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Parametric timed automata extend timed automata (Alur and Dill, 1991) in that they allow the specifi-
cation ofparametricbounds on the clock values. Since their introduction in 1993by Alur, Henzinger,
and Vardi, it is known that the emptiness problem for parametric timed automata with one clock is
decidable, whereas it is undecidable if the automaton uses three or more parametric clocks. The
problem is open for parametric timed automata with two parametric clocks. Metric temporal logic,
MTL for short, is a widely used specification language for real-time systems. MTL-model checking
of timed automata is decidable, no matter how many clocks areused in the timed automaton. In this
paper, we prove that MTL-model checking for parametric timed automata is undecidable, even if the
automaton uses only one clock and one parameter and is deterministic.

1 Introduction

An important field of algorithmic verification is the analysis of real-time systems,i.e., systems whose
behaviour depend on time-critical aspects. Since the earlynineties, numerous formalisms have been
investigated to express and verify real-time properties. Two prominent examples of such formalisms are
timed automataandmetric temporal logic. Timed automata [3] extend classical finite automata with
a finite set of real-valuedclockswhose values grow with the passage of time. The edges of a timed
automaton are labelled withclock constraintsthat compare the value of a clock with some constant. An
edge can only be taken if the current values of the clocks satisfy the clock constraint labelling the edge.
The central property of timed automata is the decidability of the emptiness problem [3].

Metric temporal logic (MTL, for short) extends classical linear temporal logic by constraining the
temporal modalities with intervals of the non-negative reals. For example, the formulaF[0,2]ϕ means
thatϕ will hold within two time units from now. Introduced by Koymans in 1990 [17], the satisfiability
problem and the model checking problem for timed automata were assumed to be undecidable for a long
time. However, more than 20 years later it was proved by Ouaknine and Worrell [19] that both problems
are decidable if MTL is interpreted in the pointwise semantics overfinite timed words. The decidability
of the MTL-model checking problem for timed automata is independent of the number of clocks that the
timed automaton uses.

A major drawback of timed automata and MTL is that they only allow the specification ofconcrete
constraints on timing properties,i.e., one has to provide the concrete values of all time-related constraints
that occur in the real-time system. However, it is often morerealistic to providesymbolic(or, parametric)
constraints, in particular, if the real-time system under construction is not known in full details in the early
stages of design. With the purpose to overcome the incapability of timed automata to express parametric
time constraints,parametric timed automatawere introduced [6]. Parametric timed automata are timed
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automata defined over a finite set of parameters, which can be used in clock constraints labelling the
edges of the automaton. For an example, consider the parametric timed automaton shown in Fig.1 on
page 4. The clocky is concretely constrained by a constant like in ordinary timed automata. In contrast
to this, the clockx is parametrically constrained by the parameterp. The value ofp is determined by a
parameter valuation,i.e., a function mapping each parameter to a value in the non-negative reals.

A crucial verification problem for parametric timed automata is the emptiness problem: given a
parametric timed automatonA , does there exist some parameter valuation such thatA has an accepting
run? However, it turns out that this problem is undecidable already if A uses three or more parametric
clocks [6]. On the positive side, the problem is decidable ifin A at most one clock is compared to
parameters. So far nothing is known about the decidability status for parametric timed automata with
two parametric clocks; the problem is closely related to some hard and open problems of logic and
automata theory [6].

In this paper, we concern ourselves with the MTL-model checking problem for parametric timed
automata: given a parametric timed automatonA and a specification in form of an MTL formulaϕ ,
does there exist some parameter valuation such that all finite runs ofA satisfy ϕ? For parametric
timed automata with three clocks, the undecidability of this problem follows from the undecidability
of the emptiness problem. Here, we prove that the problem is undecidable even ifA uses only one
clock and one parameter and is deterministic. This negativeresult is in contrast to the decidability of
the emptiness problem for one-clock parametric timed automata, and the decidability of MTL-model
checking of timed automata. The result can be regarded as further step towards the precise decidability
border for the reachability problem for parametric timed automata with two parametric clocks, which is
open for more than 20 years.

Related work The reader might wonder why we consider model checking forparametric timed au-
tomata andstandardMTL, i.e., a non-parametric extension of MTL. It is well known that if we extend
classical LTL with formulae of the formϕ1U=pϕ2, meaning thatϕ2 has to hold in exactlyp steps from
now on for some parameterp, then the satisfiability problem (“Given a formulaϕ , is there some parame-
ter valuation such thatϕ is satisfiable?”) is undecidable: LTL with parameterizedequality modalitiesof
the formU=p can be used to encode halting computations of two-counter machines [4]. Undecidablity
of the satisfiability problem implies undecidability of themodel checking problem for all systems that
are capable to recognize the universal language over a givenalphabet (as it is the case for,eg., timed
automata). In [4] it is also noted that the undecidability proof for LTL with parameterized equality
modalities can be adapted to prove the undecidability of thesatisfiability problem for LTL extended with
parameterizedupper bound modalitiesof the formU≤p and lower bound modalitiesof the formU>p

unless we restrict every parameter to occur ineither lower bound modalitiesor upper bound modalities,
but not in both.

The restriction on the parameters of a parametric timed automaton to occur either as a lower bound
or as an upper bound also forms an important subclass of parametric timed automata, calledlower
bound/upper bound (L/U) automata[15]. For this subclass the emptiness problem is decidable in-
dependent of the number of parametric clocks, and for both finite [15] and infinite runs [8]. Model
checking L/U automata with parametric extensions of MITL [5] in the interval-basedsemantics is de-
cidable [8, 13]. Recall that constraints occurring at modalities of MITL formulae are not allowed to be
of the form= n (not even if the constraint isconcrete, i.e., n∈ N); in fact, the satisfiability and model
checking problems for (non-parametric) MTL in the interval-based semantics are undecidable [14].

A crucial aspect of our undecidability proof is the fact thatMTL formulae can be used to encode



K. Quaas 7

computations ofchannel machines with insertion errors[18]: For every channel machineC , there is
an MTL formula ϕC that is satisfiable if, and only if,C has a halting computation that may contain
insertion errors. This fact was used in [18] to prove the lower complexity bound of the satisfiability
problem for MTL over finite timed words. In our proof, we use the parameterized timed automaton to
excludeinsertion errors in the timed words encoding computations of C . We remark that the idea for
this proof is similar to the proof of the undecidability for the model checking problem for one-counter
machines and Freeze LTL with one register (LTL↓

1, for short) [12]: In [11], it is proved that LTL↓1
formulae can be used to encode halting computations ofcounter automata with incrementing errors.
Like MTL, LTL ↓

1 is not capable to exclude such errors. In [12], it is shown that this incapability can
be repaired by combining the formula with a non-deterministic one-counter machine. Let us, however,
note that there are substantial technical differences between the formalisms MTL and parametric timed
automata on the one side, and LTL↓

1 and one-counter machines on the other side.

2 Parametric Timed Automata

We useN,Q≥0, andR≥0 to denote the non-negative integers, non-negative rationals, and the non-negative
reals, respectively. In this section, we fix a finite alphabetΣ, a finite setP = {p1, . . . , pm} of parameters,
and a finite setX = {x1, . . . ,xn} of clocks.

We defineclock constraintsφ overX andP to be conjunctions of formulae of the formx∼ c, where
x∈X , c∈N∪P, and∼∈ {<,≤,=,≥,>}. We useΦ(X ,P) to denote the set of all clock constraints
overX andP. A clock valuationis a function fromX to R≥0. For δ ∈ R≥0, we defineν + δ to be
(ν +δ )(x) = ν(x)+δ for eachx∈X . Forλ ⊆X , we defineν [λ := 0] by (ν [λ := 0])(x) = 0 if x∈ λ ,
and otherwise(ν [λ := 0])(x) = ν(x).

A parameter valuation is a functionπ : P →Q≥0 assigning a non-negative rational to each parameter.
A clock valuationν and a parameter valuationπ satisfy a clock constraintφ , written (ν ,π) |= φ ,

if the expression obtained fromφ by replacing each parameterp by π(p) and each clockx by ν(x)
evaluates to true.

A parametric timed automatonis a tupleA = (Σ,L ,L0,X ,P,E,LF), where

• L is a finite set of locations,

• L0 ⊆ L is the set ofinitial locations,

• E ⊆ L ×Σ×Φ(X ,P)×2X ×L is a finite set ofedges,

• LF ⊆ L is the set offinal locations.

Each edge(l,a,φ ,λ , l′) represents a discrete transition froml to l′ on the input symbola. The clock
constraintφ specifies the bounds on the value of the clocks, and the setλ specifies the clocks to be reset
to zero.

A global stateof A is a pair(l,ν), where l ∈ L represents the current location, and the clock
valuation ν represents the current values of all clocks. The behaviour of A depends upon the cur-
rent global state and the parameter valuation. Each parameter valuationπ induces a(Σ,R≥0)-labelled
transition relationτπ over the set of all global states ofA as follows: 〈(l,ν),(a,δ ),(l′ ,ν ′)〉 ∈ τπ ,
wherea ∈ Σ and δ ∈ R≥0, if, and only if, there is an edge(l,a,φ ,λ , l′) ∈ E such that for all clocks
x ∈ X we have(ν(x) + δ ,π) |= φ , andν ′ = (ν(x) + δ )[λ := 0]. A π-run of A is a finite sequence
Π1≤i≤k〈(l i−1,νi−1),(ai ,δi),(l i ,νi)〉 such that〈(l i−1,νi−1),(ai ,δi),(l i ,νi)〉 ∈ τπ for everyi ∈ {1, . . . ,k}. A
π-run issuccessfulif l0 ∈ L0, ν0(x) = 0, andlk ∈ LF .
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1 2 3

a,x= p
x := 0 a,x= p,y= 1

x,y := 0

b,x= p
x := 0 b,x= p,y= 1

Figure 1: A parametric timed automatonA .

A timed wordis a non-empty finite sequence(a1, t1) . . . (ak, tn) ∈ (Σ×R≥0)
+ such that the sequence

t1, . . . , tn of timestamps is non-decreasing. We say that a timed word isstrictly monotonicif t1, . . . , tn is
strictly increasing. We useTΣ+ to denote the set of finite timed words overΣ. A setL ⊆ TΣ+ is called a
timed language.

Given a parametric timed automatonA and a parameter valuationπ, we associate with eachπ-
run Π1≤i≤k〈(l i−1,νi−1),(ai ,δi),(l i ,νi)〉 the timed word(a1,δ1)(a2,δ1+δ2) . . . (ak,∑1≤i≤k δk). We define
Lπ(A ) to be the set of timed wordsw for which there is a successfulπ-run ofA that is associated with
w. A parameter valuationπ is consistent withA if Lπ(A ) is not empty. We useΠ(A ) to denote the set
of parameter valuations that are consistent withA .

We say that a parametric timed automatonA is deterministicif L0 is a singleton, and whenever
(l,a,φ1,λ1, l1) and(l,a,φ2,λ2, l2) are two different edges inA , then for all parameter valuationsπ and
clock valuationsν we have(ν ,π) 6|= φ1∧φ2.

Example 2.1 Figure 1 shows a parametric timed automaton over the alphabet Σ = {a,b} using a para-
metric clock x and a clock y, and one parameter p. Assumeπ(p) = n−1 for some n∈ N. Then Lπ(A )
contains a single timed word, namely(a,π(p))(a,2π(p)) . . . (a,nπ(p))(b,(n+ 1)π(p)) . . . (b,2nπ(p)).
For all other parameter valuationsπ, Lπ(A ) = /0, i.e., they are not consistent withA . Hence we have
Π(A ) = {π | π(p) = n−1 for some n∈ N}. Note thatA is not deterministic, but it can be made deter-
ministic by adding the clock constraint y< 1 to the loops in locations1 and2.

3 Metric Temporal Logic

The set of MTL formulae is built up fromΣ by boolean connectives and a constraining version of the
until modality:

ϕ ····= a | ¬ϕ | ϕ1∧ϕ2 | ϕ1UI ϕ2

wherea∈ Σ andI ⊆ R≥0 is an open, closed, or half-open interval with endpoints inN∪{∞}. Note that
we donot allow parameters as endpoints. IfI = R≥0, then we may omit the annotationI onUI .

We interprete MTL formulae in thepointwise semantics, i.e., over finite timed words overΣ. Let
w= (a1, t1)(a2, t2) . . . (an, tn) be a timed word, and leti ∈ {1, . . . ,n}. We define thesatisfaction relation
for MTL, denoted by|=, inductively as follows:

(w, i) |= a ⇔ ai = a

(w, i) |= ¬ϕ ⇔ (w, i) 6|= ϕ ,

(w, i) |= ϕ1∧ϕ2 ⇔ (w, i) |= ϕ1 and(w, i) |= ϕ2,

(w, i) |= ϕ1UI ϕ2 ⇔ ∃ j.i < j ≤ |w| : (w, j) |= ϕ2 andt j − ti ∈ I , and∀k.i < k< j : (w,k) |= ϕ1.

We say that a timed wordw∈ TΣ+ satisfies an MTL formulaϕ , writtenw |= ϕ , if (w,1) |= ϕ . Given an
MTL formula ϕ , we defineL(ϕ) ··= {w∈ TΣ+ | w |= ϕ}. We use the following syntactical abbreviations:
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ϕ1∨ϕ2 ··= ¬(¬ϕ1∧¬ϕ2), ϕ1 → ϕ2 ··= ¬ϕ1∨ϕ2, true ··= p∨¬p, false ··= ¬true, XI ϕ ··= falseUI ϕ ,
FI ϕ ··= trueUI ϕ , GI ϕ ··= ¬FI¬ϕ . Observe that the use of thestrict semantics for the until modality is
essential to derive the next modality.

MTL-Model Checking Problem for Parametric Timed Automata

INPUT: A parametric timed automatonA , an MTL formulaϕ .
QUESTION: Is there some parameter valuationπ such that for everyw∈ Lπ(A ) we havew |= ϕ?

In general, the MTL-model checking problem is undecidable for parametric timed automata. This
follows from the undecidability of the emptiness problem for parametric timed automata with three or
more parametric clocks [6]. In the next section, we prove theundecidability of the MTL-model checking
problem for parametric timed automata using one parametricclock and one parameter.

4 Main Result

Theorem 4.1 The MTL-model checking problem for parametric timed automata is undecidable, even if
the automaton uses only one clock and one parameter and is deterministic.

The remainder of this section is devoted to the proof of Theorem 4.1. The proof is a reduction of the
control state reachability problem for channel machines, which we introduce in the following.

4.1 Channel Machines

Let Γ be a finite alphabet. We useε to denote theempty wordoverΓ. Given two finite wordsx,y∈ Γ∗,
we usex · y to denote theconcatenationof x any y. We define the order≤ over the set of finite words
overΓ by x1x2 . . .xm ≤ y1y2 . . .yn if there exists a strictly increasing functionf : {1, . . . ,m}→ {1, . . . ,n}
such thatxi = yf (i) for everyi ∈ {1, . . . ,m}.

A channel machineconsists of a finite-state automaton acting on an unbounded fifo channel. For-
mally, a channel machine is a tupleC = (S,sI ,M,∆), where

• S is a finite set ofcontrol states,

• sI ∈ S is the initial control state,

• M is a finite set ofmessages,

• ∆ ⊆ S×L×S is the transition relation over the label setL = {m!,m? | m∈ M}∪{ε}.

A configurationof C is a tuple(s,x), wheres∈ S is the control state andx∈ M∗ represents the contents
of the channel. The rules in∆ induce anL-labelled transition relation→ over the set of configurations of
C as follows:

• 〈(s,x),m!,(s′,x′)〉 ∈→ if, and only if, there exists some transition(s,m!,s′) ∈ ∆, x∈ Σ∗, andx′ =
x·m, i.e., m is added to the tail of the channel.

• 〈(s,x),m?,(s′,x′)〉 ∈→ if, and only if, there exists some transition(s,m?,s′) ∈ ∆, x′ ∈ Σ∗, and
x= m·x′, i.e., m is the head of the current channel content.

• 〈(s,x),ε ,(s′,x′)〉 ∈→ if, and only if, there exists some transition(s,ε ,s′) ∈ ∆ andx= ε , i.e., the
channel is empty, andx′ = x.



10 MTL-Model Checking of One-Clock Parametric Timed Automatais Undecidable

Next, we define anotherL-labelled transition relation over the set of configurations ofC . The relation
 is a superset of→. It contains some additional transitions which result frominsertion errors. We
define〈(s,x1), l ,(s,x′1)〉 ∈ , if, and only if,〈(s,x), l ,(s′ ,x′)〉 ∈→, x1 ≤ x, andx′ ≤ x′1. A computation of
C is a finite sequenceΠ1≤i≤k〈(si−1,xi−1), l i ,(si ,xi)〉 such that〈(si−1,xi−1), l i ,(si ,xi)〉 ∈ for every i ∈
{1, . . . ,k}. We say that a computation iserror-freeif for all i ∈{1, . . . ,k}we have〈(si−1,xi−1), l i ,(si ,xi)〉 ∈→.
Otherwise, we say that the computation isfaulty.

Control State Reachability Problem for Channel Machines

INPUT: A channel machineC with control statesS, a control statesF ∈ S.
QUESTION: Is there an error-free computation ofC from (sI ,ε) to (sF ,x) for somex∈ M∗?

The control state reachability problem is undecidable for channel machines, because channel ma-
chines are Turing-powerful [9, 1].

4.2 Encoding Faulty Computations

For the remainder of this section, letC = (S,sI ,M,∆) be a channel machine and letsF ∈ S. We construct
an MTL formula ϕC that is satisfiable if, and only if, there exists somex ∈ M∗ such thatC has a
computation from(sI ,ε) to (sF ,x) that may be faulty. Later we are going to define a parametric timed
automatonAC with one clock and one parameter to exclude faulty computations fromL(ϕC ).

Let Σ = S∪M∪L∪{#,⋆}, where # and⋆ do not occur inS∪M∪L. We start with defining a timed
languageL(C ) over Σ that consists of all timed words that encode (potentially faulty) computations of
C from (sI ,ε) to (sF ,x) for somex ∈ M∗. The definition ofL(C ) follows the ideas presented in [18].
Let γ ··= Π1≤i≤k〈(si−1,xi−1), l i ,(si ,xi)〉 be a computation ofC with s0 = sI , x0 = ε , andsk = sF . Each
configuration(si ,xi) occurring inγ is encoded by a timed word of duration one starting withs0 at time
δ for some arbitraryδ ∈ R≥0. Every symbolsi is followed byl i+1 after one time unit, and bysi+1 after
two time units. The contentxi of the channel is stored in the time interval betweensi andl i+1. Note that
due to the denseness of the time domain we can indeed store thechannel content without any restriction
on its length. An important detail of the definition ofL(C ) is that for every message symbolm between
si and l i+1, there is a copy in the encoding of the next configuration exactly two time units later, unless
the label of the current transition ism?. In that case, the symbolm is simply removed from the encoding
of the configuration.

For our reduction to work, we have to change the idea in some details. First, we define a timed
languageL(C ,n) for everyn∈ N, wheren is non-deterministically chosen and is supposed to represent
the expected maximum length of the channel content during a computation. The empty channel in the
initial configuration will be represented by a timed word with n hash symbols betweens0 andl1. Second,
we put a stronger condition on the copy policy of the messages. We require that for every hash symbol
betweens0 and l1 there is a message or hash symbol withthe same fractional partbetweensi and l i+1

for every i ∈ {1, . . . ,k− 1}. In Fig. 2, we present some examples to explain the details. (a) If the
current instruction is of the formm1! for somem1 ∈ M, then in the encoding of the next configuration,
the first hash symbol between the control state symbol and thenext label symbol is replaced bym1. (b)
If in the encoding of the current configuration there is no hash symbol left,i.e., the expected maximum
length of the channel content is exceeded, then a new symbolm1 is inserted at the end of the encoding
of the next configuration. The timestamp of the newly inserted event can be any time strictly between
the timestamps of the last message symbol and the next label symbol. (c) If the current instruction is
of the formm1? and the first symbol in the encoding of the current configuration is m1, then we replace
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(a)
m1 m2 #
4.2 4.7 4.8

m1!
 

m1 m2 m1
6.2 6.7 6.8

(b)
m1 m2 m1
6.2 6.7 6.8

m1!
 

m1 m2 m1 m1
8.2 8.7 8.8 8.9

(c)
m1 m2 #
4.2 4.7 4.8

m1?
 

m2 # #
6.2 6.7 6.8

(d)
m2 # #
6.2 6.7 6.8

m1?
 

m2 # # #
8.2 8.7 8.8 8.9

Figure 2: Encoding of the channel content

m1 by a new hash symbol at the end of the encoding of the next configuration, and additionally shift the
fractional parts of the timestamps of the copies of all remaining symbols for one position to the right. (d)
If the first symbol is notm1, i.e., an insertion error is occurring, then we insert a new hash symbol at the
end of the encoding of the next configuration. Next, we give the formal definition ofL(C ,n). Let n∈N.
The timed languageL(C ,n) consists of all timed wordsw overΣ that satisfy the following conditions:

• w must be strictly monotonic.

• In w, every control state symbols different fromsF is followed by a label symboll after one time
unit, and by a control state symbols′ after two time units, provided that(s, l ,s′) ∈ ∆. The symbol
sF is followed by⋆ after one time unit. Control state symbols, label symbols and the symbol⋆
must not occur anywhere else inw.

• Symbols inM∪{#} may occur inw between a control state symbol and a label symbol. They may
not occur anywhere else inw.

• Between a control state and a label symbol, hash symbols # mayonly occur after message symbols
m∈ M.

• The (untimed) prefix ofw must be of the formsI #nls for somel ∈ L,s∈ S.

• w must containsF .

Assume thatw contains the infix(s,δ )(σ1,δ + δ1)(σ2,δ + δ2) . . . (σm,δ + δm)(l ,δ + 1) for somes∈
S\{sF}, l ∈ L, δ ∈ R≥0 and 0< δ1 < δ2 < · · ·< δm < 1.

• If l = ε , thenσi = # for all i ∈ {1, . . . ,m} (i.e., the channel is indeed empty), and for eachσi there
is a copy two time units later.

• If l = m!, then we distinguish between two cases: If there is somei ∈ {1, . . . ,m} such thatσi = #,
thenreplaceσ j by m two time units later, wherej ∈ {1, . . . ,m} is the smallest number such that
σ j = #. For eachk∈ {1, . . . ,m}\{ j}, there is a copy ofσk two time units later. Otherwise,i.e., if
for all i ∈ {1, . . . ,m} we haveσi 6= #, then for eachi ∈ {1, . . . ,m}, there is a copy ofσi two time
units later. Further, a new symbolm is added between the copy ofσm and the following symbol in
L∪{⋆}. Note that this corresponds to the case wheren has been chosen too small to capture the
maximum length of the channel content during the computation.

• If l = m?, then we distinguish between two cases: Ifσ1 = m, then for eachi ∈ {2, . . . ,m}, there is
a copy ofσi two time units after the occurrence ofσi−1. Further there is a new hash symbol two
time units after the occurrence ofσm. Otherwise,i.e., if σ1 6= m, then there is a copy ofσi two
time units later for everyi ∈ {1, . . . ,m}. Further, the encoding of the next configuration contains
an additional hash symbol between the copy ofσm and the next symbol inL∪{⋆}. Note that this
case corresponds to aninsertion error.
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Let w1 = (a1, t1) . . . (ak, tk) andw2 = (a′1, t
′
1) . . . (a

′
k′ , t

′
k′) be two timed words. Iftk ≤ t ′1, then we define the

concatenationof w1 andw2, denoted byw1 ·w2, to be the timed word(a1, t1) . . . (ak, tk)(a′1, t
′
1) . . . (a

′
k′ , t

′
k′).

Let w∈ L(C ,n). We use max(w) to denote the maximum number of symbols inM∪{#} that occur inw
between a control state symbol and a symbol inL∪{⋆}. Clearly, every timed word inL(C ,n) is of the
form

(s0,δ ) ·w1 · (l1,δ +1)(s1,δ +2) ·w2 · (l2,δ +3) . . . (sF ,δ +N) ·wN · (⋆,δ +N+1)

for someδ ∈ R≥0 andN ∈ N, wheres0 = sI and for everyi ∈ {1, . . . ,N}, wi is of the form

wi = (σ i
1,δ +2(i −1)+δ i

1)(σ i
2,δ +2(i −1)+δ i

2) . . . (σ i
ni
,δ +2(i −1)+δ i

ni
)

for someni ∈ N with n1 = n, and 0< δ i
1 < δ i

2 < · · · < δ i
ni
< 1. In the following, whenever we refer to

a timed wordw ∈ L(C ,n), we assume thatw is of this form. The next lemma states that the fractional
parts of the initial time delaysδ 1

1 , . . . ,δ 1
n1

are not lost. This will be important later.

Lemma 4.2 Let n∈N and let w∈ L(C ,n). For every i∈ {1, . . . ,N−1} there exists a strictly increasing
function fi : {1, . . . ,ni}→ {1, . . . ,ni+1} such thatδ i

j = δ i+1
fi( j) for every j∈ {1, . . . ,ni}.

Proof The proof is by induction onN. (Induction base:) Observe thatσ1
i = # for everyi ∈ {1, . . . ,n1}.

Assumel1 = ε . Then for everyj ∈ {1, . . . ,n1}, there is a copy ofσ1
j two time units later. Ifl1 = m!, then

for every j ∈ {2, . . . ,n1}, there is a copy ofσ1
j two time units later, andσ1

1 is replaced bym two time units
later. If l1 = m?, then for everyj ∈ {1, . . . ,n1}, there is a copy ofσ1

j two time units later, and there is an
additional symbol # between the copy ofσ1

n1
and l2. Whatever case, the definition ofL(C ,n) does not

exclude that new symbols inM∪{#} are inserted somewhere betweens1 andl2. Thus we haven1 ≤ n2.
Moreover, since there is a copy for each symbol two time unitslater, there exists a strictly increasing
function f : {1, . . . ,n1} → {1, . . . ,n2} such thatδ 1

j = δ 2
f ( j) for every j ∈ {1, . . . ,n1}. (Induction step)

Assume that the claim holds for alli ∈ {1, . . . ,k}. We prove it also holds fork+ 1. We only treat the
two remaining cases. First, assumelk+1 = m? andσ k+1

1 = m. By definition, for everyj ∈ {2, . . . ,nk+1},
there is a copy ofσ k+1

j two time units after the occurrence of symbolσ k+1
j−1 . Further, the first symbolm is

replaced by a new hash symbol two time units after the occurrence ofσ k+1
nk+1

. Second, assumelk+1 = m!

and we haveσ k+1
j 6= # for every j ∈ {1, . . . ,nk+1}. Then, for eachj ∈ {1, . . . ,nk+1}, there is a copy

of σ k+1
j two time units later, and a new symbolm is added after the copy ofσ i

nk+1
. Whatever case,

the definition ofL(C ,n) does not exclude that new symbols inM ∪{#} are inserted betweensk+2 and
lk+2. Hencenk+1 ≤ nk+2. Since for everyj ∈ {1, . . . ,nk+1} the symbolσ k+1

j is copied or replaced two
time units later, there exists a strictly increasing function f : {1, . . . ,nk+1} → {1, . . . ,nk+2} such that
δ k+1

j = δ k+2
fk+1( j) for every j ∈ {1, . . . ,nk+1}. �

Let γ ··= Π1≤i≤k〈(si−1,xi−1), l i ,(si ,xi)〉 be a finite computation ofC . We use max(γ) to denote the maxi-
mum length of the channel content occurring inγ , formally: max(γ) ··= max{|xi | | 0≤ xi ≤ k}.

Lemma 4.3 For each error-free computationγ of C from (sI ,ε) to (sF ,x) for some x∈ M∗, and every
δ ∈R≥0, 0< δ1 < δ2 < · · ·< δmax(γ) < 1, there exists some timed word w∈ L(C ,max(γ)) such that the
prefix of w is of the form(sI ,δ )(#,δ + δ1) . . . (#,δ + δmax(γ))(l1,δ +1) for some l1 ∈ L, andmax(w) =
max(γ).

Proof Let γ be an errror-free computation ofC of the formΠ1≤i≤k〈(si−1,xi−1), l i ,(si ,xi)〉 wheres0 = sI ,
x0 = ε andsk = sF . Further letn=max(γ). Now assumeδ ∈R≥0 and 0< δ1 < δ2 < · · ·< δn < 1. Clearly
there is somew∈ L(C ,n) whose prefix is of the formu1 = (sI ,δ )(#,δ +δ1) . . . (#,δ +δn)(l1,δ +1). We
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prove that there exists somew∈ L(C ,n) such thatu1 is the prefix ofw and max(w) = n, i.e., for every
i ∈ {1, . . . ,k}, the number of symbols inM∪{#} betweensi−1 andl i (and betweensk and⋆) is equal to
n. The proof is by induction onk.

(Induction base:) Assumel1 = ε . By definition, there must be a copy for each # exactly two time
units later. The addition of new symbols is not required. Ifl1 =m!, then by definition the first occurrence
of # is replacedby mexactly two time units later, and for each of the remaining # there is a copy two time
units later. The addition of new symbols is not required. Note that the casem? cannot occur becauseγ
is error-free. Hence, there exists some timed wordw∈ L(C ,n) whose prefix is of the formu1 ·u2, where
u2 = (s1,2+δ )(σ2

1 ,2+δ +δ1)(#,2+δ +δ2) . . . (#,2+δ +δn)(l2,2+δ +1) for someσ2
1 ∈ M∪{#}.

(Induction step:) Assume there is some timed wordw∈ L(C ,n) whose prefix is of the formu1 · · · · ·up

for somep< k, where for everyi ∈ {1, . . . , p}, ui is of the form

(si−1,2(i−1)+δ )(σ i
1,2(i−1)+δ +δ1)(σ i

2,2(i−1)+δ +δ2) . . . (σ i
n,2(i−1)+δ +δn)(l i ,2(i−1)+δ +1)

for someσ i
1, . . . ,σ i

n ∈ M∪{#}.
Assumelp = m? for somem∈ M. By the fact thatγ is error-free, we knowσ p

1 = m. By definition,
there is a copy ofσ p

i two time units after the occurrence ofσ p
i−1 for every i ∈ {2, . . . ,n}, and there is a

new hash symbol inserted two time units after the occurrenceof σ p
n . The addition of new symbols is not

required.
Assumelp = m! for somem∈ M. Recall thatn = max(γ) is the maximum length of the channel

content inγ . Hence there must be somej ∈ {1, . . . ,n} such thatσ p
j = #. By definition, the smallest

j ∈ {1, . . . ,n} with σ p
j = # is replaced bym exactly two time units later. For each of the remaining

symbols there is a copy two time units later. The addition of new symbols is not required.
Assumelp = ε . We can proceed as above, concluding that the addition of newsymbols is not

required.
Hence, there exists some timed wordw ∈ L(C ,n) whose prefix is of the formu1 ·u2 · . . .up ·up+1,

whereup+1 = (sp,2p+δ )(σ p+1
1 ,2p+δ +δ1)(σ p+1

2 ,2p+δ +δ2) . . . (σ p+1
n ,2p+δ +δn)(lp+1,2p+δ +

1) for someσ p+1
1 , . . . ,σ p+1

n ∈ M∪{#}.
We thus have proved that there exists somew∈ L(C ,n) with max(w) = n. �

Lemma 4.4 For each n∈N and w∈ L(C ,n) with max(w) = n, there exists some error-free computation
γ of C from (sI ,ε) to (sF ,x) for some x∈ M∗ with max(γ)≤ n.

Proof Let n∈ N and letw∈ L(C ,n) such that max(w) = n. Hence the number of symbols inM∪{#}
between every control state symbol and the following label symbol (or the symbol⋆ if the state symbol
is sF ) in w is constantly equal ton. This implies that (1) whenever a control state symbols is followed by
a label symbolm? one time unit later, then the next symbol aftersmust bem, which will be replaced by
a new hash symbol; (2) whenever a state symbols is followed by a label symbolm! one time unit later,
then there must exist some hash symbol in between, and the first such hash symbol will be replaced by
m; and (3)w does not contain any spontaneously inserted symbols. From (1) and (3) we can conclude
thatw encodes an error-free computation. From (2) we can concludethat the choice ofn is big enough
to capture the maximum length of the channel content. Hence there exists some error-free computation
of C from (sI ,ε) to (sF ,x) for somex∈ M∗ with max(γ)≤ n. �

4.3 Excluding Faulty Computations

Next we define a parametric timed automatonAC over ΣC such thatL(C ,n)∩ L(AC ) consists of all
timed words that encodeerror-free computations ofC from (sI ,ε) to (sF ,x) for somex ∈ M∗. The
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1 2 3

sI

x := 0

#,x= p
x := 0 L,x= p

Σ\{sF}

4 5

sF

x := 0

M,#,x= p
x := 0

⋆,x= p

Figure 3: The parametric timed automatonAC that excludes insertion errors.

parametric timed automatonAC is shown in Fig. 3. It uses one clockx, parametrically constrained by a
single parameterp. Note thatAC is deterministic.

Theorem 4.5 C has an error-free computation from(s0,ε) to (sF ,x) for some x∈ M∗, if, and only if,
there exist n∈N and a parameter valuationπ such that L(C ,n)∩Lπ(AC ) 6= /0.

Proof For the direction from left to right, letγ ··= Π1≤i≤k〈(si−1,xi−1), l i ,(si ,xi)〉 be an error-free compu-
tation ofC such thats0 = sI , x0 = ε andsk = sF . Definen= max(γ). Let δ ∈R≥0, and defineδi =

i
(n+1)

for everyi ∈ {1, . . . ,n}. By Lemma 4.3, there existsw∈ L(C ,n) such that the prefix ofw is of the form

(sI ,δ )(#,δ +δ1) . . . (#,δ +δn)(l1,δ +1)

and max(w) = n. This together with Lemma 4.2 implies that the suffix ofw is of the form

(sF ,2k+δ )(σ1,2k+δ +δ1) . . . (σn,2k+δ +δn)(⋆,2k+δ +1)

for someσ1, . . . ,σn ∈ M ∪{#}. Note that in both the prefix and the suffix ofw the time delay between
every symbol isδ1. Defineπ(p) = δ1. It is easy to see thatw∈ Lπ(AC ). HenceL(C ,n)∩Lπ(AC ) 6= /0.

For the direction from right to left, assume there existn∈ N and a parameter valuationπ such that
L(C ,n)∩ Lπ(AC ) 6= /0. Let w ∈ L(C ,n)∩ Lπ(AC ). By definition ofL(C ,n), the prefix ofw is of the
form

(sI ,δ )(#,δ +δ1)(#,δ +δ2) . . . (#,δ +δn)(l ,δ +1)

for someδ ∈R≥0, 0< δ1 < δ2 < · · ·< δn < 1, andl ∈ L. The clock constraints at the loop in location 2
and at the edge from location 2 to 3 impliesδi =

i
(n+1) for everyi ∈ {1, . . . ,n} andπ(p) = δ1. By Lemma

4.2, the suffix ofw must be of the form

(sF ,N+δ )(σn,N+δ +δ ′
1) . . . (σm,N+δ +δ ′

m)(⋆,N+δ +1)

for someN∈N, 0< δ ′
1 < δ ′

2 < · · ·< δ ′
m< 1 such thatn≤m, and there exists a strictly increasing function

f : {1, . . . ,n} → {1, . . . ,m} such thatδi = δ ′
f (i). Note that⋆ occurs exactly one time unit aftersF . This,

together with the clock constraints at the loop in location 4and at the edge from 4 to the final location 5,
impliesm= n (andδ ′

i = δi for everyi ∈ {1, . . . ,n}). By Lemma 4.2, we further know that the number of
symbols between a control state symbol and a symbol inL∪{⋆} cannotdecrease, and hence it follows
that max(w) = n. By Lemma 4.4, there exists an error-free computation ofC from (s0,ε) to (sF ,x) for
somex∈ M∗. �

4.4 The Reduction

We defineL(C ) = ∪n∈NL(C ,n). Then we obtain

Corollary 4.6 There exists an error-free computation ofC from (sI ,ε) to (sF ,x) for some x∈M∗, if, and
only if, there exists some parameter valuationπ with Lπ(AC )∩L(C ) 6= /0.
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Next, we define the MTL formulaϕC such thatL(ϕC ) = L(C ). The formulaϕC is the conjunction of
a set of formulas, each of them expressing one of the conditions of L(C ). We start by defining some
auxiliary formulas:

∨
S··=

∨
s∈Ss,

∨
M ··=

∨
m∈M m,

∨
L ··=

∨
l∈L l , ϕcopyM ··= G(0,1)

∧
m∈M(m→ F=2m),

andϕcopy# ··= G(0,1)(#→ F=2#).

• G(X>0true∨¬Xtrue) (Strict monotonicity)

• G〈
∧

s∈S\{sF}(s→
∨

(s,l ,s)∈∆(F=1l ∧F=2s′))∧ (sF → F=1⋆)〉,
G〈

∨
S→ ((G<2¬

∨
S)∧(G(0,1)∪(1,2)¬

∨
L)〉 (Conditions on the occurrence of control state symbols

and symbols inL∪{⋆})

• G〈
∨

S→ (G(0,1)(
∨

M∨#)∧G[1,2)¬(
∨

M∨#))〉, G((#∧X
∨

M)→ false) (Conditions on symbols
in M∪{#})

• sI ∧
∨

(sI ,l ,s)∈∆(#U(l ∧Xs)) (Encoding of the initial configuration)

• FsF (ReachingsF )

• G
∧

(s,ε,−)∈∆
s6=sF

((s∧F=1ε)→ ((G(0,1)¬
∨

M)∧ϕcopy#))

• G
∧

δ=(s,m!,−)∈∆
s6=sF

((s∧F=1m!)→ (ϕcopyM∧ϕnext#∧ϕyes#∧ϕno#)), where

– ϕnext# = X#→ (XF=2m∧Xϕcopy#)

– ϕyes# = (F<1∧¬X#)#→ G<1((¬#∧X#)→ XF=2m∧Xϕcopy#))

– ϕno# = ¬F<1#→ G<1(Xm! → F=2(Xm∧XX
∨

L))

• G
∧

(s,m?,−)∈∆
s6=sF

((s∧F=1m?)→ (ϕyesm∧ϕnom)), where

– ϕyesm = Xm→ (ϕshiftUm?), ϕshift =
∧

m∈M(Xm→ F=2m)∧ (X#→ F=2#)∧ (Xm?→ F=2#)

– ϕnom = X¬m→ (ϕcopyM∧ϕcopy#∧G<1(Xm?→ F=2(X#∧XX
∨

L)))

Proof of Theorem 4.1 Let C = (S,s0,M,∆) be a channel machine, letsF ∈ S. Define the parametric
timed automatonAC and the MTL formulaϕC as above. By Corollary 4.6 we know that there is an
error-free computation from(sI ,ε) to (sF ,x) for somex∈M∗, if, and only if, there exists some parameter
valuationπ with Lπ(AC )∩L(ϕC ) 6= /0. The latter, however, is equivalent toLπ(AC ) 6⊆ L(¬ϕC ), i.e., there
exists some timed wordw∈ Lπ(AC ) such thatw 6|= ¬ϕC . Hence, the MTL-model checking problem for
parametric timed automata is undecidable. �

5 Discussion

For our undecidability result we construct a parametric timed automaton using a parametricequality
constraint of the formx= p. Parametric equality constraints seem to be a source of undecidability; they
occur in the undecidability proofs of,eg., the emptiness problem for parametric timed automata with
three clocks [6], and the satisfiability problem for a parametric extension of LTL [4]. A natural question
is thus to consider the MTL-model checking problem for L/U-automata [15], a subclass of parametric
timed automata in which parameters are only allowed to occureither as a lower bound or as an upper
bound, but not both, and for which the emptiness problem is decidable independent of the number of
clocks. We further remark that the proof does not work if we restrict the parameter valuation to be a
function mapping each parameter to a non-negative integer.
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[2] Luca Aceto & Anna Ingólfsdóttir, editors (2006):Foundations of Software Science and Computation Struc-
tures, 9th International Conference, FOSSACS 2006, Held asPart of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2006, Vienna, Austria, March 25-31, 2006, Proceedings. Lecture
Notes in Computer Science3921, Springer.

[3] Rajeev Alur & David L. Dill (1994):A Theory of Timed automata. Theor. Comput. Sci.126(2), pp. 183–235.
Available athttp://dx.doi.org/10.1016/0304-3975(94)90010-8.

[4] Rajeev Alur, Kousha Etessami, Salvatore La Torre & DoronPeled (2001):Parametric temporal logic for
”model measuring”. ACM Trans. Comput. Log.2(3), pp. 388–407. Available athttp://doi.acm.org/
10.1145/377978.377990.

[5] Rajeev Alur, Tomás Feder & Thomas A. Henzinger (1996):The Benefits of Relaxing Punctuality. J. ACM
43(1), pp. 116–146. Available athttp://doi.acm.org/10.1145/227595.227602.

[6] Rajeev Alur, Thomas A. Henzinger & Moshe Y. Vardi (1993):Parametric real-time reasoning. In Kosaraju
et al. [16], pp. 592–601. Available athttp://doi.acm.org/10.1145/167088.167242.

[7] Roberto M. Amadio, editor (2008):Foundations of Software Science and Computational Structures, 11th
International Conference, FOSSACS 2008, Held as Part of theJoint European Conferences on Theory and
Practice of Software, ETAPS 2008, Budapest, Hungary, March29 - April 6, 2008. Proceedings. Lecture
Notes in Computer Science4962, Springer.

[8] Laura Bozzelli & Salvatore La Torre (2009):Decision problems for lower/upper bound parametric timed
automata. Formal Methods in System Design35(2), pp. 121–151. Available athttp://dx.doi.org/10.
1007/s10703-009-0074-0.

[9] Daniel Brand & Pitro Zafiropulo (1983):On Communicating Finite-State Machines. J. ACM 30(2), pp.
323–342, Available athttp://doi.acm.org/10.1145/322374.322380.

[10] Adrian Horia Dediu, Henning Fernau & Carlos Martı́n-Vide, editors (2010):Language and Automata Theory
and Applications, 4th International Conference, LATA 2010, Trier, Germany, May 24-28, 2010. Proceed-
ings. Lecture Notes in Computer Science6031, Springer. Available athttp://dx.doi.org/10.1007/
978-3-642-13089-2.
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