersection constraint requires that, for each step, there is no intersection between the posi-
tions visited during the robot’s motion primitive and the motion primitives of the obstacles. Because the
step is the finest-grain measure of time in our system, both the robot and the obstacles may be in any
location along their respective paths at any point during the step, including both the initial and the final
location. Thus, our noIntersection constraint must require that the two paths are nonoverlapping. For
convenience, we now refer to the robot’s motion primitive at step j as move j and the ith obstacle’s motion
primitive at step j as omovei, j. The noIntersection constraint is:

n∧
i=1

[
l∧

j=1
[∀m ∈ ({〈0,0〉,move j.pr f }∪move j.Pr)[∀mo ∈ ({〈0,0〉,omovei, j.pr f }∪omovei, j.Pr)

[r j−1 +m 6= oi, j−1 +mo]]]]

3.3 Concrete Example

For a more concrete example, we turn to the sample problem discussed in Section 2 and pictured in
Figure 1a. To use our tool to solve that problem, the user would provide the following inputs:

• The dimensions of the workspace: D = 〈5,7〉.

• The robot’s initial position, target position, and motion primitives: R = 〈〈1,1〉,〈4,4〉,
{〈〈0,0〉,{}〉,〈〈0,1〉,{}〉,〈〈1,0〉,{}〉,〈〈0,−1〉,{}〉,
〈〈−1,0〉,{}〉}〉.

• The obstacles’ initial positions and motion primitives: O = {〈〈2,5〉,{〈〈0,1〉,{}〉,〈〈0,−1〉,{}〉}〉,
〈〈3,5〉,{〈〈0,0〉,{}〉,〈〈0,1〉,{}〉,〈〈0,−1〉,{}〉}〉}

Given this input, our tool would produce the grammar in Listing 2 as part of the SyGuS specification.
We also include the full SyGuS specification generated for this problem in Appendix A. Running our tool
on this problem produces the output in Listing 3.
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1 (synth -fun move ((p-r Int) (p-o0 Int) (p-o1 Int)) Int

2 ((Start Int (

3 MoveId

4 (ite StartBool Start Start)

5 ))

6 (MoveId Int (

7 0 ;corresponds to no move

8 1 ;corresponds to up

9 2 ;corresponds to right

10 3 ;corresponds to down

11 4 ;corresponds to left

12 ))

13 (CondInt Int (

14 (get -x p-r) ;x coord of robot

15 (get -y p-r) ;y coord of robot

16 (get -x p-o0) ;x coord of first obstacle

17 (get -y p-o0) ;y coord of first obstacle

18 (get -x p-o1)

19 (get -y p-o1)

20 (+ CondInt CondInt)

21 (- CondInt CondInt)

22 -1

23 0 ;0-6 are possible coordinates in space

24 1

25 2

26 3

27 4

28 5

29 6

30 ))

31 (StartBool Bool ((and StartBool StartBool)

32 (or StartBool StartBool)

33 (not StartBool)

34 (<= CondInt CondInt)

35 (= CondInt CondInt)

36 ))))

Listing 2: The grammar for a concrete example.

1 (define -fun move ((p-r Int) (p-o0 Int) (p-o1 Int)) Int

2 (ite (<= (get -x p-r) 3) 2 1))

Listing 3: The solution our tool synthesizes for the problem from Section 3.3.
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Figure 2: Execution time of the SyGuS solver as a function of the depth of the AST it must synthesize.
For each benchmark measured here, the path length is 5, the number of obstacles is 4, and the environ-
ment size is 6 by 6. Only the depth of the output AST varies. Note that the synthesis time is shown on a
logarithmic scale.

3.4 Implementation

We have implemented the compiler described here for transforming environment descriptions and goals
to the corresponding SyGuS specifications. The source code of our tool is publicly available at:
https://github.com/schasins/reactive-motion-planning-synthesis.

4 Evaluation

In this section, we evaluate the scalability of our SyGuS-based approach to reactive motion planning.
We report how synthesis time scales with problem size, using several different measures of problem size.
We also discuss the choice of which SyGuS solver to use for these experiments.

4.1 Scalability

To evaluate the scalability of our SyGuS-based approach, we consider how it scales over four axes of
problem size: the depth of the AST to synthesize, the length of the path the robot must travel, the number
of obstacles in the environment, and the dimensions of the environment. We report performance results
obtained using the ENUMERATIVE SyGuS solver [23], which won the SyGuS competition in 2014 [1].
See Section 4.2 for a discussion of the solver choice.

4.1.1 AST Depth

We start by considering how our approach scales with the size of the synthesized programs, always
a primary concern for synthesis techniques. Specifically, we consider the relationship between solver
execution time and the depth of the abstract syntax tree (AST) of the shallowest program that can satisfy
the specification. Figure 2 shows the time to synthesize programs with depth 1, depth 4, and depth 5
ASTs. Note that the structure of our generated grammars means that no reasonable program will have a
depth of 2 or 3. As we expect, our results reflect state space explosion. The increase in synthesis time as
AST depth rises is steep.

https://github.com/schasins/reactive-motion-planning-synthesis
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Figure 3: Execution time of the SyGuS solver as a function of the number of steps (motion primitive
applications) in the robot’s path. For each benchmark measured here, the AST depth is 4, the number of
obstacles is 5, and the environment size is 20 by 20. Only the length of the robot’s path varies.

Although it is customary to compare a new synthesis tool’s maximum program size with the maxi-
mum program size of previous synthesis tools, we have found no relevant synthesis tools for which we
can compare AST depth. It is somewhat difficult to compare a SyGuS-based synthesis tool with an SMT-
based synthesis tool, since SMT-based tools typically measure the sizes of output programs in terms of
number of instructions. In our case, using SyGuS, our tool is synthesizing not only the ‘instructions’ at
each point in the program, but also the structure of the program itself. Without a clean way of comparing
measures of AST size to instruction counts, we defer the comparison with other motion planning synthe-
sis tools to the section on path length, Section 4.1.2, where the number of steps in the robot motion path
gives us a natural way of comparing program size.

The results of this experiment persuade us that as the size of the solution AST grows, the synthesis
time grows very quickly. However, we are encouraged that we can synthesize depth 5 ASTs – already
capable of expressing quite complex and sophisticated programs – in less than 8 minutes.

4.1.2 Path Length

Next we consider how the length of the robot’s motion path affects synthesis time. We measure the
motion path in steps, where each step corresponds to one application of one of the robot’s motion prim-
itives. Figure 3 depicts the relationship between path length and synthesis time. As we expect, longer
paths require longer synthesis times.

While it is clear that a higher AST depth is associated with a larger program search space, it may
be less immediately obvious how path length affects synthesis times. We detail the primary mechanisms
here.

• From the perspective of the SyGuS solver, a candidate program is a solution if the correctness
condition holds for every possible combination of obstacle motion plans. At each step, each ob-
stacle chooses amongst its available motion primitives. This means that at each step, if there are
n obstacles and obstacle oi has pi motion primitives, the number of possible obstacle outcomes at
any given step is ∏

n
i=1 pi. Thus, the space of obstacle moves across a whole path of length l is

(∏n
i=1 pi)

l .
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Figure 4: Execution time of the SyGuS solver as a function of the number of moving obstacles in the
environment. For each benchmark measured here, the AST depth is 4, the path length is 5, and the
environment size is 20 by 20. Only the number of obstacles varies.

• For a fixed assignment of motion primitives to obstacle-step pairs, the solver must calculate the
positions of the robot and the obstacles after each step.

• For a fixed assignment of motion primitives to obstacle-step pairs, the solver must identify whether
the robot collides with each obstacle at each step.

Although the curve is very steep, we are pleased that we are able to synthesize such long paths, given
the usual limits on synthesized program sizes.

For comparison, the SMT-based motion plan synthesis tool Complan [21] was assessed on two case
studies. The authors report that they ceased searching for a solution to one case study after no path of
length 20 or shorter satisfied the specification. With this in mind, and given that our tool must synthesize
control flow and handle obstacles moving at each step, we are pleased that our approach can reach that
same range, and even beyond it.

Given the very great differences between the Complan motion planning tasks and our tasks, a com-
parison between the synthesis times of these tools is not very meaningful. However, for the sake of
arguing that our synthesis times are within an acceptable range, we note that Complan synthesizes a
length 13 plan for one specification in 15 minutes and 36 seconds and a length 12 plan for a different
specification in 25 minutes and 48 seconds. For comparison, for the length 15 version of the Figure 3
benchmark, our average synthesis time was 3 minutes and 37 seconds. Again, these times cannot be
meaningfully compared as measures of tool performance, and we do not intend to imply any serious
comparison with Complan. We include these numbers only as an indication that our synthesis times
are within an acceptable range, relative to previous tools. We believe this offers a strong indication that
correct-by-construction synthesis of reactive motion plans using off-the-shelf solvers is feasible.

4.1.3 Number of Obstacles

Next we investigate the relationship between the number of moving obstacles in an environment and
the synthesis time. We show the synthesis times for a variety of different obstacle counts in Figure 4.
Naturally, increasing the number of obstacles increases the synthesis time.

The number of obstacles in the environment affects the synthesis time through the following mecha-
nisms:
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Figure 5: Execution time of the SyGuS solver as a function of the dimensions (length and width) of
the environment. For each benchmark measured here, the AST depth is 4, the path length is 5, and the
number of obstacles is 5. Only the size of the environment varies. The label “50ˆ2” indicates that both the
length of the environment and the width of the environment were 50, for a total of 250 discrete positions
in the environment.

• The robot may react to the locations of obstacles, which are arguments to the synthesized function.
Thus, increasing the number of obstacles also increases the size of the grammar.

• Recall that if there are n obstacles, the space of obstacle moves across a whole path of length l
is (∏n

i=1 pi)
l . Increasing the number of obstacles increases the number of obstacle-step variables,

increasing the space the solver must explore.

• For a fixed assignment of motion primitives to obstacle-step pairs, the solver must calculate the
positions of each obstacle after each step.

• For a fixed assignment of motion primitives to obstacle-step pairs, the solver must identify whether
the robot collides with each obstacle at each step.

4.1.4 Environment Dimensions

Finally, we consider the effect of environment dimensions on synthesis time. Figure 5 displays the
relationship between the length and width of the discretized environment and performance. Recall that
we do include the range from zero to max(length,width) in the output grammars, so increasing the
dimensions does increase the size of the grammar. Although increases in the environment dimensions
do raise the synthesis time, the curve is not steep, so we consider our approach to scale well to large
environments.

4.2 Solver Selection

Readers may be interested to note that although the CVC4-1.5-SYGUS placed first in the General Track
of the 2015 SyGuS competition, we conducted our experiments using the winner of the 2014 SyGuS
competition, the ENUMERATIVE solver. We chose the ENUMERATIVE solver based on the results of
the SyGuS 2015 competition [3], which included motion planning benchmarks generated by our tool.
The competition compared the performance on these benchmarks by all five of the 2015 General Track
solvers: CVC4-1.5-SYGUS, ENUMERATIVE, STOCHASTIC, SKETCH-AC, and SOSYTOAST. Although
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Figure 6: Execution time of various SyGuS solvers on the same reactive motion planning problem,
synthesizing a length 20 motion plan. For this benchmark, the AST depth is 4, the path length is 20, the
number of obstacles is 5, and the environment size is 20 by 20.

CVC4-1.5-SYGUS placed first in the general track and ENUMERATIVE placed only second, ENUMERA-
TIVE tended to outperform CVC4-1.5-SYGUS on benchmarks with multiple invocations. Since repeated
invocation of the synthesized function is a central feature of our approach, this alone would suggest the
ENUMERATIVE solver as a better fit. However, we also have the benefit of observing how the solvers per-
form on our motion planning tasks specifically. Of the solvers, only CVC4-1.5-SYGUS, ENUMERATIVE,
and STOCHASTIC solved any motion planning benchmarks. STOCHASTIC only solved benchmarks pro-
duced by an earlier version of our tool; the earlier version produced SyGuS specifications that accom-
modated missing solver features but required longer synthesis times. Thus, only CVC4-1.5-SYGUS and
ENUMERATIVE solved specifications produced by the current tool. Of these, the ENUMERATIVE solver
completed 5 out of 6 of the tasks, while CVC4-1.5-SYGUS solved only 2. In particular, CVC4-1.5-
SYGUS solved only the benchmarks that combined short path lengths with small AST depths. Even
for the two benchmarks completed by both solvers, the ENUMERATIVE solver exhibited faster synthe-
sis times than CVC4-1.5-SYGUS. With these results in hand, we are confident that the ENUMERATIVE

solver currently offers the best performance for our motion planning tasks.

4.3 Discussion

We find our results at once encouraging and discouraging. On the one hand, we have to wait more
than 13 minutes for the solver to synthesize a 20 step motion plan, a substantial time. On the other
hand, as recently as 2014, before the enumerative solver fully supported let expressions, we would have
had to wait more than 16 minutes. See Figure 6 for a comparison of the synthesis times for one of
our benchmarks using the 2014 STOCHASTIC solver, the 2014 ENUMERATIVE solver, and the 2015
ENUMERATIVE solver. Even on a length 20 motion plan, the older solver is more than 24% slower.
For longer motion plans, the difference in performance is even more drastic. In these early years of
the SyGuS formalism, tools for solving SyGuS problems are rapidly improving. As they continue to
develop, we expect that synthesis times for this approach will continue to drop, making approaches like
ours increasingly feasible.

Of our scalability results, the AST depth results are certainly the most discouraging. Search space
explosion is an inherent and inevitable feature of a SyGuS-based approach. With each increase in depth,
the solver must of course search a much larger space of programs. Still, even the AST depth results
leave us hopeful. Although the complexity of the output program clearly has a tremendous impact on the
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feasibility of using our approach, our experience designing the benchmarks for the AST depth experiment
left us surprised by the number of problems that can be solved with small programs. For the AST depth
experiment, we needed to identify a benchmark that could only be solved with a program of depth 5 or
greater. To do this, we designed tasks for which we ourselves would have written programs with depth
5 ASTs. To our surprise, several of these tasks were solved by the synthesizer using programs with
depth 4 ASTs before we ultimately created a variation for which the synthesizer was unable to find a
smaller form. Without any evidence of whether real world problems would behave similarly, we cannot
be sure how encouraging we should find this experience. We expect to explore this in future work. We
are hopeful, however, that applying synthesis to real world problems will also produce surprising and
surprisingly small programs.

Given that our tool offers a synthesize-once approach, we are reasonably satisfied with the current
synthesis times. We imagine that – in light of how easy it is to express a problem instance for our tool –
users might be willing to express a motion planning problem with our system and let it run a few minutes,
or even overnight, before attempting to write an appropriate reactive motion plan by hand. It is worth
noting that the developers of existing SMT-based motion planning tools are pleased to see synthesis times
even into the 4 hour range [21, 22]. Ultimately, since this tool offers reactivity without having to replan
during execution, the synthesis time is truly a one-time cost. If users need a provably correct motion
plan, they may be willing to accept some waiting at design time.

In short, although we would certainly like to see better performance results, we do believe SyGuS-
based reactive motion planning is a feasible direction. Taking a synthesize-once approach, rather than
the alternative replanning approach, substantially reduces the time pressure. Even more importantly, we
expect to continue to see advances in SyGuS solver technology. Because we use the standardized SyGuS
format to express our problem, we can plug any current or future SyGuS solver into our tool. Thus, our
technique can be easily upgraded as the state of the art in SyGuS solving advances.

5 Related Work

In this section we discuss the classes of tools most closely related to our own work. In particular, we
break this work into two primary categories: tools that use existing functional synthesis formalisms for
synthesizing non-reactive motion planners and tools that use custom or non-functional synthesizers to
produce reactive motion planners.

Synthesis of Non-Reactive Motion Plans. Although we do not know of any tools that synthesize
reactive motion plans by compiling directly to functional solvers, there are certainly tools that use off-
the-shelf functional solvers to synthesize non-reactive motion plans. We have already mentioned Com-
plan [21], an SMT-based motion planner for multi-robot systems. We follow in Complan’s footsteps in
translating motion planning problems into existing synthesis formalisms, discretizing the space, and in
decoupling the production of motion primitives from the decisions about when to use them. A new tool
from the same group, Implan [22], takes the Complan approach even further through robot grouping, but
still focuses on stable environments.

There has been a strong interest, especially recently, in tools that use SMT solvers to synthesize
motion plans. Like our tool, some focus on identifying a path between two points [10]. Others operate
on novel input formats like Nedunuri’s ‘program outlines’, the input to SMT-based Robosynth [19]. The
inputs and goals vary from tool to tool, but the heavy use of discretization and the clean compilation to
existing functional solver technology are consistent.
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Synthesis of Reactive Motion Plans. There is a growing body of work on synthesizing reactive mo-
tion planners, and on the custom algorithms and approaches developed to support them. These tools
sometimes focus on motion primitives in addition to the higher-level motion plans that use them [18, 4].
They often resynthesize throughout the process of execution [24, 25]; sometimes they resynthesize to
make use of increased environment knowledge during execution, and sometimes to achieve scalability
by breaking the planning problem into smaller subproblems (following a receding horizon model). Some
combine design-time planning with online planning [6]. In short, there is a great variety of tools for gen-
erating reactive motion plans. They also utilize a great variety of algorithms for handling their synthesis
challenges.

There are also many tools that use reactive solvers to directly solve reactive motion planning prob-
lems. Typically these tools frame their motion planning problems as games between the robot and an
adversarial environment and use synthesizers that accept specifications from the generalized reactivity(1)
fragment of LTL. SmalL bUt Complete GROne Synthesizer (Slugs) [7] and gr1c [17] are two such syn-
thesizers. Both produce automata from generalized reactivity(1) (GR(1)) specifications. With the recent
strong interest in high-level specification formats for reactive synthesis [14, 12, 8] and the introduction
of a reactive synthesis competition SYNTCOMP [11], it seems likely stand-alone reactive synthesizers
will become increasingly available and usable.

Although we do not know of any reactive motion planners that use these higher-level interfaces to
reactive synthesizers, there are certainly techniques that use GR(1) specifications and existing off-the-
shelf reactive synthesis tools. As an illustrative example, we look in more detail at the Kress-Gazit et
al. tool presented in [15]. Kress-Gazit et al. break their reactive motion plans into two parts, a discrete
component that produces the high-level plan and a continuous component that implements the plan. They
produce the discrete component using the Piterman et al. algorithm presented in [5]. The Piterman et
al. algorithm takes GR(1) specifications as input and, if the input specification is realizeable, produces
an automaton which offers one possible implementation of the system player. The Kress-Gazit et al.
tool accepts specifications of the same form, treats the robot and its environment as the two players,
and uses the output automaton to directly determine the robot’s motion plan. Although these reactive
synthesizers may offer motion planning tool builders less control over the form of the output motion
plans, they certainly do offer off-the-shelf techniques that can be cleanly applied to reactive motion
planning problems.

Overall, the motion planners that use reactive solvers produce effective plans but offer the planners’
builders less control over the plans. New developments in reactive synthesis indicate that this may
be changing as the reactive synthesis field moves towards giving users more control over the form of
their output automata. For instance, bounded synthesis [9] allows users to place limits on the number
of states in the output automata. While this does not reach the level of control that a developer can
achieve with a functional solver, it offers an alternative to the unreadable automata with tens of thousands
of states that are common outputs for standard reactive solvers. If this progress continues, we expect
that the advantages of a functional over a reactive approach to motion planning may diminish. We
believe the primary benefits of using a functional solver are control over the form of the output motion
plans, the opportunity to easily explore many different output spaces (grammars), the opportunity to
restrict the output space based on domain knowledge, and the potential to produce readable and adaptable
motion plans. We hope that as reactive solvers continue to develop, they will acquire many of the same
advantages.

We know of one work that comes close to using a functional solver to synthesize reactive motion
plans, Juniwal’s SKETCH-based approach [13]. Although this work does not synthesize complete motion
plans, it does help users complete motion plans that they have already partially implemented. The inputs
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to this approach are an LTL specification and a program with holes. It uses the functional SKETCH

synthesizer to fill the holes, then applies a verifier to the result. If, for a given partial program, SKETCH

cannot find a feasible candidate, the user may write a new partial program and try again. If this partial
program suggestion loop were automated (essentially building up a SyGuS-like layer on top of SKETCH
3), this approach could be used to synthesize whole reactive motion plans.

High-Level Synthesis Tools Compiling to SyGuS. To our knowledge, no other high-level synthesis
tool has yet attempted to compile to SyGuS.

6 Conclusion

In environments with adversarial or moving obstacles, it is often valuable to allow robots to react to
their surroundings. While past synthesis tools have used off-the-shelf functional solvers to produce non-
reactive motion plans, our tool is the first to use a functional solver to directly synthesize reactive motion
plans. By compiling motion planning problems to the new SyGuS formalism, we can synthesize not
just a straight-line sequence of actions, but control flow for picking actions based on a robot’s current
status. We have evaluated the performance of our approach over a range of program sizes, and the
results indicate that a SyGuS-based approach is viable. We believe the success of this approach offers
an indication that other high-level synthesis goals – and reachability games in particular – which would
previously have demanded the development of custom algorithms and solvers may now be in reach of
sophisticated synthesis formalisms like SyGuS.
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A Full SyGus Specification

1 ( s e t−l o g i c LIA )

2
3
4 ( d e f i n e−fun ge t−y ( ( c u r r P o i n t I n t ) ) I n t
5 ( i t e (< c u r r P o i n t 5 ) 0 ( i t e (< c u r r P o i n t 10) 1 ( i t e (< c u r r P o i n t 15) 2 ( i t e (< c u r r P o i n t 20) 3 ( i t e (< c u r r P o i n t 25) 4 ( i t e (<

c u r r P o i n t 30) 5 6 ) ) ) ) ) ) )

6
7 ( d e f i n e−fun ge t−x ( ( c u r r P o i n t I n t ) ) I n t
8 (− c u r r P o i n t (∗ ( ge t−y c u r r P o i n t ) 5 ) ) )

9
10 ( d e f i n e−fun i n t e r p r e t −move ( ( c u r r P o i n t I n t ) ( move I n t ) ) I n t
11 ( i t e (= move 0) c u r r P o i n t

12 ( i t e (= move 1) ( i t e ( o r (< (+ ( ge t−y c u r r P o i n t ) 1 ) 0 ) (>= (+ ( ge t−y c u r r P o i n t ) 1 ) 7 ) ) c u r r P o i n t (+ c u r r P o i n t 5 ) )

13 ( i t e (= move 2) ( i t e ( o r (< (+ ( ge t−x c u r r P o i n t ) 1 ) 0 ) (>= (+ ( ge t−x c u r r P o i n t ) 1 ) 5 ) ) c u r r P o i n t (+ c u r r P o i n t 1 ) )

14 ( i t e (= move 3) ( i t e ( o r (< (+ ( ge t−y c u r r P o i n t ) −1) 0 ) (>= (+ ( ge t−y c u r r P o i n t ) −1) 7 ) ) c u r r P o i n t (+ c u r r P o i n t −5) )

15 ( i t e (= move 4) ( i t e ( o r (< (+ ( ge t−x c u r r P o i n t ) −1) 0 ) (>= (+ ( ge t−x c u r r P o i n t ) −1) 5 ) ) c u r r P o i n t (+ c u r r P o i n t −1) )

16 c u r r P o i n t ) ) ) ) ) )

17
18 ( d e f i n e−fun i n t e r p r e t −move−o b s t a c l e −0 ( ( c u r r P o i n t I n t ) ( move I n t ) ) I n t
19 ( i t e (= move 0) ( i t e ( o r (< (+ ( ge t−y c u r r P o i n t ) 1 ) 0 ) (>= (+ ( ge t−y c u r r P o i n t ) 1 ) 7 ) ) c u r r P o i n t (+ c u r r P o i n t 5 ) )

20 ( i t e (= move 1) ( i t e ( o r (< (+ ( ge t−y c u r r P o i n t ) −1) 0 ) (>= (+ ( ge t−y c u r r P o i n t ) −1) 7 ) ) c u r r P o i n t (+ c u r r P o i n t −5) )

21 c u r r P o i n t ) ) )

22
23 ( d e f i n e−fun i n t e r p r e t −move−o b s t a c l e −1 ( ( c u r r P o i n t I n t ) ( move I n t ) ) I n t
24 ( i t e (= move 0) ( i t e ( o r (< (+ ( ge t−y c u r r P o i n t ) 1 ) 0 ) (>= (+ ( ge t−y c u r r P o i n t ) 1 ) 7 ) ) c u r r P o i n t (+ c u r r P o i n t 5 ) )

25 ( i t e (= move 1) ( i t e ( o r (< (+ ( ge t−y c u r r P o i n t ) −1) 0 ) (>= (+ ( ge t−y c u r r P o i n t ) −1) 7 ) ) c u r r P o i n t (+ c u r r P o i n t −5) )

26 c u r r P o i n t ) ) )

27
28 ( d e f i n e−fun no−o v e r l a p−one−move−combina t ion−2−2 ( ( p0 I n t ) ( p1 I n t ) ( p2 I n t ) ( p3 I n t ) ) Bool
29 ( and ( n o t (= p0 p2 ) ) ( and ( n o t (= p0 p3 ) ) ( and ( n o t (= p1 p2 ) ) ( n o t (= p1 p3 ) ) ) ) ) )

30
31 ( d e f i n e−fun no−o v e r l a p s −0 ( ( c u r r P o i n t I n t ) ( move I n t ) ( o b s t a c l e C u r r P o i n t I n t ) ( obs t ac l eMove I n t ) ) Bool
32 (= 1

33 ( i t e (= move 0)

34 ( i t e (= obs t ac l eMove 0) ( i t e ( no−o v e r l a p−one−move−combina t ion−2−2 c u r r P o i n t (+ (+ c u r r P o i n t 0 ) 0 ) o b s t a c l e C u r r P o i n t (+ (+
o b s t a c l e C u r r P o i n t 0 ) 5 ) ) 1 0 )

35 ( i t e (= obs t ac l eMove 1) ( i t e ( no−o v e r l a p−one−move−combina t ion−2−2 c u r r P o i n t (+ (+ c u r r P o i n t 0 ) 0 ) o b s t a c l e C u r r P o i n t (+ (+
o b s t a c l e C u r r P o i n t 0 ) −5) ) 1 0 ) 0 ) )

36 ( i t e (= move 1)

37 ( i t e (= obs t ac l eMove 0) ( i t e ( no−o v e r l a p−one−move−combina t ion−2−2 c u r r P o i n t (+ (+ c u r r P o i n t 0 ) 5 ) o b s t a c l e C u r r P o i n t (+ (+
o b s t a c l e C u r r P o i n t 0 ) 5 ) ) 1 0 )

38 ( i t e (= obs t ac l eMove 1) ( i t e ( no−o v e r l a p−one−move−combina t ion−2−2 c u r r P o i n t (+ (+ c u r r P o i n t 0 ) 5 ) o b s t a c l e C u r r P o i n t (+ (+
o b s t a c l e C u r r P o i n t 0 ) −5) ) 1 0 ) 0 ) )

39 ( i t e (= move 2)

40 ( i t e (= obs t ac l eMove 0) ( i t e ( no−o v e r l a p−one−move−combina t ion−2−2 c u r r P o i n t (+ (+ c u r r P o i n t 1 ) 0 ) o b s t a c l e C u r r P o i n t (+ (+
o b s t a c l e C u r r P o i n t 0 ) 5 ) ) 1 0 )

http://dx.doi.org/10.1109/ICCPS.2016.7479105
https://github.com/rishabhs/sygus-comp14/tree/master/solvers/enumerative/esolver-synth-lib
https://github.com/rishabhs/sygus-comp14/tree/master/solvers/enumerative/esolver-synth-lib
http://dx.doi.org/10.1109/TAC.2012.2195811
http://dblp.uni-trier.de/db/journals/tac/tac57.html#WongpiromsarnTM12
http://dblp.uni-trier.de/db/journals/tac/tac57.html#WongpiromsarnTM12
http://dx.doi.org/10.1109/IROS.2010.5649645
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41 ( i t e (= obs t ac l eMove 1) ( i t e ( no−o v e r l a p−one−move−combina t ion−2−2 c u r r P o i n t (+ (+ c u r r P o i n t 1 ) 0 ) o b s t a c l e C u r r P o i n t (+ (+
o b s t a c l e C u r r P o i n t 0 ) −5) ) 1 0 ) 0 ) )

42 ( i t e (= move 3)

43 ( i t e (= obs t ac l eMove 0) ( i t e ( no−o v e r l a p−one−move−combina t ion−2−2 c u r r P o i n t (+ (+ c u r r P o i n t 0 ) −5) o b s t a c l e C u r r P o i n t (+ (+
o b s t a c l e C u r r P o i n t 0 ) 5 ) ) 1 0 )

44 ( i t e (= obs t ac l eMove 1) ( i t e ( no−o v e r l a p−one−move−combina t ion−2−2 c u r r P o i n t (+ (+ c u r r P o i n t 0 ) −5) o b s t a c l e C u r r P o i n t (+ (+
o b s t a c l e C u r r P o i n t 0 ) −5) ) 1 0 ) 0 ) )

45 ( i t e (= move 4)

46 ( i t e (= obs t ac l eMove 0) ( i t e ( no−o v e r l a p−one−move−combina t ion−2−2 c u r r P o i n t (+ (+ c u r r P o i n t −1) 0 ) o b s t a c l e C u r r P o i n t (+ (+
o b s t a c l e C u r r P o i n t 0 ) 5 ) ) 1 0 )

47 ( i t e (= obs t ac l eMove 1) ( i t e ( no−o v e r l a p−one−move−combina t ion−2−2 c u r r P o i n t (+ (+ c u r r P o i n t −1) 0 ) o b s t a c l e C u r r P o i n t (+ (+
o b s t a c l e C u r r P o i n t 0 ) −5) ) 1 0 ) 0 ) ) 0 ) ) ) ) ) ) )

48
49 ( d e f i n e−fun no−o v e r l a p s −1 ( ( c u r r P o i n t I n t ) ( move I n t ) ( o b s t a c l e C u r r P o i n t I n t ) ( obs t ac l eMove I n t ) ) Bool
50 (= 1

51 ( i t e (= move 0)

52 ( i t e (= obs t ac l eMove 0) ( i t e ( no−o v e r l a p−one−move−combina t ion−2−2 c u r r P o i n t (+ (+ c u r r P o i n t 0 ) 0 ) o b s t a c l e C u r r P o i n t (+ (+
o b s t a c l e C u r r P o i n t 0 ) 5 ) ) 1 0 )

53 ( i t e (= obs t ac l eMove 1) ( i t e ( no−o v e r l a p−one−move−combina t ion−2−2 c u r r P o i n t (+ (+ c u r r P o i n t 0 ) 0 ) o b s t a c l e C u r r P o i n t (+ (+
o b s t a c l e C u r r P o i n t 0 ) −5) ) 1 0 ) 0 ) )

54 ( i t e (= move 1)

55 ( i t e (= obs t ac l eMove 0) ( i t e ( no−o v e r l a p−one−move−combina t ion−2−2 c u r r P o i n t (+ (+ c u r r P o i n t 0 ) 5 ) o b s t a c l e C u r r P o i n t (+ (+
o b s t a c l e C u r r P o i n t 0 ) 5 ) ) 1 0 )

56 ( i t e (= obs t ac l eMove 1) ( i t e ( no−o v e r l a p−one−move−combina t ion−2−2 c u r r P o i n t (+ (+ c u r r P o i n t 0 ) 5 ) o b s t a c l e C u r r P o i n t (+ (+
o b s t a c l e C u r r P o i n t 0 ) −5) ) 1 0 ) 0 ) )

57 ( i t e (= move 2)

58 ( i t e (= obs t ac l eMove 0) ( i t e ( no−o v e r l a p−one−move−combina t ion−2−2 c u r r P o i n t (+ (+ c u r r P o i n t 1 ) 0 ) o b s t a c l e C u r r P o i n t (+ (+
o b s t a c l e C u r r P o i n t 0 ) 5 ) ) 1 0 )

59 ( i t e (= obs t ac l eMove 1) ( i t e ( no−o v e r l a p−one−move−combina t ion−2−2 c u r r P o i n t (+ (+ c u r r P o i n t 1 ) 0 ) o b s t a c l e C u r r P o i n t (+ (+
o b s t a c l e C u r r P o i n t 0 ) −5) ) 1 0 ) 0 ) )

60 ( i t e (= move 3)

61 ( i t e (= obs t ac l eMove 0) ( i t e ( no−o v e r l a p−one−move−combina t ion−2−2 c u r r P o i n t (+ (+ c u r r P o i n t 0 ) −5) o b s t a c l e C u r r P o i n t (+ (+
o b s t a c l e C u r r P o i n t 0 ) 5 ) ) 1 0 )

62 ( i t e (= obs t ac l eMove 1) ( i t e ( no−o v e r l a p−one−move−combina t ion−2−2 c u r r P o i n t (+ (+ c u r r P o i n t 0 ) −5) o b s t a c l e C u r r P o i n t (+ (+
o b s t a c l e C u r r P o i n t 0 ) −5) ) 1 0 ) 0 ) )

63 ( i t e (= move 4)

64 ( i t e (= obs t ac l eMove 0) ( i t e ( no−o v e r l a p−one−move−combina t ion−2−2 c u r r P o i n t (+ (+ c u r r P o i n t −1) 0 ) o b s t a c l e C u r r P o i n t (+ (+
o b s t a c l e C u r r P o i n t 0 ) 5 ) ) 1 0 )

65 ( i t e (= obs t ac l eMove 1) ( i t e ( no−o v e r l a p−one−move−combina t ion−2−2 c u r r P o i n t (+ (+ c u r r P o i n t −1) 0 ) o b s t a c l e C u r r P o i n t (+ (+
o b s t a c l e C u r r P o i n t 0 ) −5) ) 1 0 ) 0 ) ) 0 ) ) ) ) ) ) )

66
67 ( d e f i n e−fun no−o v e r l a p s−one−s t e p ( ( c u r r P o i n t I n t ) ( move I n t ) ( o0pos I n t ) ( o0move I n t ) ( o1pos I n t ) ( o1move I n t ) ) Bool
68 ( and ( no−o v e r l a p s −0 c u r r P o i n t move o0pos o0move ) ( no−o v e r l a p s −1 c u r r P o i n t move o1pos o1move ) ) )

69
70
71
72 ( d e c l a r e−v a r o0−mov0 I n t )

73 ( d e c l a r e−v a r o0−mov1 I n t )

74 ( d e c l a r e−v a r o0−mov2 I n t )

75 ( d e c l a r e−v a r o0−mov3 I n t )

76 ( d e c l a r e−v a r o0−mov4 I n t )

77 ( d e c l a r e−v a r o0−mov5 I n t )

78 ( d e c l a r e−v a r o1−mov0 I n t )

79 ( d e c l a r e−v a r o1−mov1 I n t )

80 ( d e c l a r e−v a r o1−mov2 I n t )

81 ( d e c l a r e−v a r o1−mov3 I n t )

82 ( d e c l a r e−v a r o1−mov4 I n t )

83 ( d e c l a r e−v a r o1−mov5 I n t )

84
85 ( syn th−fun move ( ( c u r r P o i n t I n t ) ( o0 I n t ) ( o1 I n t ) ) I n t
86 ( ( S t a r t I n t (

87 MoveId

88 ( i t e S t a r t B o o l S t a r t S t a r t ) ) )

89 ( MoveId I n t (0

90 1

91 2

92 3

93 4

94 ) )

95 ( CondIn t I n t (



20 Using SyGuS to Synthesize Reactive Motion Plans

96 ( ge t−y c u r r P o i n t ) ;y coord

97 ( ge t−x c u r r P o i n t ) ;x coord

98 ( ge t−y o0 )

99 ( ge t−x o0 )

100 ( ge t−y o1 )

101 ( ge t−x o1 )

102 (+ CondIn t CondIn t )

103 (− CondIn t CondIn t )

104 −1

105 0

106 1

107 2

108 3

109 4

110 5

111 6

112 ) )

113 ( S t a r t B o o l Bool ( ( and S t a r t B o o l S t a r t B o o l )

114 ( o r S t a r t B o o l S t a r t B o o l )

115 ( n o t S t a r t B o o l )

116 (<= CondIn t CondIn t )

117 (= CondIn t CondIn t ) ) ) ) )

118
119 ( c o n s t r a i n t

120 ( o r

121 ( n o t ( and ( o r (= o0−mov0 0) (= o0−mov0 1) ) ( and ( o r (= o0−mov1 0) (= o0−mov1 1) ) ( and ( o r (= o0−mov2 0) (= o0−mov2 1) ) (
and ( o r (= o0−mov3 0) (= o0−mov3 1) ) ( and ( o r (= o0−mov4 0) (= o0−mov4 1) ) ( and ( o r (= o0−mov5 0) (= o0−mov5 1) ) (
and ( o r (= o1−mov0 0) (= o1−mov0 1) ) ( and ( o r (= o1−mov1 0) (= o1−mov1 1) ) ( and ( o r (= o1−mov2 0) (= o1−mov2 1) ) (
and ( o r (= o1−mov3 0) (= o1−mov3 1) ) ( and ( o r (= o1−mov4 0) (= o1−mov4 1) ) ( o r (= o1−mov5 0) (= o1−mov5 1) ) ) ) ) ) ) ) ) ) )
) ) )

122
123 ( l e t ( ( o0−pos0 I n t 27) ( o1−pos0 I n t 28) ) ( l e t ( ( o0−pos1 I n t ( i n t e r p r e t −move−o b s t a c l e −0 o0−pos0 o0−mov0 ) ) ( o1−pos1 I n t (

i n t e r p r e t −move−o b s t a c l e −1 o1−pos0 o1−mov0 ) ) ) ( l e t ( ( o0−pos2 I n t ( i n t e r p r e t −move−o b s t a c l e −0 o0−pos1 o0−mov1 ) ) ( o1−
pos2 I n t ( i n t e r p r e t −move−o b s t a c l e −1 o1−pos1 o1−mov1 ) ) ) ( l e t ( ( o0−pos3 I n t ( i n t e r p r e t −move−o b s t a c l e −0 o0−pos2 o0−mov2
) ) ( o1−pos3 I n t ( i n t e r p r e t −move−o b s t a c l e −1 o1−pos2 o1−mov2 ) ) ) ( l e t ( ( o0−pos4 I n t ( i n t e r p r e t −move−o b s t a c l e −0 o0−pos3
o0−mov3 ) ) ( o1−pos4 I n t ( i n t e r p r e t −move−o b s t a c l e −1 o1−pos3 o1−mov3 ) ) ) ( l e t ( ( o0−pos5 I n t ( i n t e r p r e t −move−o b s t a c l e −0
o0−pos4 o0−mov4 ) ) ( o1−pos5 I n t ( i n t e r p r e t −move−o b s t a c l e −1 o1−pos4 o1−mov4 ) ) )

124 ( l e t ( ( pos0 I n t 6) ) ( l e t ( ( mov0 I n t ( move pos0 27 28) ) ) ( l e t ( ( pos1 I n t ( i n t e r p r e t −move pos0 mov0 ) ) ) ( l e t ( ( mov1 I n t ( move
pos1 o0−pos1 o1−pos1 ) ) ) ( l e t ( ( pos2 I n t ( i n t e r p r e t −move pos1 mov1 ) ) ) ( l e t ( ( mov2 I n t ( move pos2 o0−pos2 o1−pos2 ) ) ) ( l e t

( ( pos3 I n t ( i n t e r p r e t −move pos2 mov2 ) ) ) ( l e t ( ( mov3 I n t ( move pos3 o0−pos3 o1−pos3 ) ) ) ( l e t ( ( pos4 I n t ( i n t e r p r e t −move
pos3 mov3 ) ) ) ( l e t ( ( mov4 I n t ( move pos4 o0−pos4 o1−pos4 ) ) ) ( l e t ( ( pos5 I n t ( i n t e r p r e t −move pos4 mov4 ) ) ) ( l e t ( ( mov5 I n t

( move pos5 o0−pos5 o1−pos5 ) ) ) ( l e t ( ( pos6 I n t ( i n t e r p r e t −move pos5 mov5 ) ) )

125
126 ( and

127 (= pos6 24)

128 ( and ( no−o v e r l a p s−one−s t e p pos0 mov0 27 o0−mov0 28 o1−mov0 ) ( and ( no−o v e r l a p s−one−s t e p pos1 mov1 o0−pos1 o0−mov1 o1−pos1
o1−mov1 ) ( and ( no−o v e r l a p s−one−s t e p pos2 mov2 o0−pos2 o0−mov2 o1−pos2 o1−mov2 ) ( and ( no−o v e r l a p s−one−s t e p pos3 mov3
o0−pos3 o0−mov3 o1−pos3 o1−mov3 ) ( and ( no−o v e r l a p s−one−s t e p pos4 mov4 o0−pos4 o0−mov4 o1−pos4 o1−mov4 ) ( no−o v e r l a p s−
one−s t e p pos5 mov5 o0−pos5 o0−mov5 o1−pos5 o1−mov5 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )

129
130 ( check−s y n t h )

Listing 4: The full SyGuS specification generated for the sample problem from Section 1.
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