
Dimitrova, Piskac (Eds.): Fifth Workshop on
Synthesis (SYNT 2016)
EPTCS 229, 2016, pp. 21–34, doi:10.4204/EPTCS.229.4

c© W. Damm, B. Finkbeiner & A. Rakow
This work is licensed under the Creative Commons
Attribution-Noncommercial-No Derivative Works License.

What You Really Need To Know About Your Neighbor∗

Werner Damm
CvO Universität Oldenburg,

26111 Oldenburg
werner.damm@offis.de

Bernd Finkbeiner
Universität des Saarlandes,

Campus E1 3, 66123 Saarbrücken
finkbeiner@cs.uni-saarland.de

Astrid Rakow
CvO Universität Oldenburg,

26111 Oldenburg
a.rakow@uni-oldenburg.de

A fundamental question in system design is to decide how much of the design of one component
must be known in order to successfully design another component of the system. We study this
question in the setting of reactive synthesis, where one constructs a system implementation from
a specification given in temporal logic. In previous work, we have shown that the system can be
constructed compositionally, one component at a time, if the specification admits a ”dominant” (as
explained in Introduction) strategy for each component. In this paper, we generalize the approach
to settings where dominant strategies only exist under certain assumptions about the future behav-
ior of the other components. We present an incremental synthesis method based on the automatic
construction of such assumptions.

1 Introduction

We investigate the following fundamental research question in system design: Consider a system archi-
tecture A composed of two processes ph, pl of different priorities high and low, all with defined interfaces
inp(A), out(A), inp(ph), out(ph), inp(pl), out(pl) and objectives ϕA, ϕph , ϕpl expressed in linear time
temporal logic using the interfaces of A, ph, pl . How much does ph need to know about pl so that

(1) both jointly realize ϕA whenever possible,

(2) ph can realize its objective whenever possible,

(3) pl only sacrifices achieving its objectives when this is the only way to achieve (1) and (2)?

We provide a rigorous formulation of this research question, and give algorithms to compute the insight
ph must have into pl . We then show how this can be used to generate best-in-class strategies for ph and
pl , in the sense that if there is a strategy at all for ph which in the context of pl achieves both (1) and
(2), then so will the best-in-class strategy for ph, and if there is a strategy at all for pl which achieves
(3), then so will the best-in-class strategy for pl . The algorithm works for any number of processes with
priorities henceforth represented by a partial order <.

Such system design questions arise naturally in many application areas, with A being a system of
systems, ϕA representing overarching control objectives, and constituent systems p1, . . . , pn with their
own local control objectives, where < reflects the degree of criticality of the subsystem for the overall
system. In such systems, the notion of neighborhood has its classical interpretation based on physical
proximity. One example of such systems are smart grids, where subsystems represent different types
of energy providers and consumers, and the highest priority subsystem is responsible for maintaining
stability of the subgrid in spite of large fluctuations of inflow and outflow of energy. The running example
we use comes from cooperative autonomous vehicle control, where the overall objectives relate to safety,

∗This work has been partly supported by the German Research Foundation (DFG) as part of the Transregional Collaborative
Research Center ”Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS).

http://dx.doi.org/10.4204/EPTCS.229.4
http://creativecommons.org
http://creativecommons.org/licenses/by-nc-nd/3.0/

22 What You Really Need To Know About Your Neighbor

avoiding congestion, fuel and CO2 reduction etc, and local objectives relate to reaching destinations
in given time frames, reducing fuel consumption, and executing certain maneuvers. We focus here on
simple objectives such as completing a maneuver with cooperation from neighboring cars.

As pointed out in [10, 11], for systems of systems controlling physical systems as in the two ex-
amples above, there will be no winning strategies, because rare physical events such as stemming from
extreme weather conditions or physical system failures can occur, making it impossible to even achieve
overarching safety objectives. No electronic stability system of a car would be able to still guarantee
safety in unexpected icy road conditions in a dynamical situation with already stretched system limits.
We introduced the notion of (remorse-free) dominant strategies to compare strategies in such applica-
tions where a winning strategy cannot be found, making precise what has been called ”best-in-class”
strategies above. Such a strategy will – for every sequence of environment actions – be at least as good
in achieving the system objectives as any other strategy. We can now make precise the addressed research
question: how much insight does ph need into the plans of pl , so that there is a dominant strategy for ph
to achieve (1) and (2) above?

In general, local strategies must cater for needs of neighboring systems, so as to enable synthesis
of (remorse-free) dominant systems. Consider e.g. a two car system on the highway, with the ego car
wanting to reach the next exit, and having an other, neighboring car on the rightmost lane. There is no
remorse-free dominant strategy of the ego car to reach the exit, unless the other car to its right cooperates:
if the ego car accelerates to overtake the car, the car on right might do the same; similarly, an attempt
to reach the exit by slowing down might be blocked by the car to the right. Thus ego needs insight into
the future moves of the other car. In fact, if the other car would signal, that its next move will be to
decelerate, then the ego car can bet on accelerating so as to overtake the car and reach the exit. If, on
the other hand, the other car would promise to accelerate, then ego could decelerate and thus change
lane in order to reach the exit. The weakest assumption for ego to have a dominant strategy will not
only consider the next move of the other car, but give the other car as much flexibility as possible, as
long as a lane change will still be possible prior to reaching the exit. We formalize these as what we call
assumption trees of ego, which branches at each point in time into the set of possible futures of settings
of the speed control of the other car s.t. the ego car has a dominant strategy in all such futures, and
show that we can compute the most general assumption tree under which ego has a dominant strategy.
A strategy for the other car is then not only determining the speed control of other, but also picking only
evolutions which are compatible with ego’s assumption tree. Rather than communicating the choice of
such future moves through an extended interface, we provide ego with a copy of the strategy of other, so
that ego can determine the selected future by simulating the strategy of the other car.

In general, such assumption trees can have unbounded depth. Consider the slight variant of the
above example, where ego only wants to change lanes (no exit targeted) and has as secondary objective
to always keep its speed. The most general assumption tree of ego will then, at each depth, have choices
of futures where the other car will always keep its speed, forcing ego to either accelerate or decelerate
to at least meet its higher priority objective of changing lane, and those futures where eventually other
either breaks or accelerates, in which case ego can achieve both its objectives.

In general, we assume to have n processes ordered by criticality <. Intuitively, if ph is more critical
than pl (ph > pl), then we would want pl to adapt its behavior so as to be compliant to the assumption
tree of ph. For a totally ordered set of processes p1 > p2 > .. . > pn we thus generate assumption
trees inductively starting with p1, and then propagate this along the total order. Assuming the overall
environment of A = {p1, . . . , pn} meets the assumption tree of pn, we can then synthesize for each p j a
remorse-free dominant strategy meeting the canonical generalization of (1),(2),(3) above to n processes.
If processes are only partially ordered, we perform this algorithm for clusters of processes with same

W. Damm, B. Finkbeiner & A. Rakow 23

priority.

Related Work We introduced the notion of remorse-free dominant strategies in [10], and provided
methods for compositional synthesis of remorse-free dominant strategies in [11]. Compositional ap-
proaches have been studied in the setting of assume-guarantee synthesis [4], where the synthesized
strategies are guaranteed to be robust with respect to changes in other components, as long as the other
components do not violate their own, local, specifications. In contrast, in this paper, we derive assump-
tions to ensure cooperation. The automatic synthesis of strategies for reactive systems goes back to the
seminal works by Church, Büchi, Landweber, and Rabin in the 1960s [6, 3, 27], and by Pnueli and
Rosner in the 1980s [25]. For distributed systems, the synthesis problem is known to be undecidable in
general [26], and decidable under certain assumptions such as well-connected system architectures [19].
The problem that specifications usually must be strengthened with environment assumptions to become
realizable has been recognized by several authors. The construction by Chatterjee et al [5] directly op-
erates on the game graph. A safety assumption is computed by removing a minimal set of environment
edges from the graph. A liveness assumption is then computed by putting fairness assumptions on the
remaining edges. Liu et al [21] mine counterexamples to realizability to find new assumptions. A key
difference between the assumptions generated in these approaches and the assumptions of this paper is
that we compute assumptions for the existence of dominant strategies, not for the existence of winning
strategies. As a result, our assumptions are weaker. In particular, it is in general not necessary to restrict
the behavioral traces of the other components, only their branching structure.

The notion of admissibile strategy in [1, 15, 16, 2] is closely related to our notion of dominant
strategy. In [1] Berwanger presents a method based on iterated admissibility and gives existence results
for general multi-player games of infinite duration. Faella presents in [16] an efficient way to compute
admissible strategies by computing the conventional winning strategy, which is applied from winning
states, and a cooperatively winning strategy for the remaining states. Brenguier et al [2] introduce an
approach called assume-admissible synthesis. In assume-admissible synthesis it is assumed a-priori that
the other components also apply admissible strategies, while we make no such assumption.

To use formal methods and in particular formal synthesis methods for coordinated vehicle maneu-
vers has been proposed in among others [18, 17, 31, 12, 13, 14, 30, 24]. [18] searches for strategies
controlling all vehicles, and employs heuristic methods from artificial intelligence such as tree-search
to determine strategies for coordinated vehicle movements. An excellent survey for alternative methods
for controlling all vehicles to perform collision free driving tasks is given in [17]. Both methods share
the restriction of the analysis to a small number of vehicles, in contrast to our approach, which is based
on safe abstractions guaranteeing collision freedom in achieving the driver’s objectives taking into ac-
count the complete traffic situation. In [7], the authors show that LTL formulas are expressive enough
to express typical traffic-flow optimization objectives, and use formal synthesis methods to automati-
cally generate control commands for access control on highway systems. In [31], the authors describe
a methodological approach for decomposing the synthesis problem, which, however, has already been
described in a previous journal publication by the authors [12]. It additionally presents a tool for con-
structing the finite abstraction; our previous work in [13, 14] goes beyond the capabilities of this tool
in also allowing for non-linear dynamics. In [30], the authors provide an improved two-level approach
for control synthesis that however suffers from a flaw in constructing the abstraction relation. In [24]
the authors provide robust finite abstractions with bounded estimation errors for reducing the synthesis
of winning strategies for LTL objectives to finite state synthesis and demonstrate the approach for an
aerospace control application; however, this approach does not cover cooperative maneuvers. We finally

24 What You Really Need To Know About Your Neighbor

mention that in the aerospace domain, high-level objectives such as maximizing throughput and energy
efficiency while maintaining safety have led to new concepts for air-traffic control, such as free flight.
There is a significant body of work on the verification of the safety of such control strategies as well as
on design rules that ensure safety [29, 22, 23, 28, 9, 8].

Outline Our paper is structured as follows. We introduce preliminaries on strategy synthesis and tree
automata in Section 2 and 3. Section 5 shows how to compute assumptions for cooperation. Section 6
provides the incremental distributed synthesis procedure. As a running example to illustrate our notions,
we use the side by side example, where a car A starts side by side with car B and A’s goal is to eventually
be before or after B. We conclude in Sect. 7.

2 Synthesis of Distributed Systems

We consider complex multi-component systems at an early design stage, where the system architecture
and the design objectives are known, but the components have not been implemented yet. We are in-
terested in synthesizing an implementation for a given system architecture A and a specification ϕ . A
solution to the synthesis problem is a set of finite-state strategies {sp | p ∈ P}, one for each process in
the architecture, such that the joint behavior satisfies ϕ .

Architectures An architecture A is a tuple (P,V, inp,out), where P is a set of system processes, V
is a set of (Boolean) variables, and inp,out : P→ 2V are two functions that map each process to a set
of input and output variables, respectively. For each process p, the inputs and outputs are disjoint,
inp(p)∩ out(p) = /0, and for two different processes p 6= q, the output variables are disjoint: out(p)∩
out(q) = /0. We denote the set of visible variables of process p with V (p) = inp(p)∪out(p). Variables
VI =V r

⋃
p∈P out(p) that are not the output of any system process are called external inputs. We assume

that the external inputs are available to every process, i.e., VI ⊆ inp(p) for every p ∈ P.
For two architectures A1 = (P1,V, inp1,out1) and A2 = (P2,V, inp2,out2) with the same variables, but

disjoint sets of processes, P1∩P2 = /0, we define the parallel composition as the architecture A1 ‖ A2 =
(P1∪P2,V, p 7→ if p ∈ P1 then inp1(p) else inp2(p), p 7→ if p ∈ P1 then out1(p) else out2(p)).

Example: We use as running example the scenario from the introduction, where a car is side by side
to another car and has to reach an exit. To be usable as running example, we strip this down to the
bare essentials. Our formal model will consider this two car system as an architecture consisting of two
”processes”, which we call ego and other. We restrict ourselves to finite state systems, and abstract the
physical notion of positions of the two cars on adjacent lanes of a highway into the states side by side,
and was aside, which are interpreted from the perspective of the ego car. Each car can control its own
dynamics by accelerating, keeping the current speed, or decelerating. These actuators are captured in
our formal model as output variables. E.g. for the process ego its output variables out(ego) are ae, ke,
de with the obvious meaning. We consider fully informed processes, hence ego has out(other) as input
variable.

We capture the effect of the setting of output variables and input variables of a process on the system
state in what we call world models. Figure 1 shows the world model of the ego car. Initially, both cars are
assumed to be side by side. State transitions are labeled by pairs of the chosen output of the process and
the observed input of the process. E.g. if ego chooses to keep its speed, and the other car keeps its speed,
too, then the system remains in state side by side. If, on the other hand, ego chooses to accelerate, while
other keeps its velocity, the system transitions to state was aside. Multiple labels are just shorthand for

W. Damm, B. Finkbeiner & A. Rakow 25

{ao, do, ko} {ae, de, ke}
side by side was aside

〈ke, ko〉,〈de, do〉, 〈ae, ao〉

〈x, y〉, x 6= y

〈x, y〉∈ {ae, de, ke} × {ao, do, ko}

Figure 1: World model

multiple transitions with unique labels. Note that the world model of other is identical to that of ego
except for exchanging inputs and outputs. From a control-theoretic perspective, the relative position of
cars is a plant variable, which is influenced by the actuators of both cars. �

We now give the formal definition of the world model of a process p.
Let S be a set of (system-) states. A world model M for process p with input variables inp(p) and

output variables out(p) is an input deterministic transition system over S with designated initial state and
transitions labeled by pairs 〈o, i〉 where i ∈ inp(p) and o ∈ out(p). Formally M(p) = (S,E,L,s0) with
E ⊆ S×S, L : E→ out(p)× inp(p), s0 ∈ S s.t. (s,s1) ∈ E ∧ (s,s2) ∈ E ∧L(s,s1) = L(s,s2)⇒ s1 = s2

Implementations An implementation of an architecture consists of strategies S = {sp | p ∈ P} for the
system processes. A system process p ∈ P is implemented by a strategy, i.e., a function sp : (2inp(p))∗→
2out(p) that maps histories of inputs to outputs. A strategy is finite-state if it can be represented by a
finite-state transducer (Q,q0,δ : Q×2inp(p)→ Q,γ : Q→ 2out(p)), with a finite set of states Q, an initial
state q0, a transition function δ and an output function γ .

The parallel composition sp||sq of the strategies of two processes p,q ∈ P is a function sp||q : (2I)∗→
2O that maps histories of the remaining inputs I = (inp(p)∪ inp(q)) \ (out(p)∪ out(q)) to the union
O = out(p)∪ out(q) of the outputs: sp||q(σ) = sp(αp(σ))∪ sq(αq(σ)), where αp : (2I)∗ → (2inp(p))∗

fills in for process p what q contributes to the p’s input, that is αp(ε) = ε and αp(υ0υ1 . . .υk) =
((υ0∪ sq(ε))∩ inp(p))((υ1∪ sq(αq(υ0)))∩ inp(p)) . . .((υk∪ sq(αq(υ1υ2 . . .υk−1)))∩ inp(p)), and, anal-
ogously, αq(ε) = ε and αq(υ0υ1 . . .υk) = ((υ0∪ sp(ε))∩ inp(q))((υ1∪ sp(αp(υ0)))∩ inp(q)) . . .((υk ∪
sp(αp(υ1υ2 . . .υk−1)))∩ inp(q)).

A computation is an infinite sequence of variable valuations. For a sequence γ =υ1υ2 . . .∈ (2Vrout(p))ω

of valuations of the variables outside the control of a process p, the computation resulting from s is de-
noted by comp(s,γ) = (s(ε)∪υ1)(s(υ1∩ inp(p))∪υ2)(s(υ1∩ inp(p)υ2∩ inp(p))∪υ3)

Specification We use linear-time temporal logic (LTL) to specify properties. In the following, we will
denote the next-time operator with ,, globally with and eventually with . For a computation
σ and an ω-regular language ϕ , we write σ |= ϕ if σ satisfies ϕ . Design objectives are often given
as a prioritized conjunction of LTL formulas ϕ = ϕ1 ∧ϕ2 ∧ . . .∧ϕn, where ϕ1 is the most important
objective and ϕn is the least important objective. For a priority k, with 1≤ k ≤ n, we consider the partial
conjunction ϕk =

∧
i=1...k ϕi and say that σ satisfies ϕ up to priority k if σ |= ϕk.

Example: In the side by side example, the control objective of the ego car is to reach a state where
it can change lane, i.e., to eventually drive the plant into a state different from side by side. From the
perspective of ego, the actuator settings of the other car are uncontrollable disturbances. Suppose that the

26 What You Really Need To Know About Your Neighbor

ego car has the secondary objective to reduce fuel consumption, which very abstractedly can be captured
by avoiding accelerating and decelerating altogether, in other words to always output ke. Suppose finally
that other is owned by a driver who may avoid getting tired by changing speed every now and then. We
capture these overall control objectives as list of prioritized LTL formulas:

1. ¬ side by side
2. ke

3. ko∨ ao∧ do.
The synthesis problem, we then are solving, is to find strategies for ego and other which ultimately

allow ego to change lane and avoid violating the lower priority objectives. �
A strategy sp : (2I)∗→ 2O is winning for a property ϕ , denoted by sp |= ϕ , iff, for every sequence γ =

υ1υ2 . . . ∈ (2VrO)ω of valuations of the variables outside the control of p, the computation comp(sp,γ)
resulting from sp satisfies ϕ . We generalize the notion of winning from strategies to implementations
(and, analogously, the notions of dominance and bounded dominance later in the paper), by defining that
an implementation S is winning for ϕ iff the parallel composition of the strategies in S is winning (for
their combined sets of inputs and outputs).

Synthesis A property ϕ is realizable in an architecture A iff there exists an implementation that is
winning for ϕ .

3 Preliminaries: Automata over Infinite Words and Trees

We assume familiarity with automata over infinite words and trees. In the following, we only give a
quick summary of the standard terminology, the reader is referred to [20] for a full exposition.

A full tree is given as the set ϒ∗ of all finite words over a given set of directions ϒ. For given finite
sets Σ and ϒ, a Σ-labeled ϒ-tree is a pair 〈ϒ∗, l〉 with a labeling function l : ϒ∗→ Σ that maps every node
of ϒ∗ to a letter of Σ.

An alternating tree automaton A = (Σ,ϒ,Q,q0,δ ,α) runs on full Σ-labeled ϒ-trees. Q is a finite
set of states, q0 ∈ Q a designated initial state, δ a transition function δ : Q×Σ→ B+(Q×ϒ), where
B+(Q× ϒ) denotes the positive Boolean combinations of Q× ϒ, and α is an acceptance condition.
Intuitively, disjunctions in the transition function represent nondeterministic choice; conjunctions start
an additional branch in the run tree of the automaton, corresponding to an additional check that must be
passed by the input tree. A run tree on a given Σ-labeled ϒ-tree 〈ϒ∗, l〉 is a Q×ϒ∗-labeled tree where the
root is labeled with (q0, l(ε)) and where for a node n with a label (q,x) and a set of children child(n), the
labels of these children have the following properties:

• for all m ∈ child(n) : the label of m is (qm,x ·υm), qm ∈ Q,υm ∈ ϒ such that (qm,υm) is an atom of
δ (q, l(x)), and

• the set of atoms defined by the children of n satisfies δ (q, l(x)).

A run tree is accepting if all its paths fulfill the acceptance condition. A parity condition is a function α

from Q to a finite set of colors C ⊂ N. A path is accepted if the highest color appearing infinitely often
is even. The safety condition is the special case of the parity condition where all states are colored with
0. The Büchi condition is the special case of the parity condition where all states are colored with either
1 or 2, the co-Büchi condition is the special case of the parity condition where all states are colored with
either 0 or 1. For Büchi and co-Büchi automata we usually state the coloring function in terms of a set
F of states. For the Büchi condition, F contains all states with color 2 and is called the set of accepting

W. Damm, B. Finkbeiner & A. Rakow 27

states. For the co-Büchi condition, F contains all states with color 1 and is called the set of rejecting
states. The Büchi condition is satisfied if some accepting state occurs infinitely often, the co-Büchi
condition is satisfied if all rejecting states only occur finitely often. A Σ-labeled ϒ-tree is accepted if it
has an accepting run tree. The set of trees accepted by an alternating automaton A is called its language
L (A). An automaton is empty iff its language is empty. In addition to full trees, we also consider
partial trees, which are given as prefix-closed subsets of ϒ∗. As partial trees can easily be embedded in
full trees (for example, using a labeling ϒ∗ 7→ B that indicates whether a node is present in the partial
tree), tree automata can also be used to represent sets of partial trees.

A nondeterministic automaton is an alternating automaton where the image of δ consists only of
such formulas that, when rewritten in disjunctive normal form, contain at most one element of Q×{υ}
for every direction υ in every disjunct. A universal automaton is an alternating automaton where the
image of δ contains no disjunctions. A deterministic automaton is an alternating automaton that is both
universal and nondeterministic, i.e., the image of δ has no disjunctions and contains at most one element
of Q×{υ} for every direction υ .

A word automaton is the special case of a tree automaton where the set ϒ of directions is singleton.
For word automata, we omit the direction in the transition function.

4 Dominant Strategies

In previous work, we introduced the notion of remorse-free dominance [10] in order to deal with sit-
uations where it is impossible to achieve the specified objective. Dominance is a weaker version of
winning. A strategy t : (2I)∗→ 2O is dominated by a strategy s : (2I)∗→ 2O, denoted by t � s, iff, for
every sequence γ ∈ (2VrO)ω for which the computation comp(t,γ) resulting from t satisfies the objective
specification up to priority m, the computation comp(s,γ) resulting from s satisfies the objective specifi-
cation up to priority n and m≤ n. A strategy s is dominant iff, for all strategies t, t � s. Analogously to
the definition of winning implementations, we say that an implementation S is dominant iff the parallel
composition of the strategies in S is dominant.

Finally, we say that a property ϕ is admissible in an architecture A iff there is a dominant imple-
mentation. Informally, a specification is admissible if the question whether it can be satisfied does not
depend on variables that are not visible to the process or on future inputs. For example, the specification
ϕ = (a)↔ b, where a is an input variable and b is an output variable is not admissible, because in order
to know whether it is best to set b in the first step, one needs to know the value of a in the second step.
No matter whether the strategy sets b or not, there is an input sequence that causes remorse, because ϕ

is violated for the chosen strategy while it would have been satisfied for the same sequence of inputs if
the other strategy had been chosen.

Theorem 1. [11] For a process p, one can construct a parity tree automaton such that the trees accepted
by the automaton define exactly the dominant strategies of p.

Example: In the side by side example, the specification is not admissible: Consider KEEPω , a strategy
where ego always keeps its speed, i.e., applies kω

e . Following KEEPω , ego will achieve objectives 1 and
2 on p. 26, if other accelerates or decelerates at least once. But in case the other car will always keep
its speed, following KEEPω ego will not even achieve its most important objective, ¬side by side. In
this case though, following strategy ACC, which is to accelerate at the first step and then keep speed, ego
will achieve objective 1. So, neither ACC nor KEEPω is dominant. Ego will feel remorse, if it follows
strategy ACC but other eventually chooses ao or do, and ego will also feel remorse, if it follows KEEPω

28 What You Really Need To Know About Your Neighbor

. . .
1

ko

1

ko

1

ao

. . .
do ko

1

ao

ao

. . .
do ko

1

do

1

ao

. . .
do ko

1
ao

ao

. . .
do ko

1do

1

ko

2

ao

. . .
do ko

1
ao

ao

. . .
do ko

1do

1

ko

1

ko

3

a) ego assumes, other does KEEPω b) ego assumes, other changes speed with the first three steps

Figure 2: Two assumption trees of ego

while other also always keeps its speed. In order to know whether to choose KEEPω or ACC, ego needs
to know whether other will eventually change its speed or always keep speed. �

5 Computing cooperation assumptions

A component does not necessarily have a dominant strategy, even if the composite system has a dominant
strategy. Suppose that, in the example specification ϕ = (a)↔ b discussed above, the architecture
consists of two processes p and q, with outputs b and a, respectively. Clearly, the system has a dominant,
and even winning strategy, e.g., always set a and b to false, while p, as discussed above, does not have a
dominant strategy. An interesting observation is that p does have a dominant strategy if it is guaranteed
that q will set a to false in the next step, and that it also has a dominant strategy if it is guaranteed that q
will set a to true (in which case, p would set b to true as well).

We formalize such assumptions on the environment behavior that guarantee the existence of a domi-
nant strategy as assumption trees. An assumption tree for process p is a subtree of the full N∪2(V\out(p))-
tree where, on every path, the direction alternates between N and 2V\out(p). Intuitively, each number
corresponds to a promise of the environment to a particular restriction on its future behavior. The values
of 2V\out(p) are then the execution of this promise. The future behavior following different numbers can
differ in the inputs provided by the environment at specific points in time in the future and also in the
number of branchings with natural numbers that occur in the future.

Example: In our side by side example, a very restrictive assumption is ”other always chooses ko”.
This assumption can be envisioned as a tree that degenerates to a simple linear graph as in Fig. 2 a). At
the root the single edge announces that only one future is assumed initially. From there the single edge
labeled ko encodes that the only allowed first step of this future is ko. Likewise, the single edge at node
1ko announces that only one future development is distinguished at that point. The single edge at 1ko 1
encodes that the next step has to be ko again, and so on. With respect to this assumption, ego cannot
achieve ¬side by side∧ ke, but ego can achieve objective 1 without remorse following any strategy
that chooses at least once ae or de. Any such strategy is dominant wrt. the assumption tree in Fig. 2 a).

Ego may also assume that ”other eventually chooses ¬ko”, where ¬ko abbreviates ao∨do. The strat-
egy KEEPω is the only dominant strategy with respect to this assumption and any stronger assumption
– including the one depicted in Fig. 2 b). The tree of Fig. 2 b) roughly describes ego’s assumption that
other changes its speed within the first three steps. At the tree’s root, three assumptions on other’s be-
havior are distinguished. The first, at node 1, describes that other chooses initially ¬ko. The subtrees
at 1ao and 1do, respectively, both describe the assumption that all future development is possible: The

W. Damm, B. Finkbeiner & A. Rakow 29

ae

de

. . .

ko

1

ko

1
ke

ke
ao

. . .

do ko

1

ao

ke
ao

. . .

do ko

1

do

ke

ke
ao

. . .

do ko

1

ao

ke
ao

. . .

do ko

1

do

1
ke

ke

ke
ao

. . .

do ko

1

ao

ke
ao

. . .

do ko

1

do

1

ko

2

ko

2

Figure 3: Side by side example: A strategy annotated assumption tree of ego.

outgoing single edge at node 1ao announces that then only a single future is distinguished. The three
outgoing edges at 1ao1 specify that this future assumption allows to apply any acceleration, i.e., ao, do or
ko, as second step. From there again, but not depicted, a single edge leads to a node with three outgoing
edges labeled ao, do and ko denoting that any choice for other’s acceleration is accepted for this step as
well; and so on. The subtree at node 2 in Fig. 2 b) describes that other initially chooses ko, then ¬ko and
thereafter the future is unconstrained. The subtree at node 3 in Fig. 2 b) describes that other is assumed
to choose ko ko followed by ¬ko and then the future is no further constrained.

For an example of an assumption tree with infinite branching at the root, consider ego’s assumption
that other announces in subtree i to do ¬ko at step i ∈ N. �

To ensure that a given assumption tree guarantees the existence of a dominant strategy, we annotate
each node that is reached by a natural number with an output value from 2out(p). One such strategy
annotation t is dominated by another strategy annotation s of the same assumption tree, denoted by t � s,
iff for every alternating sequence of natural numbers and environment outputs from 2out(p) that is present
in the tree, if the computation resulting from t satisfies the objective specification up to priority m, then
the computation resulting from s satisfies the objective specification up to priority n and m≤ n. A strategy
annotation s is dominant iff, for all strategies t, t � s. We say that an assumption tree is dominant (and it
guarantees the existence of a dominant strategy) iff it has a dominant strategy annotation.

Example: In Fig. 2 b) where the assumption tree basically expresses that other guarantees to choose
¬ko initially or within the next two steps, we can annotate the assumption tree with strategy KEEPω to
get a dominant strategy annotation.

An example of a strategy annotated assumption tree is shown in Fig. 3. There we basically combined
the assumptions ”other chooses always ko” and ”other guarantees to choose ¬ko initially or within
its next two steps” as subtrees 1 and 2, respectively. The strategy annotation results from applying the
strategy that alternates ae and de, (aede)

ω on subtree 1, and the KEEPω strategy on subtree 2. �
We now describe the computation of a tree automaton that recognizes the set of all assumption trees

for a given process with a dominant annotation. A small technical difficulty is that assumption trees have
an infinite branching degree. In order to represent the set of assumption trees as a tree automaton, we use
the standard unary representation of N∗ in B∗, where a sequence abc . . .∈N∗ is encoded as 0a10b10c1
The construction then proceeds in the following steps. (1) We build a word automaton A that checks
that no alternative would do better on the present path. (2) We build a tree automaton B that reads in a
strategy annotated assumption tree and uses A to verify that this annotation is dominant.

30 What You Really Need To Know About Your Neighbor

ao

e

Figure 4: Initial scenario for the incremental synthesis: Three cars on a freeway.

Theorem 2. For a single process p, one can construct a parity tree automaton such that the trees ac-
cepted by the automaton are the dominant strategy annotated assumption trees of p.

6 Incremental synthesis of cooperation strategies

We now use the construction of the environment assumptions from Section 5 to incrementally synthesize
a distributed system by propagating the assumptions. We assume that the processes P = {p1, p2, . . . , pn}
are ordered p1 > p2 > .. . pn according to criticality. We begin by computing the set A1 of strategy
annotated assumption trees for process p1. Next, we compute the set A2 of strategy annotated assumption
trees for process p2 that additionally satisfy A1. We continue up to process pn.

Theorem 3. For an architecture with a set P = {p1, p2, . . . , pn} of processes, ordered p1 > p2 > .. . pn

according to criticality, one can construct, for each process pi, i = 1..n, a parity tree automaton, such
that the trees accepted by the automaton are assumption trees that guarantee the existence of dominant
strategies for all p j with j ≤ i.

The set of assumption trees constructed in this way represent the remaining assumptions on the
external inputs. Since we cannot constrain the external environment, we find the final distributed imple-
mentation by selecting some assumption tree that allows for all possible future environment behaviors.

Example: Let us consider three cars as in Fig. 4. Ego and other are initially side by side and the
car ahead starts in front of other. The synthesis problem is to find a strategy for ego, other and ahead
that satisfies the prioritized specification given by the following objectives listed in order of decreasing
priority.

1. ¬side by sidee∧ (curve⇒ ¬aa)

2. ke

3. (da⇒ do)∧ (ka⇒¬ao)

The objectives for ego remain the same. ahead is required not to accelerate in a curve, i.e., when ahead
notices a curve two steps ahead, it may not accelerate two steps later, while in the curve. The car other has
to ensure not to get faster than ahead. This is here expressed via a sufficient constraint on its acceleration.

We order processes ego > other > ahead and start the incremental synthesis with ego. We have
already seen elements of the set of ego’s assumption trees for the simpler setting of two cars in Sect. 5. An
assumption tree for the three car example will additionally be labeled with acceleration values for ahead
and the environmental input announcing bends curve ahead ∈ {curve,no curve}. But since ego depends
on neither of them, they are of no relevance for the assumption tree, i.e., for each assumption tree in the
two car setting there will be now an assumption tree where ahead and curve ahead are unconstrained.

In the following we will illustrate the assumption propagation, starting with the exemplary assump-
tion tree of ego depicted in Fig. 3. Next, we consider a strategy annotated assumption tree of other that
matches with ego’s assumption tree of Fig. 3.. For the sake of a simple illustration, we have chosen a
strong assumption of other about ahead, that is annotated with a simple strategy for other: The strategy

W. Damm, B. Finkbeiner & A. Rakow 31

doke(2)

aoke(1)

doke(1)

aoke(1)

aa

. . .

da ka

1

aa

1

aa

doke(1)

aoke(1)

aa

. . .

da ka

1

aa

1

da

doke(1)

aoke(1)

aa

. . .

da ka

1

aa

1

ka

1

aa

1

Figure 5: A strategy annotated assumption tree of other: ahead is assumed to apply aa at least every
other time. Other’s dominant strategy is to alternate between do and ao. The tree satisfies saat(ego) of
Fig. 3.

annotated assumption tree, saat(other), given in Fig. 5, describes the assumption that ahead chooses aa

at least every other time. The strategy (doao)
ω for other is dominant strategy wrt. the assumption tree in

Fig. 5.
Now, the saat(other) satisfies ego’s assumption ”other guarantees to choose ¬ko within its next

two steps”. A compatible dominant strategy for ego is determined based on the propagated strategy
annotated assumption tree. The match with ego’s strategy is highlighted in blue in Fig. 5. The nodes
are also annotated with ego’s acceleration choices. The numbers in brackets refer to the respective edge
labels in the assumption tree in Fig. 3.

Intuitively, the weakest assumption for other is ”ahead announces when it will do da or ka next” and
a dominant strategy for other is, to then choose the acceleration appropriately.

At this point the inputs curve ahead and the acceleration of ahead are open. Since the exemplary
strategies do not refer to these, we again omitted these variables at the edge annotation in Fig. 5.

Next and final element according to our process order is ahead. So we choose a dominant strategy
for ahead, for instance a strategy that chooses da in two steps time after the environment announces a
curve two steps ahead, otherwise it chooses to accelerate. The strategies for ego and ahead are now
determined based on the propagated (ego,other)-strategy annotated assumption trees, as illustrated in
the previous step. Intuitively, when ahead gets informed that a bend is two steps ahead, other knows
from the propagated strategy assumption tree that ahead will decelerate in two steps time and chooses to
decelerate at its the next step. �

7 Conclusion

Relying on cyber-physical systems increases our vulnerability towards technical failures caused by un-
predicted emergent behavior. Understanding what pieces of information must be exchanged with whom,
understanding what level of cooperation is necessary for the overall objectives –topics addressed in this
paper– constitute initial steps towards a rigorous design discipline for such systems. They also expose
the vulnerability of the system towards intruders: the analysis clearly can be used to highlight the chaos,
which can be inserted into the system by pretending to pass information and then not acting accordingly.

32 What You Really Need To Know About Your Neighbor

The paper thus both provides an initial step towards cooperatively establishing systems objectives, as
well as exposing its vulnerabilities. We will explore both avenues in our future research in the applica-
tion domain of cooperative driver assistance systems.

References

[1] Dietmar Berwanger (2007): Admissibility in Infinite Games. In Wolfgang Thomas & Pascal Weil, edi-
tors: STACS 2007: 24th Annual Symposium on Theoretical Aspects of Computer Science, Aachen, Ger-
many, February 22-24, 2007. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 188–199,
doi:10.1007/978-3-540-70918-3 17.

[2] Romain Brenguier, Jean-François Raskin & Ocan Sankur (2015): Assume-Admissible Synthesis. In:
26th International Conference on Concurrency Theory (CONCUR 2015), LIPIcs 42, Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, pp. 100–113, doi:10.4230/LIPIcs.CONCUR.2015.100. Available at http:
//arxiv.org/abs/1507.00623.

[3] J. Richard Büchi & Lawrence H. Landweber (1990): Solving Sequential Conditions by Finite-State Strategies.
In Saunders Mac Lane & Dirk Siefkes, editors: The Collected Works of J. Richard Büchi, Springer New York,
pp. 525–541, doi:10.1007/978-1-4613-8928-6 29.

[4] Krishnendu Chatterjee & Thomas A. Henzinger (2007): Assume-Guarantee Synthesis. In Tiziana Margaria &
Wang Yi, editors: Tools and Algorithms for the Construction and Analysis of Systems, LNCS 4424, Springer
Berlin Heidelberg, pp. 261–275, doi:10.1007/978-3-540-71209-1 21.

[5] Krishnendu Chatterjee, Thomas A. Henzinger & Barbara Jobstmann (2008): Environment Assumptions for
Synthesis. In: CONCUR 2008 - Concurrency Theory: 19th International Conference, CONCUR 2008,
Toronto, Canada, August 19-22, 2008. Proceedings, Lecture Notes in Computer Science 5201, Springer
Berlin Heidelberg, pp. 147–161, doi:10.1007/978-3-540-85361-9 14.

[6] Alonzo Church (1963): Logic, Arithmetic and Automata. In: Proc. 1962 Intl. Congr. Math., pp. 23–25,
doi:10.2307/2270398.

[7] Samuel Coogan & M. Arcak (2014): Freeway traffic control from linear temporal logic specifica-
tions. In: Cyber-Physical Systems (ICCPS), 2014 ACM/IEEE International Conference on, pp. 36–47,
doi:10.1109/ICCPS.2014.6843709.

[8] Werner Damm, Stefan Disch, Hardi Hungar, Swen Jacobs, Jun Pang, Florian Pigorsch, Christoph Scholl,
Uwe Waldmann & Boris Wirtz (2007): Exact State Set Representations in the Verification of Linear Hy-
brid Systems with Large Discrete State Space. In Kedar S. Namjoshi, Tomohiro Yoneda, Teruo Higashino
& Yoshio Okamura, editors: Automated Technology for Verification and Analysis, 5th International Sym-
posium, ATVA 2007, Lecture Notes in Computer Science 4762, Springer, pp. 425–440, doi:10.1007/978-3-
540-75596-8 30.

[9] Werner Damm, Stefan Disch, Hardi Hungar, Jun Pang, Florian Pigorsch, Christoph Scholl, Uwe Waldmann
& Boris Wirtz (2006): Automatic verification of hybrid systems with large discrete state space. In Susanne
Graf & Wenhui Zhang, editors: Proceedings of the 4th International Symposium on Automated Technol-
ogy for Verification and Analysis, Lecture Notes in Computer Science 4218, Springer-Verlag, pp. 276–291,
doi:10.1007/11901914 22.

[10] Werner Damm & Bernd Finkbeiner (2011): Does It Pay to Extend the Perimeter of a World Model? In
Michael Butler & Wolfram Schulte, editors: FM 2011: Formal Methods - 17th International Symposium
on Formal Methods, Limerick, Ireland, June 20-24, 2011. Proceedings, Lecture Notes in Computer Science
6664, Springer Berlin Heidelberg, pp. 12–26, doi:10.1007/978-3-642-21437-0 4.

[11] Werner Damm & Bernd Finkbeiner (2014): Automatic Compositional Synthesis of Distributed Systems. In
Cliff Jones, Pekka Pihlajasaari & Jun Sun, editors: FM 2014: Formal Methods - 19th International Sympo-
sium, Singapore, May 12-16, 2014. Proceedings, Lecture Notes in Computer Science 8442, Springer Inter-
national Publishing, pp. 179–193, doi:10.1007/978-3-319-06410-9 13.

http://dx.doi.org/10.1007/978-3-540-70918-3_17
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.100
http://arxiv.org/abs/1507.00623
http://arxiv.org/abs/1507.00623
http://dx.doi.org/10.1007/978-1-4613-8928-6_29
http://dx.doi.org/10.1007/978-3-540-71209-1_21
http://dx.doi.org/10.1007/978-3-540-85361-9_14
http://dx.doi.org/10.2307/2270398
http://dx.doi.org/10.1109/ICCPS.2014.6843709
http://dx.doi.org/10.1007/978-3-540-75596-8_30
http://dx.doi.org/10.1007/978-3-540-75596-8_30
http://dx.doi.org/10.1007/11901914_22
http://dx.doi.org/10.1007/978-3-642-21437-0_4
http://dx.doi.org/10.1007/978-3-319-06410-9_13

W. Damm, B. Finkbeiner & A. Rakow 33

[12] Werner Damm, Hans-Jörg Peter, Jan Rakow & Bernd Westphal (2013): Can we build it: formal synthesis of
control strategies for cooperative driver assistance systems. Mathematical Structures in Computer Science
23, pp. 676–725, doi:10.1017/S0960129512000230.

[13] Werner Damm, Guilherme Pinto & Stefan Ratschan (2007): Guaranteed Termination in the Verification of
LTL Properties of Non-linear Robust Discrete Time Hybrid Systems. Int. Journal of Foundations of Computer
Science 18(1), pp. 63–86, doi:10.1142/S0129054107004577.

[14] Tomáš Dzetkulič & Stefan Ratschan (2011): Incremental Computation of Succinct Abstractions for Hybrid
Systems. In Uli Fahrenberg & Stavros Tripakis, editors: Formal Modeling and Analysis of Timed Systems,
Lecture Notes in Computer Science 6919, Springer Berlin Heidelberg, pp. 271–285, doi:10.1007/978-3-642-
24310-3 19.

[15] Marco Faella (2007): Games you cannot win. Available at http://wpage.unina.it/m.faella/

Download/games07.pdf. Workshop on Games and Automata for Synthesis and Validation, Lausanne,
Switzerland.

[16] Marco Faella (2009): Admissible Strategies in Infinite Games over Graphs. In Rastislav Královič & Damian
Niwiński, editors: Mathematical Foundations of Computer Science 2009: 34th International Symposium,
MFCS 2009, Novy Smokovec, High Tatras, Slovakia, August 24-28, 2009. Proceedings, Springer Berlin
Heidelberg, pp. 307–318, doi:10.1007/978-3-642-03816-7 27.

[17] Christian Frese (2010): A Comparison of Algorithms for Planning Cooperative Motions of Cog-
nitive Automobiles. Technical Report IES-2010-06, Lehrstuhl für Interaktive Echtzeitsysteme,
doi:10.5445/KSP/1000021181.

[18] Christian Frese & Jürgen Beyerer (2010): Planning Cooperative Motions of Cognitive Automobiles Using
Tree Search Algorithms. In Rüdiger Dillmann, Jürgen Beyerer, Uwe D. Hanebeck & Tanja Schultz, editors:
KI 2010: Advances in Artificial Intelligence, Lecture Notes in Computer Science 6359, Springer Berlin
Heidelberg, pp. 91–98, doi:10.1007/978-3-642-16111-7 10.

[19] Paul Gastin, Nathalie Sznajder & Marc Zeitoun (2006): Distributed Synthesis for Well-Connected Architec-
tures. In S. Arun-Kumar & Naveen Garg, editors: FSTTCS 2006: Foundations of Software Technology and
Theoretical Computer Science, Lecture Notes in Computer Science 4337, Springer Berlin Heidelberg, pp.
321–332, doi:10.1007/11944836 30.

[20] Erich Grädel, Wolfgang Thomas & Thomas Wilke, editors (2002): Automata, Logics, and Infinite Games.
LNCS 2500, Springer-Verlag, doi:10.1007/3-540-36387-4.

[21] Lingyi Liu, David Sheridan, Viraj Athavale & Shobha Vasudevan (2011): Automatic generation of assertions
from system level design using data mining. In: Formal Methods and Models for Codesign (MEMOCODE),
2011 9th IEEE/ACM International Conference on, pp. 191–200, doi:10.1109/MEMCOD.2011.5970526.

[22] John Lygeros & Nancy Lynch (1998): Strings of vehicles: Modeling and safety conditions. In Thomas A.
Henzinger & Shankar Sastry, editors: Hybrid Systems: Computation and Control, Lecture Notes in Computer
Science 1386, Springer Berlin Heidelberg, pp. 273–288, doi:10.1007/3-540-64358-3 45.

[23] John Lygeros, Claire Tomlin & Shankar Sastry (1997): Multiobjective hybrid controller synthesis. In Oded
Maler, editor: Hybrid and Real-Time Systems, Lecture Notes in Computer Science 1201, Springer Berlin
Heidelberg, pp. 109–123, doi:10.1007/BFb0014720.

[24] Oscar Mickelin, Necmiye Ozay & Richard M. Murray (2014): Synthesis of Correct-by-construction Control
Protocols for Hybrid Systems Using Partial State Information. In: 2014 American Control Conference, pp.
2305–2311, doi:10.1109/ACC.2014.6859229.

[25] Amir Pnueli & Roni Rosner (1989): On the Synthesis of a Reactive Module. In: Proceedings of the 16th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’89, ACM, pp. 179–190,
doi:10.1145/75277.75293.

[26] Amir Pnueli & Roni Rosner (1990): Distributed Reactive Systems Are Hard to Synthesize. In: Proceedings
of the 31st Annual Symposium on Foundations of Computer Science, SFCS ’90 2, IEEE Computer Society,
pp. 746–757, doi:10.1109/FSCS.1990.89597.

http://dx.doi.org/10.1017/S0960129512000230
http://dx.doi.org/10.1142/S0129054107004577
http://dx.doi.org/10.1007/978-3-642-24310-3_19
http://dx.doi.org/10.1007/978-3-642-24310-3_19
http://wpage.unina.it/m.faella/Download/games07.pdf
http://wpage.unina.it/m.faella/Download/games07.pdf
http://dx.doi.org/10.1007/978-3-642-03816-7_27
http://dx.doi.org/10.5445/KSP/1000021181
http://dx.doi.org/10.1007/978-3-642-16111-7_10
http://dx.doi.org/10.1007/11944836_30
http://dx.doi.org/10.1007/3-540-36387-4
http://dx.doi.org/10.1109/MEMCOD.2011.5970526
http://dx.doi.org/10.1007/3-540-64358-3_45
http://dx.doi.org/10.1007/BFb0014720
http://dx.doi.org/10.1109/ACC.2014.6859229
http://dx.doi.org/10.1145/75277.75293
http://dx.doi.org/10.1109/FSCS.1990.89597

34 What You Really Need To Know About Your Neighbor

[27] M.O. Rabin (1972): Automata on Infinite Objects and Church’s Problem. Conference Board of the mathe-
matical science, Conference Board of the Mathematical Sciences, doi:10.1090/cbms/013.

[28] Arthur Richards & Jonathan P. How (2002): Aircraft trajectory planning with collision avoidance using
mixed integer linear programming. In: American Control Conference, 2002. Proceedings of the 2002, 3, pp.
1936–1941, doi:10.1109/ACC.2002.1023918.

[29] Claire J. Tomlin, George J. Pappas, Jana Košecká, John Lygeros & Shankar S. Sastry (1998): Advanced
air traffic automation: A case study in distributed decentralized control. In Bruno Siciliano & Ki-
mon P. Valavanis, editors: Control Problems in Robotics and Automation, Springer-Verlag, pp. 261–295,
doi:10.1007/BFb0015088.

[30] Tichakorn Wongpiromsarn, Ufuk. Topcu & Richard M. Murray (2012): Receding Horizon Tem-
poral Logic Planning. Automatic Control, IEEE Transactions on 57(11), pp. 2817–2830,
doi:10.1109/TAC.2012.2195811.

[31] Tichakorn Wongpiromsarn, Ufuk Topcu & Richard M. Murray (2013): Synthesis of Control Protocols for
Autonomous Systems. Unmanned Systems 01(01), pp. 21–39, doi:10.1142/S2301385013500027.

http://dx.doi.org/10.1090/cbms/013
http://dx.doi.org/10.1109/ACC.2002.1023918
http://dx.doi.org/10.1007/BFb0015088
http://dx.doi.org/10.1109/TAC.2012.2195811
http://dx.doi.org/10.1142/S2301385013500027

	1 Introduction
	2 Synthesis of Distributed Systems
	3 Preliminaries: Automata over Infinite Words and Trees
	4 Dominant Strategies
	5 Computing cooperation assumptions
	6 Incremental synthesis of cooperation strategies
	7 Conclusion

