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Verification of PCTL properties of MDPs with convex uncertainties has been investigated recently by
Puggelli et al. However, model checking algorithms typically suffer from state space explosion. In
this paper, we address probabilistic bisimulation to reduce the size of such an MDPs while preserving
PCTL properties it satisfies. We discuss different interpretations of uncertainty in the models which
are studied in the literature and that result in two different definitions of bisimulations. We give
algorithms to compute the quotients of these bisimulations in time polynomial in the size of the
model and exponential in the uncertain branching. Finally, we show by a case study that large models
in practice can have small branching and that a substantial state space reduction can be achieved by
our approach.

1 Introduction

Modelling formalisms like Markov decision processes (MDP) [29] or Probabilistic automata (PA) [31]
are used for representing systems that combine non-deterministic and probabilistic behaviour. They can
be viewed as transition systems where in each step an outgoing transition of the current state is chosen
non-deterministically and the successor state is chosen randomly according to a fixed probability distri-
bution assigned to this transition. Assigning fixed probability distributions to transitions is however not
realistic [18,22] in many modelling scenarios: measurement errors, statistical estimates, or mathematical
approximations all lead to intervals instead of fixed probabilities.

Interval MDPs [28] (also called Bounded-parameter MDPs [13, 37]) address this need by bound-
ing the probabilities of each successor state by an interval instead of a fixed number. In such a model,
the transition probabilities are not fully specified and this uncertainty again needs to be resolved non-
deterministically. The two sources of non-determinism have different interpretation in different applica-
tions:

1. In verification of parallel systems with uncertain transition probabilities [28] the transitions corre-
spond to unpredictable interleaving of computation of the communicating agents. Hence, both the
choice of transitions and their probability distributions is adversarial.

2. In control synthesis for systems with uncertain probabilities [36] the transitions correspond to
various control actions. We search for a choice of transitions that is optimal against an adversarial
choice of probability distributions satisfying the interval bounds.

3. In parameter synthesis for parallel systems [14] the transition probabilities are underspecified to
allow freedom in implementation of such a model. We search for a choice of probability dis-

http://dx.doi.org/10.4204/EPTCS.145.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


20 Probabilistic Bisimulations for PCTL Model Checking of Interval MDPs

tributions that is optimal for adversarial choice of transitions (again stemming from the possible
interleaving).

Furthermore, the choice of probability distributions satisfying the interval constraints can be either re-
solved statically [18], i.e. at the beginning once for all, or dynamically [17, 33], i.e. independently for
each computation step. Here, we focus on the dynamic approach that is easier to work with algorithmi-
cally and can be seen as a relaxation of the static approach that is often intractable [2, 7, 11, 33].

There are several algorithms [28, 36] to check whether a given interval MDP satisfies a given speci-
fication expressed in a logic like PCTL [15] or LTL [27]. However, models often suffer from state space
explosion when obtained using some higher-level modelling formalism such as a process algebra. These
models usually contain redundancy that can be removed without changing the behaviour of the model.
One way to reason about such behavioural equivalence is bisimulation [24]. For a given huge model it al-
lows to construct the bisimulation quotient, the smallest model with equivalent behaviour – in particular
preserving all its properties expressible by a logic such as PCTL.

Our contribution In this paper, we define the first bisimulations for interval MDPs (that are also the
first bisimulations for MDPs with uncertain transitions in general). We show that different interpretation
of non-determinism yields two different bisimulations: one for models where the two non-determinisms
are resolved in a cooperative way (see point 1. above), another for models where it is resolved in a
competitive way (see points 2. and 3. above).

Furthermore, we show how to compute these bisimulations by algorithms based on comparing poly-
topes of probability distributions associated with each transition. The algorithms are fixed parameter
tractable with respect to the maximal dimension of the polytopes (i.e. maximal number of different
states that an uncertain transition can lead to); in the competitive case also with respect to the maximal
number of outgoing uncertain transitions. Note that in many applications these parameters are small.

We finally argue by a case study that, if uncertainty stems from a small number of different phenom-
ena such as node failure or loss of a message, the same shape of polytopes will repeat many times over
the states space. We demonstrate that the redundancy in this case may result in a massive state space
minimisation.

Example 1.1. We illustrate the contribution by two examples. In the first one, we explain how the com-
petitive and the cooperative resolution of non-determinism result in different behavioural equivalences.
Consider the three pair of states below.

cooperative - different: cooperative - same: competitive - same:

s

` r

a

[0.3,0.7]

b

[0
.2
,0
.6
]

[0,1] [0,
1]

s

` r

a

[0.3,0.7]

c

[0
.7
,0
.8
]

[0,1] [0,
1]

t

` r

a

[0.1,0.3]

b

[0
,1
]

[0.8,1] [0.
2,

0.6
]

t

` r

c

[0.1,1]

d

[0
,0
.8
]

[0.4,0.9] [0.
2,

0.4
]

u

` r

a

[0.1,0.6]

b

[0
,1
]

[0,1] [0,
0.6

]

u

` r

a

[0.1,0.6]

c

[0
,1
]

[0,1]

[0.
1,

0.8
]

As regards the cooperative non-determinism, s has not the same behaviour as s since s can move
to r with probability 0.8 by choosing c and (` 7→ 0.2,r 7→ 0.8), which s cannot simulate. So far the
equivalence might seem easy to check. However, note that t has the same behaviour as t even though
the interval bounds for the transitions quite differ. Indeed, the sets of distributions satisfying the interval
constraints are the same for t and t.
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As regards the competitive non-determinism, observe that u and u have also the same behaviour.
Indeed, the a transitions coincide and both b and c offer a wider choice of probability distributions
than a. If the most adversarial choice of the distribution scheduler lies in the difference [b] \ [a] of the
distributions offered by b and a, the transition scheduler then never chooses b; hence a in u can simulate
both a and b in u. In the other direction it is similar and u and u have the same behaviour although
[b] 6= [c].

Example 1.2. In the second example, we explain the redundancy of large models with a small source
of uncertainty. Consider a Wireless Sensor Network (WSN) containing N sensors S1,S2 · · ·SN and a
gateway G, all communicating over an unreliable channel. For simplicity, we assume that each sensor
continuously sends some data to the gateway which are then pushed into an external server for further
analysis. As the channel is unreliable, with some positive probability p each message with data may get
lost. The WSN can be seen as the parallel composition of gateway G and sensors Si depicted below that
synchronise over labels sendi’s and receivei’s.

rec

receivei ∀i

(a) Gateway G

succ fail

sendi p

1− p

sendi

p
1− p

(b) Sensor Si

For instance environmental effects on radio transmission, mobility of sensor nodes or traffic burst
(see e. g. [30]) cause that the exact probability of failure is unknown. The estimation of this probability,
e.g. by empirical data analysis, usually leads to an interval p ∈ [`,u] which turns the model into an
interval MDP.

Let us stress that there is only one source of uncertainty appearing all over the state space no matter
what is the number of sensors N. This makes many states of the model behave similarly. For example
in the WSN, the parallel composition of the above model has 2N states. However one can show that the
bisimulation quotient has only N+1 states. Indeed, all states that have the same number of failed sensors
have the same behaviour. Thus, for limited source of uncertainty in a model obtained by compositional
modelling, the state space reduction may be enormous.

Related work Various probabilistic modelling formalisms with uncertain transitions are studied in the
literature. Interval Markov chains [18, 22] or Abstract Markov chains [12] extend standard discrete-time
Markov chains (MC) with interval uncertainties and thus do not feature the non-deterministic choice of
transitions. Uncertain MDPs [25, 28, 36] allow more general sets of distributions to be associated with
each transition, not only those described by intervals. Usually, they restrict to rectangular uncertainty
sets requiring that the uncertainty is linear and independent for any two transitions of any two states. Our
general algorithm working with polytopes can be easily adapted to this setting. Parametric MDPs [14]
to the contrary allow such dependencies as every probability is described as a rational function of a finite
set of global parameters.

From the side of view of compositional specification, Interval Markov chains [18] and Abstract
probabilistic automata [9,10] serve as specification theories for MC and PA featuring satisfaction relation,
and various refinement relations. In order to be closed under parallel composition, Abstract PA allow
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general polynomial constraints on probabilities instead of interval bounds. Since for Interval MC it
is not possible to explicitly construct parallel composition, the problem whether there is a common
implementation of a set of Interval Markov chains is addressed instead [11]. To the contrary, interval
bounds on rates of outgoing transitions work well with parallel composition in the continuous-time
setting of Abstract interactive Markov chains [20]. The reason is that unlike probabilities, the rates do
not need to sum up to 1. A different way [38] to successfully define parallel composition for interval
models is to separate synchronising transitions from the transitions with uncertain probabilities. This
is also the core of our approach to parallel composition when constructing a case study as discussed in
Section 5.

We are not aware of any existing bisimulation for uncertain or parametric probabilistic models.
Among similar concepts studied in the literature are simulation [38] and refinement [9, 11, 18] relations
for previously mentioned models. Our definition of bisimulation in the competitive setting is inspired by
the alternating bisimulation [1, 6].

Many new verification algorithms for interval models appeared in last few years. Reachability and
expected total reward is addressed for for Interval MC [8] as well as Interval MDP [37]. PCTL model
checking and LTL model checking are studied for Interval MC [2,7,8] and also for Interval MDP [28,36].
Among other technical tools, all these approaches make use of (robust) dynamic programming relying
on the fact that transition probability distributions are resolved dynamically. For the static resolution of
distributions, adaptive discretisation technique for PCTL parameter synthesis is given in [14]. Uncertain
models are also widely studied in the control community [13, 25, 37], mainly interested in maximal
expected finite-horizon reward or maximal expected discounted reward.

Structure of the paper We start with necessary preliminaries in Section 2. In Section 3, we give the
definitions of probabilistic bisimulations for interval MDP and discuss their properties and differences.
In Section 4, we give the FPT algorithms for both cooperative and competitive cases. Finally, in Section 5
we demonstrate our approach on a case study. Due to space limitations, we refer the reader interested in
detailed proofs to [16].

2 Preliminaries

In this paper, the sets of all positive integers, rational numbers, real numbers and non-negative real
numbers are denoted by N, Q, R, and R≥0, respectively. For a set X , we denote by ∆(X) the set of
discrete probability distributions over X .

2.1 Interval Markov Decision Processes

Let us formally define Interval MDP.

Definition 1 (IMDP). An Interval Markov Decision Process (IMDP) M is a tuple (S,A,AP,L, I), where
S is a finite set of states, A is a finite set of actions, AP is a finite set of atomic propositions, L : S→ 2AP

is a labelling function, and I : S×A×S→ I is an interval transition probability function where I is a set
of subintervals of [0,1].

Furthermore, for each state s and action a, we denote by s a−→µ that µ ∈ ∆(S) is a feasible distribution,
i.e. for each state s′ we have µ(s′) ∈ I(s,a,s′). We require that the set {µ | s a−→µ}, also denoted by
E s,a, is non-empty for each state s and action a.
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An interval MDP is initiated in some state s1 and then moves in discrete steps from state to state
forming an infinite path s1 s2 s3 · · · . One step, say from state si, is performed as follows. First, an action
a ∈ A is chosen non-deterministically by Scheduler. Then, Nature resolves the uncertainty and chooses
non-deterministically one corresponding feasible distribution µ ∈ E si,a. Finally, the next state si+1 is
chosen randomly according to the distribution µ .

Let us define the semantics of an IMDP formally. A path is a finite or infinite sequence of states
ω = s1 s2 · · · . For a finite path ω , we denote by last(ω) the last state of ω . The set of all finite paths and
the set of all infinite paths are denoted by Pathsfin and Pathsinf , respectively. Furthermore, let Pathsω =
{ωω ′ | ω ′ ∈ Pathsinf } denote the set of paths that have the finite prefix ω ∈ Pathsfin.

Definition 2 (Scheduler and Nature). A scheduler is a function σ : Pathsfin → ∆(A) that to each finite
path ω assigns a distribution over the set of actions. A nature is a function π : Pathsfin×A→ ∆(S) that to
each finite path ω and action a assigns a feasible distribution, i.e. an element of E s,a where s = last(ω).
We denote by Σ the set of all schedulers and by Π the set of all natures.

For an initial state s, a scheduler σ , and a nature π , let Prσ ,π
s denote the unique probability measure over

(Pathsinf ,B)1 such that the probability Prσ ,π
s [Pathss′ ] of starting in s′ equals 1 if s = s′ and 0, otherwise;

and the probability Prσ ,π
s [Pathsωs′ ] of traversing a finite path ωs′ equals Prσ ,π

s [Pathsω ] ·∑a∈A σ(ω)(a) ·
π(ω,a)(s′).

Observe that the scheduler does not choose an action but a distribution over actions. It is well-
known [31] that such randomisation brings more power in the context of bisimulations. To the contrary,
nature is not allowed to randomise over the set of feasible distributions E s,a. This is in fact not necessary,
since the set E s,a is closed under convex combinations. Finally, a scheduler σ is said to be deterministic
if σ(ω)(a) = 1 for some action a for all finite paths ω .

2.2 Probabilistic Computation Tree Logic (PCTL)

There are various ways how to describe properties of interval MDPs. Here we focus on probabilistic
CTL (PCTL) [15]. The syntax of PCTL state formulas ϕ and PCTL path formulas ψ is given by:

ϕ := true | x | ¬ϕ | ϕ1∧ϕ2 | P1p(ψ)

ψ := Xϕ | ϕ1Uϕ2 | ϕ1U
≤k

ϕ2

where x ∈ AP, p ∈ [0,1] is a rational constant, 1∈ {≤,<,≥,>}, and k ∈ N.
The satisfaction relation for PCTL formulae depends on the way how non-determinism is resolved for

the probabilistic operator P1p(ψ). When quantifying both the non-determinisms universally, we define
the satisfaction relation s |=(∀) ϕ as follows: s |=(∀) x if x∈ L(s); s |=(∀) ¬ϕ if not s |=(∀) ϕ; s |=(∀) ϕ1∧ϕ2
if both s |=(∀) ϕ1 and s |=(∀) ϕ2; and

s |=(∀) P1p(ψ) if ∀σ ∈ Σ ∀π ∈Π : Prσ ,π
s
[
|=(∀) ψ

]
1 p. (∀)

where |=(∀) ψ denotes the set of infinite paths {ω ∈ Pathsinf | ω |=(∀) ψ} and the satisfaction relation

1 Here, B is the standard σ -algebra over Pathsinf generated from the set of all cylinder sets {Pathsω | ω ∈ Pathsfin}. The
unique probability measure is obtained by the application of the by extension theorem (see, e.g. [3]).
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ω |=(∀) ψ for an infinite path ω = s1s2 · · · and a path formula ψ is given by:

ω |=(∀) Xϕ if s2 |= ϕ;

ω |=(∀) ϕ1U
≤k

ϕ2 if there exists i≤ k such that si |=(∀) ϕ2,

and s j |=(∀) ϕ1 for every 0≤ j < i;

ω |=(∀) ϕ1Uϕ2 if there exists k ∈ N such that ω |=(∀) ϕ1U
≤k

ϕ2.

It is easy to show that the set |=(∀) ψ is measurable for any path formula ψ , hence the definition is correct.
We explain how the semantics differs for different resolution of non-determinism in the next section.

3 Probabilistic Bimulations for Interval Markov decision processes

Let us fix an interval MDP (S,A,AP,L, I). In this section, we define probabilistic bisimulations for
different interpretations of Interval MDP. Namely the bisimulation ∼(∀) for the cooperative setting and
bisimulations ∼(∃σ∀) and ∼(∃π∀) for two different applications for the competitive setting. We then show
that ∼(∃σ∀) and ∼(∃π∀) actually coincide.

3.1 Cooperative resolution of non-determinism

In the context of verification of parallel systems with uncertain transition probabilities, it makes sense to
assume that Scheduler and Nature are resolved cooperatively in the most adversarial way. This setting
yields a bisimulation quite similar to standard probabilistic bisimulation for models with one type of
non-determinism [23]. First, let us denote by s−→µ that a transition from s according to µ can be taken
cooperatively, i.e. that there is a decision ρ ∈ Dist(A) of Scheduler and decisions s a−→µa of Nature for
each a such that µ = ∑a∈A ρ(a) · µa. In other words, s−→µ if µ ∈ conv{E s,a | a ∈ A} where convX
denotes the convex hull of X .

Definition 3. Let R⊆ S×S be a equivalence relation. We say that R is probabilistic (∀)-bisimulation if
for any (s, t) ∈ R we have that L(s) = L(t) and

for each s−→ µ

there is t −→ ν such that µ(C ) = ν(C ) for each equivalence class C ∈ S/R.

Furthermore, we write s∼(∀) t if there is a probabilistic (∀)-bisimulation R such that (s, t) ∈ R.

Intuitively, each (cooperative) step of Scheduler and Nature from state s needs to be matched by a
(cooperative) step of Scheduler and Nature from state t; symmetrically, s also needs to match t. As a
first result, we show that the bisimulation ∼(∀) preserves the (cooperative) universally quantified PCTL
satisfaction |=(∀).

Theorem 1. For states s∼(∀) t and any PCTL formula ϕ , we have s |=(∀) ϕ if and only if t |=(∀) ϕ .

Dually, the non-determinism could also be resolved existentially. This corresponds to the setting
where we want to synthesise both the scheduler σ that controls the system and choice of feasible prob-
ability distributions π such that σ and π together guarantee a specified behaviour ϕ . This setting is
formalised by the satisfaction relation |=∃ which is defined like |=(∀) except for the operator P1p(ψ)
where we set

s |=(∃) P1p(ψ) if ∃σ ∈ Σ ∃π ∈Π : Prσ ,π
s
[
|=(∃) ψ

]
1 p. (∃)
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Note that for any formula of the form P<p(ψ), we have s |=∃ P<p(ψ) if and only if we have s |=(∀)
¬P≥p(ψ). This can be easily generalised: for each state formula ϕ we obtain a state formula ϕ such that
s |=∃ ϕ if and only if s |=(∀) ϕ for each state s. Hence ∼(∀) also preserves |=∃.
Corollary 1. For states s∼(∀) t and any PCTL formula ϕ , we have s |=(∃) ϕ if and only if t |=∃ ϕ .

3.2 Competitive resolution of non-determinism

As already argued for in Section 1, there are applications where it is natural to interpret the two sources
of non-determinism in a competitive way.

Control synthesis under uncertainty In this setting we search for a scheduler σ such that for any
nature π , a fixed property ϕ is satisfied. This corresponds to the satisfaction relation |=(∃σ∀), obtained
similarly from |=(∀) by replacing the rule (∀) with

s |=(∃σ∀) P1p(ψ) if ∃σ ∈ Σ ∀π ∈Π : Prσ ,π
s
[
|=(∃σ∀) ψ

]
1 p. (∃σ∀)

As regards bisimulation, the competitive setting is not a common one. We define a bisimulation
similar to the alternating bisimulation of [1] applied to non-stochastic two-player games. For a decision
ρ ∈ ∆(A) of Scheduler, let us denote by s ρ−→µ that µ is a possible successor distribution, i.e. there are
decisions µa of Nature for each a such that µ = ∑a∈A ρ(a) ·µa.

Definition 4. Let R⊆ S×S be an equivalence relation. We say that R is probabilistic (∃σ∀)-bisimulation
if for any (s, t) ∈ R we have that L(s) = L(t) and

for each ρs ∈ ∆(A)

there is ρt ∈ ∆(A)

such that for each t
ρt−→ ν

there is s
ρs−→ µ such that µ(C ) = ν(C ) for each equivalence class C ∈ S/R.

Furthermore, we write s∼(∃σ∀) t if there is a probabilistic (∃σ∀)-bisimulation R such that (s, t) ∈ R.

The exact alternation of quantifiers might be counter-intuitive at first sight. Note that it exactly
corresponds to the situation in non-stochastic games [1] and that this bisimulation preserves the PCTL
logic with |=(∃σ∀).

Theorem 2. For states s∼(∃σ∀) t and any PCTL formula ϕ , we have s |=(∃σ∀) ϕ if and only if t |=(∃σ∀) ϕ .

Similarly to Corollary 1, we could define a satisfaction relation with the alternation ∀σ ∈ Σ ∃π ∈ Π

that is then preserved by the same bisimulation ∼(∃σ∀). However, we see no natural application thereof.

Parameter synthesis in parallel systems In this setting, we search for a resolution π of the under-
specified probabilities such that for any scheduler σ resolving the interleaving non-determinism, a fixed
property ϕ is satisfied. This corresponds to the satisfaction relation |=(∃π∀), obtained similarly from |=(∀)
by replacing the rule (∀) with

s |=(∃π∀) P1p(ψ) if ∃π ∈Π ∀σ ∈ Σ : Prσ ,π
s
[
|=(∃π∀) ψ

]
1 p. (∃π∀)

This yields a definition of bisimulation similar to Definition 4. For a choice (µa)a∈A of underspecified
probabilities, let us denote by s (µa)−→µ that µ is a possible successor distribution, i.e. there is a decision
ρ of Scheduler such that µ = ∑a∈A ρ(a) ·µa.
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Definition 5. Let R ⊆ S×S be a symmetric relation. We say that R is probabilistic (∃π∀)-bisimulation
if for any (s, t) ∈ R we have that L(s) = L(t) and

for each (µa)a∈A where s a−→ µa for each a ∈ A

there is (νa)a∈A where t a−→ νa for each a ∈ A

such that for each t
(νa)−→ ν

there is s
(µa)−→ µ such that µ(C ) = ν(C ) for each equivalence class C ∈ S/R,

Furthermore, we write s∼(∃π∀) t if there is a probabilistic (∃π∀)-bisimulation R such that (s, t) ∈ R.

The fact that this bisimulation preserves |=(∃π∀) can be proven analogously to Theorem 2.

Theorem 3. For states s∼(∃π∀) t and any PCTL formula ϕ , we have s |=(∃π∀) ϕ if and only if t |=(∃π∀) ϕ .

As a final result of this section, we show that these two bisimulations coincide.

Theorem 4. We have ∼(∃σ∀) = ∼(∃π∀).

Thanks to this result, we denote from now on these coinciding bisimulations by∼(∃∀). As a conclud-
ing remark, note that Definitions 3, 4 and 5 can be seen as the conservative extension of probabilistic
bisimulation for (state-labelled) MDPs. To see that assume the set of uncertainty for every transition is
a singleton. Since there is only one choice for the nature, the role of nature can be safely removed from
the definitions. Moreover, it is worthwhile to note that Theorems 1, 2 and 3 show the soundness of the
probabilistic bisimulation definitions with respect to PCTL. Unfortunately, it is shown in [31, 32] that
probabilistic bisimulation for probabilistic automata is finer than PCTL equivalence which leads to the
incompleteness in general. Since MDPs can be seen as a subclass of PAs, it is not difficult to see that the
incompleteness holds also for MDPs.

We also remark that the notions ∼(∀) and ∼(∃∀) are incomparable, as it is for instance observable in
Example 1.1. It is shown in the example that t ∼(∀) t and u∼(∃∀) u. However it is not hard to verify that
t 6∼(∃∀) t and u 6∼(∀) u. For the latter, notice that for example u can evolve to r with probability one by
taking action b, whereas u cannot simulate. The former is noticeable in the situation where the controller
wants to maximise the probability to reach r, but the nature declines. In this case t chooses action b and
the nature let it go to r with probability 0.8. Nevertheless the nature can prevent t to evolve into r with
probability more than 0.6, despite the fact which action has been chosen by t.

4 Algorithms

In this section, we give algorithms for computing bisimulations∼(∀) and∼(∃∀). We show that computing
bisimulations in both cases is fixed-parameter tractable.

Example 4.1. Let us start by illustrating the ideas on Example 1.1 from Section 1.

t

` r

a

[0.1,0.3]

b

[0
,1
]

[0.8,1] [0.
2,

0.6
]

t

` r

c

[0.1,1]

d

[0
,0
.8
]

[0.4,0.9] [0.
2,

0.4
]

u

` r

a

[0.1,0.6]

b

[0
,1
]

[0,1] [0,
0.6

]

u

` r

a

[0.1,0.6]

c

[0
,1
]

[0,1]

[0.
1,

0.8
]
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t ∼(∀) t

ta b

`+ r = 1

0.1≤ `≤ 0.3

0.8≤ r ≤ 1

`+ r = 1

0.2≤ `≤ 0.6

0≤ r ≤ 1

P1

`

r

1

1

.1 .3

.8

[0.1,0.2]
P2

`

r

1

1

.2 .6

[0.2,0.6]

tc d

`+ r = 1

0.1≤ `≤ 1

0.4≤ r ≤ 0.9

`+ r = 1

0.2≤ `≤ 0.4

0≤ r ≤ 0.8

P3

`

r

1.1

.4

.9
[0.1,0.6]

P4

`

r

1

1

.2 .4

.8

[0.2,0.4]

u∼(∃∀) u

ua b

`+ r = 1

0.1≤ `≤ 0.6

0≤ r ≤ 1

`+ r = 1

0≤ `≤ 0.6

0≤ r ≤ 1

P1[0.1,0.6]

P2[0,0.6]

ua c

`+ r = 1

0.1≤ `≤ 0.6

0≤ r ≤ 1

`+ r = 1

0.1≤ `≤ 0.8

0≤ r ≤ 1

P1[0.1,0.6]

P3[0.1,0.8]

The general sketch of the algorithm is as follows. We need to construct the polytopes of probability dis-
tributions offered by the actions; in our examples the polytopes are just line segments in two-dimensional
space. We get t ∼(∀) t since the convex hull of P1 and P2 equals to the convex hull of P3 and P4. Similarly,
we get u∼(∃∀) u since u and u have the same set of minimal polytopes w.r.t. set inclusion.

Let us state the results formally. Let us fix M = (S,A,AP,L, I) where b is the maximal number
of different actions maxs∈S |{I(s,a, ·) | a ∈ A}|, f is the maximal support of an action maxs∈S,a∈A |{s′ |
I(s,a,s′) 6= [0,0]}|, and |M| denotes the size of the representation using adjacency lists for non-zero
elements of I where we assume that the interval bounds are rational numbers encoded symbolically in
binary.

Theorem 5. There is an algorithm that computes ∼(∀) in time polynomial in |M| and exponential in f .
There is also an algorithm that computes ∼(∃∀) in time polynomial in |M| and exponential in f and b.

Computing both bisimulations follows the standard partition refinement approach [4, 19, 26], for-
malized by the procedure Bisimulation in Algorithm 1. Namely, we start with R being the complete
relation and iteratively remove from R pairs of states that violate the definition of bisimulation with re-
spect to R. The core part is finding out whether two states “violate the definition of bisimulation”. This
is where the algorithms for the two bisimulations differ.

4.1 Cooperative resolution of non-determinism of the bisimulation ∼(∀)

Let us first address ∼(∀) where the violation is checked by the procedure Violate(∀). We show that this
amounts to checking inclusion of polytopes defined as follows. Recall that for s ∈ S and an action a ∈ A,
E s,a denotes the polytope of feasible successor distributions over states with respect to taking the action
a in the state s. By E s,a

R , we denote the polytope of feasible successor distributions over equivalence
classes of R with respect to taking the action a in the state s. Formally, for µ ∈ ∆(S/R) we set µ ∈ E s,a

R
if we have

µ(C ) ∈
[

∑
s′∈C

inf I(s,a,s′) ∑
s′∈C

sup I(s,a,s′)
]

for each C ∈ S/R.

Note that we require that the probability of each class C must be in the interval of the sum of probabilities
that can be assigned to states of C . Furthermore, we define E s

R as the convex hull of
⋃

a∈A E s,a
R . It is the set

of feasible successor distributions over S/R with respect to taking an arbitrary distribution over actions
in state s. As specified in the procedure Violate(∀), we show that it suffices to check equality of these
polytopes.

Proposition 1. We have s∼(∀) t if and only if L(s) = L(t) and E s
∼(∀)

= E t
∼(∀)

.
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Bisimulation(M)

1: R←{(s, t) ∈ S×S | L(s) = L(t)};
2: repeat
3: R′← R;
4: for all s ∈ S do
5: D← /0;
6: for all t ∈ [s]R do
7: if Violate(s, t,R)
8: D← D∪{t};
9: split [s]R in R into D and [s]R \D;

10: until R = R′;
11: return R;

Violate(∀)(s, t,R)

1: return E s
R 6= E t

R;

Violate(∃∀)(s, t,R)

1: S,T ← /0;
2: for all a ∈ A do
3: if Minimal(s,a,R) // E s,a

R strictly m.?

4: S← S∪{E s,a
R };

5: if Minimal(t,a,R)
6: T ← T ∪{E t,a

R };
7: return S 6= T ;

Minimal(s,a,R)

1: k← |A|−1;
2: C1, . . . ,Ck← compute the sets of corners of other polytopes;
3: B← (1,−1); // constraints on ρ such that Bρ +d ≥ 0 implies E

s,ρ
R ⊆ E s,a

R
4: d← (−1,1); // initially, Bρ +d ≥ 0 implies ∑ρ = 1, i.e. ρ ∈ ∆({1, . . . ,k})
5: for all c1, . . . ,ck ∈C1×·· ·×Ck do
6: R← /0;
7: for all intersections x of E s,a

R with the line segment from vi to v j for some i 6= j do
8: R← R∪{(r1, · · · ,rk)} where ri · ci + r j · c j = x and r` = 0 for ` 6∈ {i, j};
9: for all facets F of the convex hull of R do

10: add to matrices B,d a constraint corresponding to the half-space given by F that includes R;
11: return (Bρ +d = 0 not feasible); // no intersection of the convex hulls of all sets R?

Algorithm 1: Probabilistic bisimulation algorithm for interval MDPs

Proof. Let us first introduce one notation. For each distribution µ ∈ ∆(S), let µ ∈ ∆(S/ ∼(∀)) denote
the corresponding distribution such that µ(C ) = ∑s∈C µ(s). As regards the “if” part, for each choice
s−→µ , we have µ ∈ E s

∼(∀)
. Similarly, for each ρ ∈ E t

∼(∀)
, there is a choice t−→ν such that ν = ρ .

Hence, s∼(∀) t. As regards the “only if” part, let us assume that there is a distribution ρ over equivalence
classes such that, say ρ ∈ E s

∼(∀)
\E t
∼(∀)

. There must be a choice s−→µ such that µ = ρ and there is no
choice t−→ν such that ν = ρ . Hence, s 6∼(∀) t.

Complexity Given an IMDP M, let |S| = n, |A| = m, b be the maximal number of different actions
maxs∈S |{I(s,a, ·) | a∈A}|, and f be the maximal support of an action maxs∈S,a∈A |{s′ | I(s,a,s′) 6= [0,0]}|.

It is easy to see that the procedure Violate(∀) is called at most n3-times. Each polytope E s,a
R has at

most C = f ·2 f−1 corners, computing the convex hull E s
R takes O((bC)2) time [5]. Checking inclusion of

two polytopes then can be done in time polynomial [34] in the number of corners of these two polytopes.
In total, computing of ∼(∀) can be done in time |M|O(1) ·2O( f ).

4.2 Competitive resolution of non-determinism of the bisimulation ∼(∃∀)

In this case, the violation of bisimilarity of s and t with respect to R is addressed by the procedure
Violate(∃∀). Here, we check that s and t have the same set of strictly minimal polytopes. For a state s, an
action a ∈ A, and an equivalence R⊆ S×S, we say that E s,a

R is strictly minimal if no convex combination
of the remaining polytopes of s is a subset of E s,a

R . More precisely, if for no distribution ρ ∈ ∆(A\{a}),
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we have E s,ρ
R ⊆ E s,a

R where E s,ρ
R denotes the polytope {∑b∈A\{a}ρ(b) ·xb | each xb ∈ E s,b

R }.

Proposition 2. We have s∼(∃∀) t if and only if L(s)= L(t) and {E s,a
∼(∃∀)
| a∈A,E s,a

∼(∃∀)
is strictly minimal}=

{E t,a
∼(∃∀)
| a ∈ A,E t,a

∼(∃∀)
is strictly minimal}.

Proof. We first address the “if” part. For each choice of Nature (µa)a∈A where each s a−→µa , let M =
{µa | a∈A} and M′⊆M be the subset where each distribution lies within some strictly minimal polytope
E s,b
∼(∃∀)

. Because the strictly minimal polytopes coincide, we can construct a choice of Nature N = (νa)a∈A

such that N = {νa | a ∈ A}= M′. Because N ⊆M, it is easy to see that for each t (νa)−→ν there is s (µa)−→µ

such that µ(C ) = ν(C ) for each C ∈ S/R.
As regards the “only if” part, let us assume that there is, say in t, a strictly minimal polytope E t,b

∼(∃∀)

that is not in the set of strictly minimal polytopes for s. There is a choice of Nature (µa)a∈A for state s
such that no convex combination of elements of M = {µa | a ∈ A} lies in E t,b

∼(∃∀)
; in particular no element

of M lies in E t,b
∼(∃∀)

. For any choice of Nature (νa)a∈A for state t, νb is not a convex combination of
elements from M. Thus, if Scheduler chooses action b, there is no s (µa)−→µ such that µ(C ) = νb(C ) for
each C ∈ S/R and it does not hold s∼(∃∀) t.

Next, we need to address how to compute whether a polytope is strictly minimal. We construct
B and d such that Bρ + d ≥ 0 implies E s,ρ

R ⊆ E s,a
R . Checking of strictly minimality then reduces to

checking feasibility of this linear system. The system gets constructed iteratively. Let P1, · · · ,Pk de-
note the polytopes corresponding to all actions in s except for a. We enumerate all combinations
(c1, . . . ,ck) ∈C(P1)×·· ·×C(Pk) of corners of the polytopes. For each such combination we add into B
and d new constraints B(c1,...,ck) and d(c1,...,ck) such that for any ρ satisfying B(c1,...,ck)ρ +d(c1,...,ck) ≥ 0 we
have ∑ρici ∈ E s,a

R . For details, see the procedure Minimal in Algorithm 1.

Proposition 3. We have Bρ +d ≥ 0 is not feasible if and only if E s,a
R is strictly minimal where the rows

of B and d are obtained as a union of rows

B = {1,−1} ∪
⋃
{B(c1,...,ck) | (c1, . . . ,ck) ∈ C(P1)×·· ·×C(Pk)}

d = {−1,1} ∪
⋃
{d(c1,...,ck) | (c1, . . . ,ck) ∈ C(P1)×·· ·×C(Pk)}.

Proof. Let ρ be any feasible solution of the system. It is easy to see that E s,ρ
R ⊆ E s,a

R since E s,ρ
R is convex

and since all corners of E s,ρ
R (obtained as a convex ρ-combination of corners of all E s,b

R ) lie within E s,a
R .

Hence, E s,a
R is not strictly minimal. As regards the other direction, let E s,a

R be not strictly minimal. By
definition, there is a distribution ρ over the remaining actions in s such that E s,ρ

R ⊆ E s,a
R . Then, this

distribution ρ must satisfy Bρ +d ≥ 0.

Complexity Again let |S|= n, |A|=m, b be the maximal number of different actions maxs∈S |{I(s,a, ·) |
a ∈ A}|, and f be the maximal support of an action maxs∈S,a∈A |{s′ | I(s,a,s′) 6= [0,0]}|.

Again, Violate(∃∀) is called at most n3 times. The procedure Violate(∃∀) is then linear in m and
in the complexity of Minimal. There are at most ( f · 2 f−1)b combinations of corners of the polytopes.
For each such combination, b(b−1) times the intersection points of a line and a polytope are computed
(in time polynomial in |M|), and at most f ! facets of the resulting polytope R are inspected. Overall,
computing of ∼(∃∀) can be done in time |M|O(1) ·2O( f 2b).
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5 Case Study

As a case study, we consider a model of Carrier Sense Multiple Access with Collision Detection (CSMA
/ CD), which is an access control on a shared medium, used mostly in early Ethernet technology. In
this scheme multiple devices can be connected to a shared bus. Multiple attempts at the same time
to grab bus access leads to collision. At this point, the senders in collision probabilistically schedule a
retransmission according to exponential back-off algorithm. The algorithm uniformly determines a delay
before the next retransmission, which is between 0 to 2n−1 time slots after occurrence of n-th collision.
After a pre-specified number of failed retransmissions, a sender aborts the sending process.

There are two sources of uncertainty in the model. Uncertainty in sending data lies in the fact that the
exact probability of sending a message from a sender could be unknown. Instead it is within an interval.
The other source comes from imprecise information about collision. If two nodes try to send a frame at
the slightly same time, a collision will happen. Conversely it will not happen, when the later transmitter
checks the bus and detects it occupied. Since the exact probability of a collision occurrence depends on
many parameters and is likely unknown, it is expressed as an uncertain interval rather than an exact value
in the model.

Concurrent execution of the node and the bus processes assembles the CSMA/CD model. To this
end we need a formalism that supports communication among components via parallel composition. We
thus consider a subclass of abstract PAs [9] with interval constraints on probabilities. The subclass in
general is not closed under parallel composition. The problem arises when two actions exhibiting uncer-
tainty want to synchronise. Parallel composition in this case imposes some interdependency between the
choices of the composed action, which cannot be expressed by a simple interval bound and needs to be
expressed by more complicated polynomial constraints. Nevertheless by excluding synchronisation of
actions containing uncertainty, abstract PAs with interval constraints feature closure under parallel com-
position and thereby allow compositional modelling. This is of course not a strict restriction, because
we can always shift uncertainty to the actions that are not subject to parallel composition by introducing
proper auxiliary states and transitions. In our case study all components are in this subclass and respects
the restriction, as uncertainty prevails on actions that are not subject to parallel composition. Conse-
quently it enables us to utilise compositional system design by using existing tools. Since the model
arising from parallel composition is not subject to any further communication, we can close it and obtain
an IMDP at the end.

We use process algebra prCRL [21], implemented in tool scoop [35], for compositional modelling
of CSMA/CD. The model has two parameters: number of nodes attached to the bus and maximum
collision allowed before abortion. As we are interested in model checking of a model arisen from parallel
composition we apply the semantics of bisimulation in cooperative way, namely ∼(∀). The state space
is generated by scoop and then the bisimulation quotient is computed. Since the maximum size f of
the set supported by uncertain transitions is two, the algorithm of Section 4 is tractable. Reduction in
state and transition space gained after bisimulation minimisation is reported in Table 1. As shown in the
table, the reduction of both state and transition space increases when putting more nodes in the network.
Indeed, then there are more nodes performing similar activities and thereby increasing the symmetry in
the model. On the other hand, increasing the maximum number of collisions allows the nodes to more
likely send frames at different time slots. As a result it decreases the symmetry and then the reduction
factor.
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Table 1: Impact of bisimulation minimisation on CSMA/CD model2

Node # Max collision #
Original Model Minimised Model Reduction Factor

State # Transition # States # Transition # For states For transitions

2
1 233 466 120 220 48% 53%
2 497 988 310 581 38% 41%
3 865 1858 576 1186 33% 36%

3
1 4337 10074 1244 2719 71% 73%
2 52528 125715 18650 42795 64% 66%
3 239213 619152 90492 225709 62% 64%

4
1 60357 154088 10904 27308 82% 82%
2 1832005 4876636 421570 1112129 77% 77%

5 1 751905 2043090 90538 248119 88% 88%

6 Conclusion

In this paper, we study strong bisimulations for interval MDPs. In these models there are two sources of
non-determinism and we deal with different interpretations of these non-determinisms. This yields two
different bisimulations and we give decision algorithms for both of them.

Note that our decision algorithms can be easily adapted to the slightly broader setting of uncertain
MDPs with rectangular uncertainty sets [25]. In this setting, a general convex polytope (not necessar-
ily induced by intervals) is associated to each action in each state. Still, it is assumed that transition
probabilities from different states or under different actions are independent.

First open question for future work is the exact complexity of our decision problems. One way
to address this question is to prove NP-hardness of the general problem. Another way is to identify
interesting subclasses of interval MDPs for that a polynomial-time algorithm exists. Second direction
for future work is to address a richer formalism for uncertainties (such as polynomial constraints or even
parameters appearing in multiple states/actions). Third, compositional modelling over interval models
also deserves a more systematic treatment. Understanding better the ways how large models with interval
uncertainties can be composed, may bring further ideas for efficient analysis of these models.
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