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In an earlier experiment, participants played a perfect information game against a computer, which
was programmed to deviate often from its backward induction strategy right at the beginning of the
game. Participants knew that in each game, the computer was nevertheless optimizing against some
belief about the participant’s future strategy. In the aggregate, it appeared that participants applied
forward induction. However, cardinal effects seemed to play a role as well: a number of participants
might have been trying to maximize expected utility.

In order to find out how people really reason in such a game, we designed centipede-like turn-
taking games with new payoff structures in order to make such cardinal effects less likely. We ran
a new experiment with 50 participants, based on marble drop visualizations of these revised payoff
structures. After participants played 48 test games, we asked a number of questions to gauge the
participants’ reasoning about their own and the opponent’s strategy at all decision nodes of a sample
game. We also checked how the verbalized strategies fit to the actual choices they made at all their
decision points in the 48 test games.

Even though in the aggregate, participants in the new experiment still tend to slightly favor the
forward induction choice at their first decision node, their verbalized strategies most often depend
on their own attitudes towards risk and those they assign to the computer opponent, sometimes in
addition to considerations about cooperativeness and competitiveness.

1 Introduction

In game theory, turn-taking games are represented by game trees referred to as extensive-form games.
It is well known that the concept of game-theoretic rationality provides a canonical approach towards
solving extensive-form games with perfect information, namely Backward Induction (BI), which yields
a subgame-perfect equilibrium (which is a unique in generic turn-taking games with no pay-off ties) [40,
41]. However, BI is often criticized for not taking into account that a player may end up in one particular
subgame rather than another subgame, e.g. after a deviation of other players from their BI strategy.
Thus, the past moves and reasoning of the players are not taken into consideration, only the future.
All players commonly believe in everybody’s future rationality, no matter how irrational players’ past
behavior has already proven. In some cases, such complete lack of consideration of previous moves may
be suboptimal for players.

An alternative approach, that of Forward Induction (FI), does take these previous moves of the oppo-
nent(s) under consideration and tries to rationalize the opponent’s past behavior for assessing his future
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moves. Thus, when a player is about to play in a subgame that has been reached due to some strategy
of the opponent that is not consistent with both common knowledge (belief) of rationality for each of
the players and his past behavior, the player may still rationalize the opponent’s past behavior. She may
attribute to her opponent a strategy that is optimal against a possible suboptimal strategy of hers, or a
strategy that is optimal against some rational strategy of hers, which is only optimal against a suboptimal
strategy of his, and so on. If the player pursues this kind of rationalizing reasoning to the highest extent
possible and reacts accordingly, she ends up choosing what is called an Extensive-Form Rationalizable
(EFR) strategy [5, 6, 39]. For perfect information games, to which we restrict our attention in this paper,
see Definition 1 in [26], which we we will be using here.

Even though EFR strategies may be distinct from BI strategies (e.g., see [43], Game 1 in Figure
1), in perfect-information games without relevant payoff ties it has be been shown that the unique EFR
outcome coincides with the unique BI outcome [5,6,26] . In case there are relevant payoff ties, however,
EFR outcomes may form a—possibly strict—subset of the BI outcomes [10, 11, 26, 41], see game 3 in
Figure 1.

In [19], we asked the question: Are people inclined to use forward induction when they play a game?
Our pivotal interest was to examine participants’ behavior following a deviation from BI behavior by
their opponent right at the beginning of the game. We designed a Marble Drop game experiment where
the participants played several rounds of turn-taking games with the computer. Related research has
been done on how people reason in dynamic games, also focusing on forward induction [4,8,12,27,46].
However, their games are not perfect information, in contrast to our Marble Drop games. In these games,
we programmed the computer so as to follow, in each repetition of each game, a strategy which is optimal
with respect to some strategy of the human participant. We provided a more intuitive framing of the game
trees, inspired by Meijering et al.’s Marble Drop [32, 33]. In [19], it turned out that in the aggregate,
people’s first decisions could be explained as EFR behavior. However, it also seemed that in many
cases, cardinal effects could have played a role. Consequently, we wanted to design a new Marble Drop
experiment which minimizes this cardinal effect, and in the process, improve certain other aspects of our
previous experiment, based on our own findings and discussion with colleagues working in empirical
research.

To summarize, the main differences between the current Marble Drop experiment and the one re-
ported in [19] are as follows. The aim is to have better overall understanding of the participants’ behavior:

- At the beginning of the experiment, we explained verbally in a more comprehensive way regarding
how the computer agent was programmed (including “Imagine that you are playing against a different
computer opponent each time” and “the computer thinks that you already have a plan for that game, and
it plays the best response to the plan it thinks that you have for that game, however, the computer does
not learn from previous games and does not take into account your choices during the previous games”.)
- We changed the payoff structures of the experimental games in order to minimize cardinal effects on
the behavior of the participants.
- We modified the questions asked to the Group A and Group B participants to direct some of the partic-
ipants towards strategic reasoning while playing the games and note the effects of such prompts.
- We asked more structured and pointed questions about the participants’ decision-making process at the
end of the experiment to bring out the reasoning behind their behaviors in a more explicit manner.
-We changed the monetary incentive so that a wealth effect would be eradicated. By basing payment
on number of marbles in a randomly drawn game, the participants perceived a clear difference between
earning k and k+1 marbles in a game (not just 5 cents as in the previous experiment, but 3.75 euros).
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We mainly focused on the following questions:

1) Do participants now more clearly play according to FI?
2) If not, what are they actually doing? What roles are played by risk attitudes and cooperativeness
versus competitiveness?
3) Can they be reasonably divided into types of players?

Additionally, we are interested in whether people take the perspective of their opponent and make
use of theory of mind while playing the Marble Drop experiment. Theory of mind refers to the ability to
reason about unobservable mental content of others, such as beliefs, desires, or goals [42]. This theory
of mind ability can even be used to reason about the theory of mind of others, and reason about the
way others reason about beliefs and goals. This second-order theory of mind allows us to understand
sentences such as “Alice knows that Bob wants to get six marbles”, and use this to adjust our predictions
of the behavior of Alice.

The rest of this paper is structured as follows. In Section 2, we explain the new experimental games
and the differences with the previous experiment [19]. Section 3 presents the experimental results about
the participants’ decisions in the games as well as their reports about their own reasoning behind their
behaviors. Section 4 discusses the results and provides suggestions for future research.

2 A Marble Drop Experiment

In [19], we designed a marble drop game experiment to investigate whether people are inclined to use
Forward Induction (FI) when they play dynamic perfect-information games. The participants played
8 rounds of turn-based games against a computer opponent, repeating in each round a set of 6 games,
distinct in terms of payoff structures. By letting participants play against a computer opponent, we ensure
that each participant encounters the same situations, which allows us to eliminate variability due to the
strategy of the opponent in our analysis. In these two-player games, the players played alternately. Let
C denote the computer, and let P denote the participant. In four of the games the computer plays first,
followed by the participant, and each of the players can play at two decision nodes. In the remaining
two games, which are truncated versions of two of the games described earlier, the participant gets first
chance to move. It appeared that participants did apply FI in playing these games, that is, in all likelihood
the participants responded in a way which is optimal with respect to the conjecture that the computer is
after a larger prize than the one it has foregone, even when this necessarily meant that the computer has
attributed future irrationality to the participant when the computer made the first move in the games.
However, a closer look at the individual choices revealed that cardinal effects probably played a role in
these choices.

To get more conclusive evidence for FI reasoning on the part of the participants, we designed the
current experiment, where the participants once again played 8 rounds of turn-based games, repeating in
each round a set of 6 games as earlier. The main difference from the earlier experiment is in the payoff
structures of the 6 games used for the experiment. We revised the payoff structures so as to minimize the
probable cardinal effects reported in [19]. The main features of the new payoff structures (cf. Figures 1
and 2) are as follows:
- Game 1 differs from Game 2 only in the payoff of the Computer (C) following action a (ending the
game right away). As a result, Game 1′ is the truncation of Game 1 as well as Game 2. This means that
participants who get to play in Game 1 and Game 2 face exactly the same continuation game (Game 1′).
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Figure 1: Collection of the main games used in the experiment. The ordered pairs at the leaves represent
payoffs for the computer (C) and the participant (P), respectively.
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Figure 2: Truncated versions of Game 1 and Game 3.

We assumed that these new payoffs would enable an unobstructed comparison between the participants’
behavior across these games (i.e. without confounding effects of cardinal differences in payoffs, which
may have interfered in the previous experiment [19]). In [19], Game 1 and Game 2 had the same tree
structures as currently, but the payoffs of player C following a and e were interchanged, so that Game 1′

was not a truncation of Game 2, hence some cardinal effect may have been instrumental in participants’
choices at the nodes of these games.
- The same holds good for Game 3 and Game 4, respectively.
- Game 1 differs from Game 3 only in P’s payoff following h at the very end. One can compare Game 2
and Game 4 in a similar manner. Previously, the payoff structure of Game 1 differed from that of Game
3, and the same for Game 2 and Game 4, respectively.
- We removed all the zero payoffs from these games, which some participants experienced as particularly
“bad” in the previous experiment (according to their verbal reports).
- At C’s second chance to move, exiting by playing e guarantees C a payoff of 3, which is only slightly
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smaller than the expected payoff 3.5 of a fifty-fifty lottery between g (with which C gets 1) and h (with
which C gets 6). This means that if at an earlier node, P believes that C is “confused” (because C has
just deviated from its BI behavior), by attributing to C a fifty-fifty belief on P’s future behavior at the
last node (if reached), P cannot conclude what C will do next (choose e or f ) if P believes that C is
mildly risk-averse, because the precise level of C’s presumed risk aversion would determine whether a
sure payoff of 3 is preferable or not to a fifty-fifty lottery between 1 and 6 in C’s eyes.

Furthermore, if due to the above, participant P has a 50-50 belief on C’s future choice between e
or f and P is herself mildly risk-averse, cardinal considerations on their own will not give her a clear
guidance what to do: exiting by playing c will guarantee the payoff 2, while continuing by playing d
yields a fifty-fifty lottery between 1 (if C chooses e) or 4 (if C chooses f ), with a slightly higher expected
payoff of 2.5.

Thus, participants who are unsure how to interpret C’s initial deviation from BI will neither be able
to come up with an easy forecast regarding C’s future behavior on the basis of cardinal payoff consider-
ations, nor will they have a strong preference for c or d on the basis of cardinal payoff considerations—
which were a confounding potential explanation for participants’ behavior in the previous experiment,
which we would like to circumvent.

To get some idea about BI and FI strategies in the current experimental games, let us now concentrate
on Game 1 (a variant of Reny’s game [43]). (For the remaining games, the reader may adapt the reasoning
strategies discussed in [19].) In Game 1, the unique Backward Induction (BI) strategy for player C is
a;e, while for player P it is c;g. In case the last decision node of the game is reached, player P will play
g (which will give P a better payoff at that node) yielding 1 for C. Thus, in the previous node, if reached,
C will play e to be better off. Continuing like this from the end to the start of the game by BI reasoning,
it can be inferred that whoever is the current player will choose to end the game immediately.

Forward induction, in contrast, would proceed as follows. Among the two strategies of player C that
are compatible with reaching the first decision node of player P, namely b;e and b; f , only the latter is
rational for player C. This is because b;e is dominated by a;e, while b; f is optimal for player C if she
believes that player P will play d;h with a high enough probability. Attributing to player C the strategy
b; f is thus player P’s best way to rationalize player C’s choice of b, and in reply, d;g is player P’s best
response to b; f . Thus, the unique Extensive-Form Rationalizable (EFR) strategy of P is d;g, which is
distinct from her BI strategy c;g. Nevertheless, player C’s best response to d;g is a;e, which is therefore
player C’s EFR strategy. Hence the EFR outcome of the game (with the EFR strategies a;e and d;g) is
identical to the BI outcome. A summary of the strategies in the games of Figures 1 and 2 is given in
Table 1.

We now discuss the experimental procedure, which is almost the same as reported in [19]. A group
of 50 Bachelor’s and Master’s students from different disciplines participated in the experiment. As
in [19], the participants had little or no knowledge of game theory, so as to ensure that neither backward
induction nor forward induction reasoning was already known to them. 96% of the participants were
aged between 18 and 32. 48% of the participants were female, 52% of the participants were male. All
experiments were conducted at the Institute of Artificial Intelligence at the University of Groningen, in
the ALICE Lab.

The participants played the finite perfect-information games in a graphical interface on the computer
screen (cf. Figure 3). In each game, a marble was about to drop, and both the participant and the computer
determined its path: The participant controlled the orange trapdoors, and the computer controlled the blue
trapdoors. The participant’s (computer’s) goal was that the marble should drop into the bin with as many
orange (blue) marbles as possible.

At the start of the experiment, participants received verbal instructions (based on an instruction sheet,
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Games — Strategies BI strategy EFR strategy

Game 1 C: a;e C: a;e

P: c;g P: d;g

Game 2 C: a;e C: a;e

P: c;g P: c;g

Game 3 C: a;e,b;e,a; f ,b; f C: a;e,a; f ,b; f

P: c;g,d;g,c;h,d;h P: d;g,d;h

Game 4 C: a;e,b;e,a; f ,b; f C: a;e,b;e,a; f ,b; f

P: c;g,d;g,c;h,d;h P: c;g,d;g,c;h,d;h

Game 1′ C: e C: e

P: c;g P: c;g

Game 3′ C: e, f C: e, f

P: c;g,d;g,c;h,d;h P: c;g,d;g,c;h,d;h

Table 1: BI and EFR (FI) strategies for the 6 experimental games in Figures 1 and 2

see Appendix A) regarding the experiment. These instructions emphasized two facts in particular. Par-
ticipants were advised to regard each game as if it were played against a new opponent. Furthermore,
participants were notified about the fact that at the start of each new game, the computer had its strategy
planned out, and that strategy was a best response to a strategy that the computer assumed the participant
would play.

The participants first played 14 practice games of increasing difficulty so as to get acquainted with
the game setting. The experimental phase consisted of 8 rounds. In each round, the participants played
the six games that were described above against a computer opponent. The order in which these 6 games
were played in each round was randomized. In each new round, the graphical representation of each
game was altered, so as to minimize the possibility for participants to recognize the games they played
in earlier rounds.

The participants were randomly divided into two groups: Group A and Group B, each consisting
of 25 persons. While playing in certain rounds of a game, as they were about to make their choices
at their first decision node, Group A participants were asked a multiple-choice question as follows.
(i) For games 1-4: “The computer just chose to go [direction computer just chose]. If you choose to
go [direction corresponding to playing d], what do you think the computer would do next?”, or, (ii)
For games 1′,3′: “It’s your turn. If you choose to go [direction corresponding to playing d], what do
you think the computer would do next?”. Three options were given regarding the likely choice of the
computer: “I think the computer would most likely open the left side” or “ I think the computer would
most likely open the right side” or “Both answers seem equally likely”. The first two answers translated
to the moves e or f of the computer, respectively. In case of the third answer, we assumed that the
participant was undecided regarding the computer’s next choice.

For the Group B participants, questions were asked in certain rounds at the end of a game: (i) For
games 1-4: “The computer first chose to go [direction computer chose at its first decision point]. When
you made your first choice, what did you think the computer would do next if you chose to go [direction
corresponding to playing d]?”, or, (ii) For games 1′,3′: “When you made your first choice, what did
you think the computer would do next if you chose to go [direction corresponding to playing d]?”. The
answer choices were the same as above.



Sujata Ghosh, Aviad Heifetz, Rineke Verbrugge & Harmen de Weerd 271
THE  GAME

The  computer  decides  here.

The  computer  decides  here.

You  decide  here.

You  decide  here.

Figure 3: Graphical interface for the participants.

At the end of the experiment, the participants were presented with two questionnaires, both based
on an image of one of the experimental games (cf. Figure 4, based on a representation of Game 4). All
participants were asked these questions based on the same images. Finally, they were paid according
to the marbles they earned at one of the experimental games, selected randomly for each participant by
a mechanism proposed by Allais [1], and supported as incentive-compatible by Azrieli et al. [2]. The
reward varied from 3.75 euros to 15 euros depending on the number of marbles (1–4) that the participant
won in the randomly selected game.

3 Results and analysis

We did not find any significant difference in behavior between participants in groups A and B. Instead,
we found strong evidence that participants were equally likely to choose to continue (playing d) at the
first decision node (Bayes Factor = 0.056). Consequently, we analyze the data of all 50 participants
together.

3.1 Aggregate results: Is there a forward induction trend at participants’ first node?

Our main hypothesis was that in case the participants played c more in Game 2 than in Game 1, and
played c more in Game 4 than in Game 3, then we could safely assume that the participants’ behavior
showed some inclination towards FI reasoning. To test this hypothesis, we first perform a mixed effects
logistic regression on participant choices in Game 1 and Game 2. In this model, we determine whether
the probability that a participant chooses c in a given game depends on whether the game is an instance
of Game 1 or an instance of Game 2. To account for individual differences, participants are treated as



272 What Drives People’s Choices in Turn-Taking Games, if not Game-Theoretic Rationality?

Figure 4: Questionnaire based on a representation of Game 4.

random effects. The results show that participants were indeed significantly more likely to play c in
Game 2 than in Game 1 (p < 0.01). A second logistic regression for Game 3 and Game 4 shows that that
participants were also significantly more likely to play c in Game 4 than in Game 3 (p < 0.02). These
results suggest that in the aggregate, participants’ behavior shows inclination towards FI reasoning.

However, on a visual inspection of the graphs showing the choices of the participants at their first
decision nodes (cf. Figure 5) we found the following: Comparing Game 1 to Game 2, only 14 participants
out of 50 played c in Game 2 somewhat more than they played c in Game 1 (meaning that the number
of times such a participant played c in the rounds of Game 2 minus those he played c in the rounds of
Game 1 is more than 1). In contrast, 5 participants played c in Game 2 somewhat less than they played c
in Game 1. For the remaining 31 participants, there was not much difference in their playing c between
Games 1 and 2. Comparing Game 3 to Game 4, only 10 participants out of 50 played c somewhat more
in Game 4 than they did in Game 3 (with no reverse cases), and for the remaining 40 participants there
was not much difference between their playing c across Games 3 and 4. We finally note that only 13
participants out of 50 played c in more than half of the 8 rounds of Game 1′. Interestingly, all these
trends in participants’ choices at their first decision points indicated a very low extent of game-theoretic
strategic reasoning overall—be it BI or FI reasoning.

We should note here that in the current experiment, in all six games, the computer would gain 6
points if the game ended up at the rightmost leaf, compared to only 4 points at the rightmost leaves in the
games of [19]. This higher pay-off appears to have motivated the participants to think that the computer
would risk for 6 and would continue in the game.

Given these conflicting findings of the logistic regression and the visual inspection of the choice
graphs, it is pertinent to ask: “How exactly do participants reason while playing these games?” In what
follows, we attempt to answer this question.

3.2 Dividing participants into groups: decisions and answers about opponent

One way to divide the participants into groups is to analyze their answers to the questionnaire presented in
Figure 4. According to their answers, we classify the participants along the following three dimensions
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Figure 5: Sequence of choices (across the 8 repetitions of each game) at the first decision node of games
1, 2, 3, 4, 1′,3′, per participant (named A1 . . . A25, B1 . . . B25). The dark grey color corresponds to
the rounds the participant played the move d, and the light grey color corresponds to the rounds the
participant played move c, whenever the participant’s first decision node was reached. Note that white
horizontal bands correspond to rounds in which the computer took option a, thereby ending the game.
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B8, B10, B11, B12, 

B14, B17, B18, 
B20, B21

Behavior
Zeroth order theory 

of mind
First order theory 

of mind
Second order 

theory of mind

Participants
(Group A)

A0, A1, A3, A5, A8, 
A13, A15, A19, A20, 

A22

A2, A4, A7, A9, 
A10, A12, A14, A16, 

A17, A21, A23
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(Group B)
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Participants
(Group B)
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B0, B1, B2, B7, B8, 
B9, B11, B13, B16, 

B18, B19, B21, B23, 
B24

B4, B6, B10, B12, 
B15, B17, B20

Figure 6: Reasoning behind participant behaviour. Answers to final question classified on three dimen-
sions: attitude towards risk (left); explicit order of theory of mind (middle) and level of cooperation
(right)

(see Figure 6): (i) risk-taking/risk-averse considerations for self and opponents, (ii) explicit order of
theory of mind, which has been shown to be important in strategic reasoning in dynamic games [32, 33],
and (iii) competitive/cooperative considerations. To come up with our classification, we considered the
decisions at each node of the game in Figure 4 in the questionnaire and the participants’ explanations of
reasoning behind their decisions.

As an example, consider the following sample answers of the participants A7 and B0 to the ques-
tionnaire given in Figure 4:1

Participant A7:
Direction A: right
Motivation: B would probably open right, at which point C has the chance to get at least 3 marbles.
Direction B: right
Motivation: If C opens left, B has a 100% chance of getting 4 marbles. The chance that C opens left is
big enough, since there are 6 marbles in D-right.
Direction C: left

1The full answers of all participants’ answers to the final questionnaire will be provided on http://www.ai.rug.nl/

SocialCognition/experiments/.

http://www.ai.rug.nl/SocialCognition/experiments/
http://www.ai.rug.nl/SocialCognition/experiments/
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Motivation: Since the direction for D doesn’t matter, and the amount of marbles of your opponent doesn’t
matter, the chance is quite big that D will choose right, giving you 6 marbles.
Direction D: right
Motivation: I would pick right. Even against the computer it felt wrong to pick left (since the opponent’s
score doesn’t matter for my own score).

Participant B0:
Direction A: right
Motivation: The player would hope for the largest amount of points he could get. 2 would not be enough
when there is the chance to get three or six.
Direction B: right
Motivation: The player would chose right because there his/her chances are good that he/she will end up
with 4 balls. But there is the risk of having only one ball
Direction C: right
Motivation: If the player decides to go left, he will let the other person choose how many balls he will
end up with. This is a high risk since it is possible to get just one ball. Therefore the player would take
the right path were he has the mean of 3.
Direction D: right
Motivation: The player would chose right since both boxes contain 4 balls. Further it is not important to
let the other player have less balls than you. Therefore I would say the player is nice and let the other
person have the full amount of balls.

Based on these answers, we came up with the classification shown in Figure 6. Participant A7 considers
the chance of getting more for both the players (risk-taker: self and opponent), takes into consideration
how the opponent would play (first-order theory of mind), and does not want to wrong the opponent
(cooperative). Participant B0 also considers the chance of getting more for both the players (risk-taker:
self and opponent), in addition, considers safe play for the opponent (risk-averse: opponent), takes into
consideration how the opponent would play (first-order theory of mind), and wants to be nice to the
opponent (cooperative). Note that Directions A and C in Figure 4 (blue trapdoors) are considered to be
the computer’s moves, and Directions B and D (orange trapdoors) are considered to be the participant’s
moves in the interpretation here.

3.3 Dividing the participants by latent class analysis according to their decisions

To further analyze participant choices, we used latent class analysis (LCA, [29]), allowing us to divide
participants into classes that exhibit similar patterns of behavior. In our model, the behavior of a partici-
pant is described by whether they choose c or d at their first decision point of a game, and whether they
choose g or h at their second decision point. LCA determines what classes of behavior best describe the
observed participant data, given the number n of such classes. Statistical model selection tools can be
used to select the number of classes that is most appropriate for the data.

Our aim of the latent class analysis is to describe the behavior of participants in both their decision
points. However, of the 181 times (out of 300 times where the participants actually reached their first
decision node) that a participant in Game 1 ended up at his or her second decision point, only 2 times
participants chose h. In addition, no participant in Game 2 ever reached the second decision point—the
computer was programmed to play e whenever its second decision node was reached. For this reason, we
performed a latent class analysis on the two decision points of Game 3 and Game 4 only. The Bayesian
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Figure 7: Estimated probability of stop decision (i.e. c or g) according to the latent class analysis of
participant choices on Game 3 and Game 4.

Information Criterion (BIC) favors an LCA model with three classes, which we describe here. The
results of the estimation parameters of the LCA are summarized in Figure 7. In this figure, estimated
probabilities of choosing c at the first decision point or g at the second decision point are averaged over
repeated encounters of the same game. According to the LCA, 46% of the participants tend to choose to
continue at the first decision point, but stop at the second decision point: Class 1. A further 34% of the
participants is represented by the second class, who prefer to continue at both decision points: Class 2.
The final 20% of the participants has a preference to stop at both decision points: Class 3.

Thus, about 80% of the participants belonged to Class 1 or 2, who tend to continue at the first decision
node, and the remaining 20% tend to stop. Out of these 41 participants assigned to Class 1 or Class 2
by LCA, 37 were classified as risk-takers (self), 37 were classified as risk-takers (opponent), while only
two participants were classified as neither type of risk-taking based on their final answers (see Figure
6). Out of the 9 participants assigned to Class 3 by LCA, 7 were classified as risk-averse (self), 4 were
classified as risk-averse (opponent), while only one participant did not mention any risk-aversion, once
again, based on their final answers.

As depicted in Figure 1, the final decision point for Player P in Game 3 and Game 4 only influences
the payoff for the computer player C. Participants that ended up at this decision point more often chose
the competitive option (60%), in which the opponent only received a payoff of 1, than the cooperative
option (40%), which yielded the opponent a payoff of 6 (Bayes Factor = 132.7663). In addition, of the
19 participants assigned to Class 2 by the LCA, who are therefore classified as being likely to choose the
cooperative option at their second decision point, 15 were also classified as being cooperative based on
their final answer (see Figure 6). Moreover, of the 31 remaining participants, only 5 were classified as
being cooperative based on their final answer. However, there was no clear mapping of classes 1 and 3
of the LCA results and the classification ‘competitive’ and ‘neither cooperative nor competitive’ based
on the final answers.

3.4 Individual participant decision patterns: differences and similarities

Visual inspection of individual participant graphs shows a similar pattern. See Figure 8 for an example
of a graph of an individual participant’s choices: In two of the rounds for games 1-4, selected randomly,
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Figure 8: Example of participant choices at the first decision point across all games. This participant,
like many others, tended to choose c at the first decision point for Game 1, Game 2, and Game 1′, but
tended to choose d for Game 3, Game 4, and Game 4′.

the computer took the outside option, that is, played a, and so the first decision node of the participant
was not reached. It was noted that participants do differentiate between Game 1 and Game 2 on the
one hand and Game 3 and Game 4 on the other hand: The participants played c more often in Games
1 and 2, compared to what they played in Games 3 and 4. Further, even though participants’ behavior
differed between Game 1 and Game 2 to some extent (not exceedingly so), participants appeared to
behave similarly in Game 3 and Game 4. For the truncated games, behavior in Game 1′ appeared similar
to Game 1, and behavior in Game 3’ appeared similar to both Game 3 and Game 4.

4 Discussion

The results outlined in Section 3 indicate that while in the aggregate, participant behavior is indicative of
forward reasoning, most participants do not appear to making use of either forward induction reasoning
or backward induction reasoning. Apparently, game-theoretic rationality does not drive participants’
choices in these turn-taking games. In this section, we take a look at some possible alternatives for the
driving force behind people’s choices in our experiment, in the light of the literature on human decision
making and perspective taking in games.

4.1 Level-k reasoning

In our experiment, we explicitly mention to the participants that the computer player acts based on its be-
liefs about future participant behavior, and that the computer player does not learn from the participant’s
previous actions. Participants are therefore playing a series of one-shot games against a computer oppo-
nent. In behavioral economics, the behavior of participants in such one-shot games has been successfully
modeled through iterated best-response models such as level-n theory [3, 4, 14, 15, 36, 47], cognitive hi-
erarchies [9], quantal response equilibria [31], and noisy introspection models [23].

Similar to the theory of mind classification we describe in Section 3, a participant’s level of reasoning
sophistication is measured by the maximum number of steps of iterated reasoning the participant consid-
ers. According to cognitive hierarchy models [9], a naive level-0 reasoner does not reason strategically
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at all, but instead chooses randomly among all available options. In contrast, a level-1 reasoner believes
that all other participants are level-0 reasoners, and selects the option that is a best response to that belief.
In terms of our Marble Drop game, level-1 reasoners would therefore maximize future payoffs without
considering the opponent’s past behavior. In the cognitive hierarchy model, a level-2 reasoner performs
two steps of iterated reasoning. Such a reasoner believes that other individuals can be either level-0 rea-
soners that play randomly, or level-1 reasoners that maximize their expected payoff. In addition, level-2
reasoners form beliefs about the relative proportion of level-0 reasoners and level-1 reasoners.

Over a range of one-shot non-repeated games, cognitive hierarchy models estimate participants to
be level 1.5 reasoners on average [9, 13]. In terms of theory of mind reasoning, the vast majority of
participants in these one-shot non-repeated games reason at zero-order or first-order theory of mind.
Although part of the participants in those experiments were found to use more than two steps of iterated
reasoning, only few players were found to be well-described as higher-level agents [51].

4.2 Considering the opponent’s perspective

Kawagoe has recently applied a level k-analysis to centipede games to explain that participants’ lack of
backward induction may be due to their believing that the opponent could have made an error or cannot
apply backward induction for the number of steps required [28]. Evans and Krueger have shown in a very
simple dynamic trust game of perfect information, in which participants need to open windows in order
to inspect payoffs, quite a few participants do not choose to inspect all the opponent’s payoffs but they
do inspect all their own ones, thereby not applying even first-order theory of mind [16, 17]. For higher
orders of theory of mind, the situation seems even worse. It has also been shown that level k reasoning
for higher k is correlated to general cognitive ability [22].

These results could make one quite pessimistic about the value and actual use of higher-level per-
spective-taking in games. Is the situation really that bad? De Weerd and colleagues have shown on the
basis of agent simulations that both in competitive situations and in repeated mixed-motive interactions,
agents attain higher pay-offs if they apply second-order theory of mind than first-order theory of mind,
which is in turn more beneficial than zero–order theory of mind [48, 50], so the application of theory
of mind is beneficial. Also theoretically, higher-order theory of mind is required in dynamic perfect
information games [38]. But do people really use it? De Weerd and colleagues [48] showed that, by
letting people play unknowingly against a second-order theory of mind agent in a repeated negotiation
game, people are enticed to apply second-order theory of mind, which became much more prevalent than
when the participants played against zero-order or first-order agents.

In cognitive science, the application of perspective taking in turn-taking games of perfect information
has been studied, especially on the basis of experiments in which the decision trees looked like our Game
1′ and 3′, but with a large variation of pay-off structures, not only those similar to centipede games. These
various turn-taking games, when solved by participants without knowledge of the backward induction
algorithm, do require second-order theory of mind: “the opponent thinks that at my final move, I intend to
go down”. Hedden and Zhang [25] showed that people have a hard time learning to apply second-order in
these games (around 60 % optimal decisions after many game items). Meijering and colleagues [32, 33]
proposed several supportive interventions that helped people to make much better decisions (up to around
90 % optimal ones at the end of playing many experimental games with different payoff structures).

Even though application of second-order theory of mind can apparently be supported and trained,
Meijering and colleagues [35] also showed on the basis of computational cognitive models that people
do not start to apply higher orders of theory of mind spontaneously. Rather, people start to do this only
when they receive negative feedback from the results of the games they play, for example, in the form of
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low pay-off, or the comment “you could have chosen better”. They prefer reasoning that is “as easy as
possible, as complex as necessary”. And even when they do produce the backward induction outcome, it
appears by analyzing their eye movements and reaction times that their reasoning rather follows a stream
of thinking starting from the root to its child nodes and then to the grandchildren in the decision tree, by
“forward reasoning plus backtracking”, and giving special attention to decision points [7, 34].

Coming back to the experiment

The experiments done by [32–34] concern games in which the computer opponent has been programmed
to make rational decisions, with the goal to attain the highest possible individual pay-off, and participants
are told about this. In the games that participants play in the current paper, in contrast, the opponent
often plays irrationally, and participants are told that in fact, the computer opponent is playing its best
response to a strategy that it attributes to the participant. Let us see whether this leads to a difference in
the application of theory of mind. For our previous experiment presented in [19], we found that higher
levels of theory of mind expressed in final answers was correlated positively to number of marbles won
in total in the games [21], so it appears that theory of mind is indeed profitable in this type of Marble
Drop games in which the opponent sometimes acts in an unexpected way by not ending the game.

In their model-based analysis of strategies used by the participants of [18, 33], Meijering and col-
leagues [35] implemented one simple “zero-order theory of mind” strategy that ignores any future de-
cisions and simply compares the immediate payoff, when stopping a game, against the maximum of all
future possible payoffs, which they dubbed as a “simple risk-taking strategy”. A more advanced “first-
order theory of mind” version of that model attributes the simple risk-taking strategy to the opponent.
They showed that the sequences of decisions of many 9-year old children playing the games of [18] cor-
respond to either the zero -order risk-taking strategy or the first-order version attributing risk-taking to
the opponent; and that the adults’ decisions in these games [33] correspond more closely to the first-order
strategy of assigning the risk-taking strategy to the opponent, or to a second-order strategy.

It is interesting to see in Figure 6 that in our games, many participants’ answers also exemplify
that they themselves “take a risk” or “take a chance” when moving to the right, namely 40 out of 50
participants; and a similar number of participants, namely 39 out of 50, attributes such risk-taking to
their opponent. Also, in line with the work by Meijering and colleagues, most of our current adult
participants (34 out of 50) appear to reason explicitly at the first or second order of theory of mind, at
least when their answers are analyzed. Thus, it does appear that participants regularly do think and act
at least at first- or second-order theory of mind, which is rather high when considering how much more
complicated our decision trees for games 1, 2, 3 and 4 are than those of [25, 33] and especially [16].

For the current experiment, it would be useful to estimate more precisely which level of theory of
mind each participant actually applies when making their own decisions, using computational techniques
such as simulation of computational cognitive models [20, 21] or Bayesian strategy estimation [49].

4.3 Moving toward cooperation

It has long been noted in the literature on behavioral game theory that players’ utilities do not correspond
one-to-one to payoffs [30]. Healy [24] has elicited players’ utilities over outcomes associated with
centipede-like games, showing that there are many motivations that play a role. In our games, trying to
get all the way to the right also corresponds to going for the outcomes with maximum social welfare,
see Figures 1 and 2. It is very well possible that participants try to get there and aim to entice their
opponent to move right as well (see also Nagel and Tang’s experiment [37], in which participants may
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have reason to believe that their opponent could be an altruist). In this light, our participants could
interpret the opponent’s first “irrational” move to the right not as “irrational” at all, but as a first step
towards cooperation to attain maximum social welfare.

5 Conclusion

We made a number of improvements that we thought would make it easier for participants to apply
backward or forward induction reasoning in the perfect-information games in a Marble Drop set-up
than in [19]. We found that even though in the aggregate, participants in the new experiment still tend
to slightly favor the forward induction choice at their first decision node, their verbalized strategies
most often depend on their own attitudes towards risk and those they assign to the computer opponent,
sometimes in addition to considerations about cooperativeness and competitiveness.

When we analyzed the individual participants’ decisions and their answers about the reasons behind
their decisions, it turns out that many players do not find anything to rationalize when the computer does
not take the safe and rational option to go down and stop the game at its first decision point. Instead, in
almost all the games, many participants think that the computer is just taking a chance to gain a higher
payoff later. Also, many of the players are willing to take such a risk at their own first decision point: very
few players take the BI option of stopping the game there. Dividing the players into classes according
to their decisions as well as according to how they reasoned about their own and the opponent’s choices
turned up several more nuanced patterns of reasoning.

In view of our findings for this experiment, our subsequent categorization of the elements of reason-
ing behind the behavior of participants, namely (i) risk-taking/risk-averseness tendency of self/opponent,
(ii) competitive/cooperative tendency, and (iii) proficiency in applying higher-order theory of mind, has
provided an understanding of a few possible player-types with respect to their strategic reasoning. In
addition, the distinction of instinctive versus contemplative reasoners could be addressed in future inves-
tigations, requiring a detailed analysis of the time data [44, 45]. Such an analysis of the temporal data
could also provide new insights into the categorisation of the participants’ behavior as mentioned above.

The take-home message from this paper that we would like to suggest is the following: In addition
to investigating into game-theoretic rationality as a guiding force for understanding people’s choices in
dynamic games (both perfect and imperfect information games), one should also look into risk-taking
and risk-averse behaviours, theory of mind considerations, competitive and cooperative considerations,
instinctive and contemplative behaviours, and similar reasoning tendencies towards providing a better
explanation of people’s choices in turn-taking games.
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& B. Löwe, editors: Interactive Logic, Texts in Logic and Games 1, Amsterdam University Press, pp. 159–
193.

[41] A. Perea (2012): Epistemic Game Theory: Reasoning and Choice. Cambridge University Press, Cambridge,
doi:10.1017/CBO9780511844072.

[42] D. Premack & G. Woodruff (1978): Does the chimpanzee have a theory of mind? Behavioral and Brain
Sciences 1(04), pp. 515–526, doi:10.1017/S0140525X00076512.

[43] P. J. Reny (1992): Backward induction, normal form perfection and explicable equilibria. Econometrica 60,
pp. 627–649, doi:10.2307/2951586.

[44] A. Rubinstein (2013): Response time and decision making: An experimental study. Judgment and Decision
Making 8(5), pp. 540–551, doi:10.1.1.396.668.

[45] A. Rubinstein (2016): A typology of players: Between instinctive and contemplative. Quarterly Journal of
Economics 131(2), pp. 859–890, doi:10.1093/qje/qjw008.

[46] Q. Shahriar (2014): An experimental test of the robustness and the power of forward induction. Managerial
and Decision Economics 35, pp. 264–277, doi:10.1002/mde.2613.

[47] D. O. Stahl & P. W. Wilson (1995): On players’ models of other players: Theory and experimental evidence.
Games and Economic Behavior 10(1), pp. 218–254, doi:10.1006/game.1995.1031.

[48] H. de Weerd, R. Verbrugge & B. Verheij (2017): Negotiating with other minds: The role of recursive theory
of mind in negotiation with incomplete information. Autonomous Agents and Multi-Agent Systems 31(2),
pp. 250–287, doi:10.1007/s10458-015-9317-1.

[49] H. de Weerd, D. Diepgrond & R. Verbrugge (2017, to appear): Estimating the use of higher-order theory of
mind using computational agents. The B.E. Journal of Theoretical Economics.

[50] H. de Weerd, R. Verbrugge & B. Verheij (2013): How much does it help to know what she knows you know?
An agent-based simulation study. Artificial Intelligence 199, pp. 67–92, doi:10.1016/j.artint.2013.05.004.

[51] J. R. Wright & K. Leyton-Brown (2010): Beyond equilibrium: Predicting human behavior in normal-form
games. In: Proceedings of the 24th Conference on Artificial Intelligence, pp. 901–907.

http://dx.doi.org/10.1017/CBO9780511844072
http://dx.doi.org/10.1017/S0140525X00076512
http://dx.doi.org/10.2307/2951586
http://dx.doi.org/10.1.1.396.668
http://dx.doi.org/10.1093/qje/qjw008
http://dx.doi.org/10.1002/mde.2613
http://dx.doi.org/10.1006/game.1995.1031
http://dx.doi.org/10.1007/s10458-015-9317-1
http://dx.doi.org/10.1016/j.artint.2013.05.004


284 What Drives People’s Choices in Turn-Taking Games, if not Game-Theoretic Rationality?

Appendix A: Instruction sheet for the participants

Here follows the written information on the instruction sheet that was given to each participant and
explained by the experimenter before the start of the training games.

- In this task, you will be playing two-player games. The computer is the other player.

- In each game, a purple marble is about to drop, and both you and the computer determine its path
by controlling the orange and the blue trapdoors.

- You control the orange trapdoors, and the computer controls the blue trapdoors.

- Your goal is that the purple marble drops into the bin with as many orange marbles as possible.
The computer’s goal is that the marble drops into the bin with as many blue marbles as possible.

- Click on the left trapdoor if you want the marble to go left, and on the right trapdoor if you want
the marble to go right.

- How the computer reasons in each particular game?

The computer thinks that you already have a plan for that game, and it plays the best
response to the plan it thinks that you have for that game.
However, the computer does not learn from previous games and does not take into
account your choices during the previous games.

- The first 14 games are practice games. At the end of each practice game, you will see how many
marbles you collected in that game.

- The practice games are followed by 48 experiment games. At the end of each experiment game,
you will see how many marbles you collected in that game.

- You will be able to start each game by clicking on the “START GAME” button, and move to the
next game by clicking on the “NEXT” button.

- At some points during the experiment phase, you will be asked a few questions regarding your
choices. Please think carefully about each question before answering it.

- There will be a break of 5 minutes once you finish 24 of the 48 experiment games.

- After the the 48 experiment games, you will be asked a few final questions regarding 2 example
games.

- The money you will earn is between e 3.75 and e 15 and depends on the marbles you have won
during the experiment phase. At the end of the experiment, 1 of the 48 experiment games will be
chosen at random. Games where you were not given at least one choice will be omitted from this
random selection. The number of marbles that you have collected in the randomly selected game
will determine your final earnings: each collected marble is worth e 3.75.
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