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Equilibrium notions for games with unawareness in the literature cannot be interpreted as steady-
states of a learning process because players may discover novel actions during play. In this sense,
many games with unawareness are “self-destroying” as a player’s representation of the game must
change after playing it once. We define discovery processes where at each state there is an extensive-
form game with unawareness that together with the players’ play determines the transition to possibly
another extensive-form games with unawareness in which players are now aware of actions that
they have previously discovered. A discovery process is rationalizable if players play extensive-
form rationalizable strategies in each game with unawareness. We show that for any game with
unawareness there is a rationalizable discovery process that leads to a self-confirming game that
possesses an extensive-form rationalizable self-confirming equilibrium. This notion of equilibrium
can be interpreted as steady-state of a learning and discovery process.

1 Introduction

How do players arrive at their conception(s) of a strategic situation? Are representations of strategic
situations necessarily common among all players? How to model discoveries of novel actions? What is
“equilibrium” in games with unawareness? These are the questions I attack in this paper. In particular,
our motivation is the quest for a natural notion of equilibrium to games with unawareness. Various frame-
works for modeling dynamic games with unawareness have been recently introduced (Halpern and Rego,
2014, Rego and Halpern, 2012, Feinberg, 2012, Li, 2008, Grant and Quiggin, 2013, Heifetz, Meier, and
Schipper, 2013). While all of those frameworks are capable of modeling strategic interaction under
asymmetric unawareness at various degrees of generality and tractability, the solution concepts proposed
for those frameworks and thus the implicit behavioral assumptions under unawareness differ. They can
roughly be divided into equilibrium notions (Halpern and Rego, 2014, Rego and Halpern, 2012, Fein-
berg, 2012, Li, 2008, Grant and Quiggin, 2013, Meier and Schipper, 2013) and rationalizability notions
(Heifetz, Meier, and Schipper, 2013, 2012, Meier and Schipper, 2012). Authors proposing equilibrium
notions to dynamic games with unawareness appear to be mainly guided by extending the mathematical
definitions of equilibrium in standard games to the more sophisticated frameworks with unawareness.
Yet, I believe less attention has been paid to the interpretations of the behavioral assumptions embodied
in these standard equilibrium concepts and whether or not such interpretations apply also to dynamic
games with unawareness.

In standard game theory, equilibrium is interpreted as an outcome in which each player plays “op-
timally” given the opponents’ play that could have emerged in a steady-state of some learning process.
This interpretation cannot apply generally to game with unawareness. This is because players may be
unaware of actions and may discover novel actions during play. The ”next time” they play “the game”,
they actually play a different game in which now they are aware of previously discovered actions. That
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is, dynamic learning processes in games with unawareness must not only deal with learning about oppo-
nents’ play but also with discoveries that may lead to changes in players’ representations of the game.
Games with unawareness may be “self-destroying” representations of the strategic situation in the sense
that (rational) play may destroy some player’s representation of the strategic situation. Only when a rep-
resentation of the strategic situation is “self-confirming”, i.e., (rational) play in such a game does not lead
to (further) changes in the players’ representation of the game, an equilibrium notion as a steady-state of
a learning process may be applied. Our paper makes this precise.

We introduce a notion of self-confirming equilibrium to extensive-form games with unawareness.
In self-confirming equilibrium players play in a way that nobody discovers that their own view of the
game may be incomplete. Moreover, players play optimally given their beliefs and their beliefs are
not falsified given the play. We show that such a self-confirming equilibrium may fail to exist in an
extensive-form game with unawareness because rational play may lead to discoveries. We formalize
the notion of discovered game: For any extensive-form game with unawareness and strategy profile, the
discovered game is a game in which each player’s awareness is “updated” given their discoveries but their
information stays essentially the same (modulo awareness). This leads to a notion of a stochastic game in
which states correspond to extensive-form games with unawareness and the transition probabilities model
for each extensive-form game with unawareness and strategy profile the transition to the discovered
game. Such a stochastic game together with a Markov strategy for each player that assigns to each
extensive-form game with unawareness a mode of behavior we call a discovery process. We select among
discovery processes by requiring the stochastic games Markov strategy to assign only rationalizable
strategies to each extensive-form game with unawareness. We show that for every finite extensive-form
game with unawareness, there exists an extensive-form rationalizable discovery process that leads to
a extensive-form game with unawareness that is an absorbing state of the process. We consider it as
a steady state of conceptions when players play with common (strong) belief in rationality and call it
rationalizable self-confirming game. In such a game, it makes sense to look also for a steady state
of behavior by focusing on self-confirming equilibrium involving only extensive-form rationalizable
strategies. We show that for every extensive-form game with unawareness there exists a rationalizable
discovery process leading to a rationalizable self-confirming game that possesses a rationalizable self-
confirming equilibrium. This is a notion of equilibrium both in terms of conceptions of the strategic
situation as well as strategic behavior.

Besides to the aforementioned literature on games with unawareness, the paper is related to the
literature on self-confirming equilibrium in games (Battigalli, 1987, Fudenberg and Levine, 1993, Kalai
and Lehrer, 1993, Fudenberg and Kreps, 1995, Battigalli et al., 2015) in particular to papers using some
related notions of rationalizable self-confirming equilibrium (Rubinstein and Wolinski, 1994, Dekel,
Fudenberg, and Levine, 1999, 2002, Fudenberg and Kamada, 2015, 2016, Gilli, 1999, Esponda, 2013).
Finally, Greenberg, Gutpa, and Luo (2009), Sasaki (2016), and Copic and Galeotti (2006) combine
ideas of self-confirming equilibrium and lack of awareness although none present explicit models of
discoveries.

Our notion of discovered game can be understood as a game theoretic analogue to awareness bisimu-
lation in van Ditmarsch et al. (2013). Awareness bisimulation is used to compare awareness structures of
Fagin and Halpern (1988). Roughly, two awareness structures are awareness bisimilar if they model the
same information modulo awareness. In our context, the discovered version of a game with unawareness
models the same information modulo awareness.
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2 Simple Example

There are two players, 1 and 2. Player 1 moves first. She can either delegate to player 2 or do the work
by herself. In the latter case, the game ends and both players receive their payoffs. If player 1 delegates
to player 2, then player 2 can take one out of three actions. The non-standard but straightforward detail
is that player 1 is not aware of all of player 2’s actions. She considers only two actions of player 2. This
strategic situation is modeled in the game depicted in Figure 1.

Figure 1: (Initial) Game of Example 1
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There are two trees. The tree at the bottom, T , is a subtree of the tree at the top, T̄ , in the sense that
action m2 of player 2 is missing in T . The information and awareness of both players is modeled with
information sets. The solid-lined blue spheres and arrows belong to player 1, the dashed green spheres
belong to player 2. There are two non-standard features of these information sets. First, the information
set of a decision node in T̄ may consist of decision nodes in a lower tree T . For instance, player 1’s
information set at the beginning of the game in the upper tree T̄ is in the lower tree T . This signifies the
fact that initially player 1 is unaware of player 2’s action m2 and thus considers the strategic situation to
be represented by the tree at the bottom, T . Second, we added information sets at terminal nodes. The
reason is that in order to discuss notions of equilibrium under unawareness, it will be useful to analyze
also the players’ views at the end of the game. As usual, the information in extensive-form games is
represented by information sets. Players receive a payoff at each terminal node. The first component at
each terminal node refers to player 1’s payoff whereas the second component refers to player 2’s payoff.

What is equilibrium in this game? A basic requirement is that in equilibrium players should play
rational. That is, each player at each information set where (s)he is to move should play an action that
maximizes her expected payoff subject to her belief over the opponent’s behavior. At the beginning of
the game, player 1 thinks that she faces the situation depicted in tree T . Clearly, with this mindset only
action `1 is rational because no matter what she expects player 2 to do, she obtains a higher expected
payoff from playing `1 than from r1. At the information set in the upper tree T̄ , player 2 is aware of his
action m2. Since m2 strictly dominates any of his other actions, the only rational action for player 2 at
this information set is to choose m2. Thus, the path of play emerging from any rational play is (`1,m2)
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with player 1 obtaining zero payoff and player 2 obtaining a payoff of 10. Yet, we strongly believe
that no profile of rational strategies can be reasonably called an equilibrium in this setting because any
profile of strategies in which player 1 chooses `1 and player 2 chooses m2 cannot be interpreted as a
steady state of a learning process. After players choose rationally in the game, player 1’s awareness
changed. She discovered action m2 of player 2. This is symbolized by player 1’s information set at the
terminal node after m2 in the tree T̄ . Thus, the “next” time players do not play the game of Figure 1
but a “discovered version” of it in which player 1 is aware of action m2 upfront. This discovered game
is depicted in Figure 2. At the beginning of the game, player 1’s information set is now in the upper
tree T̄ . Consequently she is aware of all actions of all players. She won’t be surprised by any terminal
node as her information sets at terminal nodes in the upper tree T̄ also lie in this tree. The lower tree T
becomes in some sense redundant as players are now commonly aware of the strategic situation modeled
by T̄ . Yet, since they are aware, they can envision themselves also in a situation in which both players are
unaware of m2, which is what now T represents although this counterfactual mindset is not behaviorally
relevant.

Figure 2: Game of Example 1 after being played once
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In the discovered version shown in Figure 2, the only rational action for player 1 at the beginning of
the game is to choose r1 in T̄ . Thus any steady state of a learning (and discovery) process must prescribe
r1 for player 1 in T̄ .

To sum up, we note first that games with unawareness may not possess equilibria that can be inter-
preted as steady states of a learning process (see the game in Figure 1). Second, an equilibrium notion
capturing the idea of a steady-state of a learning (and discovery) process in games with unawareness must
not only involve usual conditions on behavior of players but must also impose restrictions on representa-
tions of the strategic situation. That is, their representations of the strategic situation must be consistent
with their behavior and behavior must be consistent with their representations of the strategic situations.
To emphasize this, we will use the terminology of self-confirming games.
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3 Games with Unawareness

We outline extensive-form game with unawareness as introduced by Heifetz, Meier, and Schipper (2013)
together with some crucial extensions required for our analysis. To define a extensive-form game with
unawareness Γ, consider first, as a building block, a finite game with perfect information and possibly
simultaneous moves. This tree is there to outline all physical moves. There is a finite set of players I
and possibly a special player “nature” with index 0. We denote by I0 the set of players including nature.
Further, there is a nonempty finite set of “decision” nodes D̄ and a player correspondence P : D̄ −→
2I0 \ { /0} that assigns to each node n ∈ D̄, a nonempty set of “active” players P(n) ⊆ I0. (That is, we
allow for simultaneous moves.) For every decision node n ∈ D̄ and player i ∈ P(n) who moves at that
decision node, there is a nonempty finite set of actions Ai

n. Moreover, there is a set of terminal nodes
Z̄. Since we will also associate information sets with terminal nodes for each player, it will be useful to
extent P to Z̄ by P(z) = I and let Ai

z = /0 for all i∈ I, z∈ Z̄. Finally, each terminal node z∈ Z̄ is associated
with a vector of payoffs (ui(z))i∈I . We require that nodes in N̄ := D̄∪ Z̄ constitute a tree denoted by
T̄ . That is, nodes in N̄ are partially ordered by a precedence relation l with which (N̄,l) forms an
arborescence (that is, the predecessors of each node in N̄ are totally ordered by l), there is a unique node
in N̄ with no predecessors (i.e., the root of the tree), for each decision node n ∈ D̄ there is a bijection ψn

between the action profiles ∏i∈P(n) Ai
n at n and n’s immediate successors, and any terminal node in Z̄ has

no successors.
Note that so far we treat nature like any other player except that at terminal nodes we do not assign

payoffs to nature. We do not need to require that nature moves first or that nature moves according a
pre-specified probability distribution (although these assumptions can be imposed in our framework).

Consider now a join-semilattice T of subtrees of T̄ . A subtree is defined by a subset of nodes N ⊆ N̄
for which (N,l) is also a tree (i.e., an arborescence in which a unique node has no predecessors). Two
subtrees T ′,T ′′ ∈ T are ordered, written T ′ � T ′′ if the nodes of T ′ constitute a subset of the nodes of T ′′.
We require three properties:

1. All the terminal nodes in each tree T ∈ T are in Z̄. That is, we don’t create “new” terminal nodes.

2. For every tree T ∈ T, every node n ∈ T , and every active player i ∈ P(n) there exists a nonempty
subset of actions Ai,T

n ⊆ Ai
n such that ψn maps the action profiles AT

n = ∏i∈P(n) Ai,T
n bijectively onto

n’s successors in T .

3. If for two decision nodes n,n′ ∈ T with i ∈ P(n)∩ P(n′) it is the case that Ai
n ∩ Ai

n′ 6= /0, then
Ai

n = Ai
n′ .

Within the family T of subtrees of T̄ , some nodes n appear in several trees T ∈ T. In what follows,
we will need to designate explicitly appearances of such nodes n in different trees as distinct entities. To
this effect, in each tree T ∈ T label by nT the copy in T of the node n ∈ N̄ whenever the copy of n is part
of the tree T , with the requirement that if the profile of actions an ∈ AT

n leads from n to n′, then anT leads
also from the copy nT to the copy n′T . More generally, for any T,T ′,T ′′ ∈ T with T � T ′ � T ′′ such that
n ∈ T ′′, nT ′ is the copy of n in the tree T ′, nT is the copy of n in the tree T , and (nT ′)T is the copy of
nT ′ in the tree T , we require that “nodes commute”, nT = (nT ′)T . For any T ∈ T and any n ∈ T , we let
nT := n.

Denote by D the union of all decision nodes in all trees T ∈ T, by Z the union of terminal nodes in
all trees T ∈ T, and by N = D∪Z. Copies nT of a given node n in different subtrees T are now treated
distinct from one another, so that N is a disjoint union of sets of nodes.

In what follows, when referring to a node in N we will typically avoid the subscript indicating the
tree T for which n ∈ T when no confusion arises. For a node n ∈ N we denote by Tn the tree containing
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n.1

Denote by NT the set of nodes in the tree T ∈ T. Similarly, denote by DT
i the set of decision nodes

in which player i is active in the tree T ∈ T. Finally, denote by ZT the set of terminal nodes in the tree
T ∈ T.

Information sets model both information and awareness. At a node n of the tree Tn ∈ T, the player
may conceive the feasible paths to be described by a different (i.e., less expressive) tree T ′ ∈ T. In such
a case, her information set will be a subset of T ′ rather than of Tn and n will not be contained in the
player’s information set at n.

In order to define a notion of self-confirming equilibrium we also need to consider the player’s view
at terminal nodes. Thus we will also devise information sets of terminal nodes that model both the
player’s information and awareness at the ends of the game. This is different from Heifetz, Meier, and
Schipper (2013) but akin to signal, outcome, or feedback functions in some works on self-confirming
equilibrium, see for instance Battigalli and Guaitoli (1997) and Battigalli et al. (2015).

Formally, for each node n ∈N (including terminal nodes in Z), define for each active player i ∈ P(n)
a nonempty information set hi(n) with the following properties:

U0 Confined awareness: If n ∈ T and i ∈ P(n), then hi(n)⊆ T ′ with T ′ � T .

U1 Generalized reflexivity: If T ′ � T , n ∈ T , hi(n) ⊆ T ′ and T ′ contains a copy nT ′ of n, then nT ′ ∈
hi(n).

I2 Introspection: If n′ ∈ hi(n), then hi(n′) = hi(n).

I3 No divining of currently unimaginable paths, no expectation to forget currently conceivable paths:
If n′ ∈ hi(n) ⊆ T ′ (where T ′ ∈ T is a tree) and there is a path n′, . . . ,n′′ ∈ T ′ such that i ∈ P(n′)∩
P(n′′), then hi(n′′)⊆ T ′.

I4 No imaginary actions: If n′ ∈ hi(n), then Ai
n′ ⊆ Ai

n.

I5 Distinct action names in disjoint information sets: For a subtree T ∈ T, if there a decision nodes
n,n′ ∈ T ∩D with Ai

n = Ai
n′ , then hi(n′) = hi(n).

I6 Perfect recall: Suppose that player i is active in two distinct nodes n1 and nk, and there is a path
n1,n2, ...,nk such that at n1 player i takes the action ai. If n′ ∈ hi (nk), n′ 6= nk, then there exists
a node n′1 6= n′ and a path n′1,n

′
2, ...,n

′
` = n′ such that hi (n′1) = hi (n1) and at n′1 player i takes the

action ai.

I7 Information sets consistent with own payoff information: For any i ∈ I, if hi(z) ⊆ T then hi(z) ⊆
ZT . Moreover, if z′ ∈ hi(z) then ui(z′) = ui(z).

(I7) is new. It makes information sets of terminal nodes akin to feedback functions in the literature
on self-confirming equilibrium. At any terminal node, a player considers only terminal nodes. That
is, she knows that the game ended. Moreover, any two terminal nodes that a player cannot distinguish
must yield her the same payoff because otherwise she could use her payoffs to distinguish among these
terminal nodes. This implies that at the end of the game each player knows her own payoff. Note that
this assumption does not rule out imperfect observability of opponents’ payoffs. It also does not rule out
that the player may not perfectly observe the terminal node.

We denote by Hi the set of i’s information sets in all trees. For an information set hi ∈ Hi, we denote
by Thi the tree containing hi. For two information sets hi,h′i in a given tree T, we say that hi precedes h′i

1Bold capital letters refer to sets of elements across trees.
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(or that h′i succeeds hi) if for every n′ ∈ h′i there is a path n, ...,n′ in T such that n ∈ hi. We denote it by
hi h′i.

If n ∈ hi we write also Ahi for Ai
n.

To model unawareness proper, we impose as in Heifetz, Meier, and Schipper (2013) additional prop-
erties.

U4 Subtrees preserve ignorance: If T � T ′ � T ′′, n ∈ T ′′, hi(n)⊆ T and T ′ contains the copy nT ′ of n,
then hi(nT ′) = hi(n).

U5 Subtrees preserve knowledge: If T � T ′ � T ′′, n ∈ T ′′, hi(n) ⊆ T ′ and T contains the copy nT of
n, then hi(nT ) consists of the copies that exist in T of the nodes of hi(n).

For trees T,T ′ ∈ T we denote T � T ′ whenever for some node n ∈ T and some player i ∈ P(n) it is
the case that hi(n)⊆ T ′. Denote by ↪→ the transitive closure of�. That is, T ↪→ T ′′ if and only if there
is a sequence of trees T,T ′, . . . ,T ′′ ∈ T satisfying T � T ′� · · ·� T ′′.

An extensive-form game with unawareness Γ consists of a join-semilattice T of subtrees of a tree
T̄ satisfying properties 1–3 above, along with information sets hi(n) for every n ∈ T with T ∈ T and
i ∈ P(n), and payoffs satisfying properties U0, U1, U4, U5, and I2-I7 above.

For every tree T ∈ T, the T -partial game is the join-semisublattice of trees including T and all trees
T ′ in Γ satisfying T ↪→ T ′, with information sets as defined in Γ. A T -partial game is a extensive-form
game with unawareness, i.e., it satisfies all properties 1–3, U0, U1, U4, U5, and I2-I7 above.

We denote by HT
i the set of i’s information sets in the T -partial game, T ∈ T. This set contains not

only i’s information sets in the tree T but also in all trees T ′ ∈ T with T ↪→ T ′.
Further, we denote by HD

i (HT,D
i , resp.) the set of i’s information sets of decision nodes (in the T -

partial game, resp.) and by HZ
i (HT,Z

i , resp.) the set of i’s information sets of terminal nodes (in the
T -partial game, resp.).

3.1 Strategies

For any collection of sets (Xi)i∈I0 we denote by

X = ∏
i∈I0

Xi, X−i = ∏
j∈I0\{i}

X j, X−i0 = ∏
j∈I\{i}

X j

with typical elements x, x−i, and x−i0, respectively. For any collection of sets (Xi)i∈I0 and any tree T ∈ T,
we denote by XT

i the set of objects in Xi restricted to the tree T and analogously for XT , XT
−i, and XT

−i0,
where “restricted to the tree T ” will become clear from the definitions below.

A pure strategy for player i
si ∈ Si := ∏

hi∈HD
i

Ahi

specifies an action of player i at each of her information sets hi ∈ HD
i of decision nodes. We let

s0 ∈ S0 := ∏
n∈D0

A0
n

denote the “strategy” of nature, with D0 denoting the “decision” nodes of nature.
With the strategy si, at node n ∈ DTn

i define player i’s action at n to be si(hi(n)), for i ∈ I. Thus, by
U1 and I4 the strategy si specifies what player i ∈ I does at each of her active nodes n ∈ DTn

i , both in the
case that n ∈ hi(n) and in the case that hi(n) is a subset of nodes of a tree which is distinct from the tree
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Tn to which n belongs. In the first case, when n∈ hi(n), we can interpret si(hi(n)) as the action chosen by
player i in node i. In the second case, when n /∈ hi(n), si(hi(n)) cannot be interpreted as the action chosen
“consciously” by player i in n since he is not even aware of Tn. Instead, his state of mind at n is given
by his information set hi(n) in a tree lower than Tn (denoted by Thi). Thus, si(hi(n)) is the physical move
of player i in n in tree Tn induced by his “consciously” chosen action at his information set hi(n) in tree
Thi(n) (with Tn � Thi(n)). As an example, consider player 1 in the game of Figure 1. At his first decision
node in the upper tree T̄ , the root of the tree, player 1’s information set consists of the corresponding
node in the lower tree T . the strategy of player 1 may assign r1 to his information set in the lower tree T .
But it also induces action r1 at the root of the upper tree T̄ .

In an extensive-form game with unawareness Γ the tree T̄ ∈ T represents the physical paths in the
game; every tree in T that contains an information set represents the subjective view of the feasible paths
in the mind of a player, or the view of the feasible paths that a player believes that another player may
have in mind, etc. Moreover, as the actual play in T̄ unfolds, a player may become aware of paths of
which she was unaware earlier, and the way she views the game may alter as well. Thus, in an extensive-
form game with unawareness, a strategy cannot be conceived as an ex ante plan of action. Formally, a
strategy of player i is a list of answers to the questions “what would player i ∈ I do if hi were the set
of nodes she considered as possible?”, for hi ∈ Hi (and analogous for nature). A strategy of a player
becomes meaningful as an object of beliefs of other players. How “much” of a player’s strategy other
players can conceive off depend on their awareness given by the tree in which their information set is
located. This leads to the notion of T -partial strategy. For a strategy si ∈ Si and a tree T ∈ T, we denote
by sT

i the strategy in the T -partial game induced by si (i.e., sT
i (hi) = si (hi) for every information set

hi ∈ HT
i of player i in the T -partial game).

A mixed strategy of player i, σi ∈ ∆(Si), specifies a probability distribution over player i’s set of pure
strategies. With this notation, we let σ0 the probability distribution over “strategies” of nature. We don’t
consider mixed strategies as an object of choice of players; this notion will just be used in proofs in a
technical way.

A behavioral strategy for player i ∈ I,

πi ∈Πi = ∏
hi∈HD

i

∆(Ahi)

is a collection of independent probability distributions, one for each of player i’s information sets hi ∈HD
i

of decision nodes, where πi(hi) specifies a mixed action in ∆(Ahi). With the behavioral strategy πi, at
node n ∈DTn

i define player i’s mixed action at n to be πi(hi(n)). Thus, the behavioral strategy πi specifies
the mixed action of player i ∈ I at each of her active decision nodes n ∈ DTn

i , both in the case that
n ∈ hi(n) and in the case that hi(n) is a subset of nodes of a tree which is distinct from the tree Tn to
which n belongs. In this latter case, we have automatically that πi does not assign probabilities to actions
in An \Ahi(n). (I.e., at the decision node n of the richer tree Tn player i may have more actions than she is
aware of at hi(n). In such a case, she is unable to use actions that she is unaware of.)

In extensive-form games with unawareness there are two distinct notions of a strategy profile being
consistent with a node that we call “reaching a node” and “visiting a node”, respectively. The difference
between these two notions is relevant when we consider information sets that players believe are consis-
tent with a strategy and information sets that are actually consistent with a strategy. Former is relevant
for extensive-form rationalizability while latter is relevant for self-confirming equilibrium.

We say that a strategy profile s = (s j) j∈I ∈ S reaches a node n∈ T if the players’ actions and nature’s

moves
(

sT
j (h j (n′))

)
j∈P(n′)

in nodes n′ ∈ T lead to n. Notice that by property (I4) (“no imaginary ac-
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tions”), sT
j (h j (n′)) j∈I is indeed well defined: even if h j (n′) /∈ T for some n′ ∈ T ,

(
sT

j (h j (n′))
)

j∈P(n′)
is

a profile of actions which is actually available in T to the active players j ∈ P(n′) and possibly nature at
n′. We say that a strategy profile s ∈ S reaches the information set hi ∈ Hi if s reaches some node n ∈ hi.
We say that the strategy si ∈ Si reaches the information set hi if there is a strategy profile s−i ∈ S−i of
the other players (and possibly nature) such that the strategy profile (si,s−i) reaches hi. Otherwise, we
say that the information set hi is excluded by strategy si. Analogously, we say that the strategy profile
s−i ∈ S−i reaches the information set hi if there exists a strategy si ∈ Si such that the strategy profile
(si,s−i) reaches hi. For each player i ∈ I, denote by Hi(s) the set of information sets of i that are reached
by the strategy profile s. This set typically contains information sets in more than one tree.

For the second notion of a strategy profile being consistent with a node, recall that a strategy si

specifies not only what player i ∈ I does at nodes n′ ∈ hi(n) but also in node n where n might be located
in a tree more expressive than Thi(n).

We say that a strategy profile s= (s j) j∈I ∈ S visits a node n in the upmost tree T̄ if the players’ actions
and nature’s moves (s j (h j(n′))) j∈P(n′) in nodes n′ ∈ T̄ lead to n ∈ T̄ . We extend the notion of a strategy
profile visiting a node to any node in any tree by saying that a strategy profile s = (s j) j∈I ∈ S visits a
node n ∈ T if s visits n′ ∈ T̄ with with n′T = n. We say that a strategy profile s ∈ S visits the information
set hi ∈ Hi if s visits some node n ∈ hi. We say that the strategy si ∈ Si visits the information set hi if
there is a strategy profile s−i ∈ S−i of the other players (and possibly nature) such that the strategy profile
(si,s−i) visits hi. Analogously, we say that the strategy profile s−i ∈ S−i visits the information set hi if
there exists a strategy si ∈ Si such that the strategy profile (si,s−i) visits hi.

Define the path p(s,T ) induced by strategy profile s in tree T by the sequence of nodes in T vis-
ited by s. Further, for any strategy profile s and tree T ∈ T, define H̃i(p(s,T )) := {hi ∈ Hi : hi =
hi(n) for n on the path p(s,T ) with i ∈ P(n)}. Note that information sets in H̃i(p(s,T )) may lie in differ-
ent trees weakly less expressive than T .

Figure 3: Information Sets Visited versus Reached

1

2

1

2

To clarify the subtle but important difference between the notions of visit and reach as well as the
definitions of H̃i(p(s,T )) and Hi(s) consider the example in Figure 3. There are two trees, T̄ � T . There
are two players, 1 and 2. Player 1 moves first. As long as he moves right, player 2 moves second and the
game ends. Otherwise the game ends. When player 1 moves left, player 2 remains unaware of her action
middle. This is shown in Figure 3 by the blue arrows and ovals (i.e., information set h in T ) upon player
1 moving left. Otherwise, if player 1 moves right, player 2 becomes aware of middle (information set



Burkhard C. Schipper 479

h′′). (Player 1’s initial information sets are indicated by green intermitted ovals.) Consider the strategy of
player 1 indicated by the red intermitted edges. This strategy reaches h′ but visits h in T . Information set
h′′ in tree T̄ is neither reached nor visited by the strategy. Let s denote any strategy profile in which player
1 follows the strategy indicated by the red intermitted edges. We have h ∈ H̃2(p(s,T )), h ∈ H̃2(p(s, T̄ )),
h,h′′ /∈ H2(s), h′ ∈ H2(s), h′,h′′ /∈ H̃2(p(s,T )), h′,h′′ /∈ H̃2(p(s, T̄ )).

It should be clear that in a standard extensive-form game (without unawareness), a strategy profile
reaches a node n if and only if it visits n.

We extend the definitions of information set reached and visited to behavioral strategies in the obvi-
ous way by considering nodes/information sets reached/visited with strict positive probability. Similarly,
we let p(π,T ) denote now the set of paths that have strict positive probability under the behavioral
strategy profile π in T . H̃i(p(π,T )) is now the set of information sets along paths in p(π,T ).

For any node n, any player i ∈ I, and any opponents’ profile of strategies s−i (including nature if
any), let ρ(n | πi,s−i) and ρ(n | σi,s−i) denote the probability that (πi,s−i) and (σi,s−i) reach node n,
respectively. For any player i ∈ I0, a mixed strategy σi and a behavioral strategy πi are equivalent if for
every profile of opponents’ strategies s−i ∈ S−i and every node n ∈ N of the extensive-form game with
unawareness ρ(n | σi,s−i) = ρ(n | πi,s−i). Kuhn’s Theorem can be extended to extensive-form games
with unawareness (with perfect recall) so that for every player and for every mixed strategy of that player
there exists an equivalent behavioral strategy.

3.2 Belief Systems

A belief system of player i,
βi = (βi (hi))hi∈Hi

∈ ∏
hi∈Hi

∆

(
S

Thi
−i

)
is a profile of beliefs – a belief βi (hi) ∈ ∆

(
S

Thi
−i

)
about the other players’ strategies (and possibly nature)

in the Thi-partial game, for each information set hi ∈ Hi, with the following properties:

• βi (hi) reaches hi, i.e., βi (hi) assigns probability 1 to the set of strategy profiles of the other players
(including possibly nature) that reach hi.

• If hi precedes h′i (i.e., hi h′i) then βi (h′i) is derived from βi (hi) by Bayes rule whenever possible.

Note that different from Heifetz, Meier, and Schipper (2013) a belief system specifies also beliefs
about strategies of opponents and nature at information sets of terminal nodes. This is an essentially
feature that we will require for defining self-confirming equilibrium. Denote by Bi the set of player i’s
belief systems.

For a belief system βi ∈ Bi, a strategy si ∈ Si and an information set hi ∈Hi, define player i’s expected
payoff at hi to be the expected payoff for player i in Thi given βi (hi), the actions prescribed by si at hi

and its successors, assuming that hi has been reached.
We say that with the belief system βi and the strategy si player i is rational at the information set

hi ∈ HD
i if either si does not reach hi or there exists no strategy s′i which is distinct from si only at hi

and/or at some of hi’s successors in Thi and yields player i a higher expected payoff in the Thi-partial
game given the belief βi (hi) on the other players’ strategies S

Thi
−i .

Player i’s belief system on behavioral strategies of opponents

µi = (µi(hi))hi∈Hi
∈ ∏

hi∈Hi

∆(Π
Thi
−i )
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is a profile of beliefs – a belief µi(hi) ∈ ∆(Π
Thi
−i ) about the behavioral strategies of other players (incl.

possibly nature) in the Thi-partial game, for each information set hi ∈ Hi, with the following properties

• µi (hi) reaches hi, i.e., µi (hi) assigns probability 1 to the set of behavioral strategy profiles of the
other players (incl. possibly nature) that reach hi.

• If hi precedes h′i (i.e., hi h′i) then µi (h′i) is derived from µi (hi) by Bayes rule whenever possible.

We denote by Mi the set of player i’s belief systems over behavioral strategies of opponents.
For a belief system µi ∈ Mi, a behavioral strategy πi ∈ Πi and an information set hi ∈ Hi, define

player i’s expected payoff at hi to be the expected payoff for player i in Thi given µi (hi), the mixed
actions prescribed by πi at hi and its successors, assuming that hi has been reached.

We say that with the belief system µi and the behavioral strategy πi player i is rational at the infor-
mation set hi ∈HD

i if either πi does not reach hi or there exists no behavioral strategy π ′i which is distinct
from πi only at hi and/or at some of hi’s successors in Thi and yields player i a higher expected payoff in
the Thi-partial game given the belief µi (hi) on the other players’ behavioral strategies Π

Thi
−i .

3.3 Self-Confirming Equilibrium

The discussion of the example made clear that the challenge for a notion of equilibrium is to deal with
changes of awareness along the equilibrium paths. In a “steady state of conceptions”, awareness should
not change. We incorporate this requirements into our definition of self-confirming equilibrium.

Definition 1 A behavioral strategy profile π ∈Π is a self-confirming equilibrium if for every player i∈ I:

(0) Awareness is self-confirming along the path: There is a tree T ∈ T such that for all of player i’s
visited information sets hi ∈ H̃i(p(π, T̄ )) we have hi ⊆ T .

There exists a belief system2 µi ∈Mi such that

(i) Players are rational along the path: With belief system µi, behavioral strategy πi is rational at all
visited information sets in H̃i(p(π, T̄ )).

(ii) Beliefs are self-confirming along the path: For the information set of terminal nodes hi ∈ HZ
i ∩

H̃i(p(π, T̄ )) visited by the behavioral strategy profile π , the belief system µi is such that µi(hi)
assigns probability 1 to {π ′−i ∈ Π−i : π ′j(h j) = π j(h j) for j ∈ I0 \ {i} and h j ∈ H̃ j(p(π,Thi))}.
Moreover, for any preceding (hence non-terminal) information set h′i hi, µi(h′i) = µi(hi).

Condition (0) requires that awareness is constant along the equilibrium path. Players do not discover
anything novel in equilibrium play. This is justified by the idea of equilibrium as a stationary rest-point
or stable convention of play. Implicitly, it is assumed that discoveries if any are made before equilibrium
is reached.

Condition (i) is a basic rationality requirement of equilibrium. Note that rationality is required only
along information sets that occur along the path of play induced by the equilibrium strategy profile. The
equilibrium notion is silent on off-equilibrium information sets (in particular on information sets that
could be visited with si but are not visited with s−i). Condition (i) does also not require that players
believe others are rational along the path, believe that others believe that etc. It is just a “minimal”
rationality requirement in an extensive-form game.

2We do not require that player i believes that opponents mix independently as this is hard to motivate. In the literature
on self-confirming equilibrium independence is assumed in Fudenberg and Levine (1993) but not in Rubinstein and Wolinsky
(1994).
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Condition (ii) consists of two properties. First, at the end of the game the player is certain of obser-
vationally equivalent behavioral strategies of opponents and nature that allow her to reach the particular
end of the game. That is, terminal beliefs are consistent with what has been observed during play (and
hence at the end of the play). Second, beliefs do not change during the play. That is, beliefs at any
information set reached during the play are consistent with what is observed at any point during the play
and in particular with what is observed at the end of the game. Again, the idea is that everything that
could have been learned on this path has been learned already in the past. This is justified by the idea of
equilibrium as a stationary rest-point or stable convention of play as a result of prior learning. Note that
this notion of equilibrium is silent on beliefs off equilibrium path.

While it is well-known in the literature (see for instance Fudenberg and Levine, 1993, Fudenberg and
Kreps, 1995, Battigalli and Guaitoli, 1997) that self-confirming equilibrium is a coarsening of Nash equi-
librium, the point here is to contrast it with the case of unawareness. Despite the fact that self-confirming
equilibria are a coarsening of Nash equilibria, they may not exist in finite extensive-form games with
unawareness due to failure of condition (0). The game in Figure 1 constitutes a simple counterexample.

Example (continued): Failure of self-confirming equilibrium in finite extensive-form games with
unawareness. Condition (i), rationality along the path, requires that player 1 chooses `1 and player 2
chooses m2 in T̄ and r2 in T in the game of Figure 1. It is also easy to see that for each player there exists
a belief system satisfying condition (ii) of the definition of self-confirming equilibrium. Yet, the play
emerging from rational strategies reaches player 1’s information set containing a terminal node in T̄ after
being initially only aware of T , which violates condition (0). That is, awareness is not self-confirming
along the path. Hence, there is no self-confirming equilibrium.

It should be clear that by introducing self-confirming equilibrium we strive for the weakest possible
notion of equilibrium embodying the idea of steady-state in order to observe that even such weak notion
may still not exist in finite games with unawareness due to changes of awareness. While this weak
notion of equilibrium rules out changes of awareness, it does not necessarily imply mutual knowledge
(or even common knowledge) of no changes of awareness, a condition that may be reasonably imposed
in a satisfactory equilibrium concept for games with unawareness.

4 Discovery Processes

Let ΓΓΓ be the set of all extensive-form games with unawareness for which the initial building block is the
finite extensive-form game with perfect information 〈I, T̄ ,P,(ui)i∈I〉. By definition, ΓΓΓ is finite.

For any extensive-form game with unawareness Γ ∈ ΓΓΓ, denote by SΓ the set of pure strategy profiles
in Γ.

Definition 2 Given an extensive-form game with unawareness Γ = 〈I,T,P,(Hi)i∈I,(ui)i∈I〉 ∈ ΓΓΓ and a
strategy profile in this game sΓ, the discovered version Γ′ = 〈I′,T′,P′,(H ′i )i∈I′ ,(u′i)i∈I′〉 is defined as
follows:

(i) I′ = I, T′ = T, P′ = P, and u′i = ui for all i ∈ I′.

(ii) For i ∈ I′, the information sets in H ′i of Γ′ are defined as follows: Let

T i
sΓ

:= sup
{

T ∈ T : hi(n)⊆ T,hi(n) ∈ H̃i(p(sΓ, T̄ ))
}
.

For any n ∈ T̄ with hi(n) ∈ Hi, hi(n)⊆ T ′, T ′,T ′′ ∈ T,
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a. if T ′ � T i
sΓ
� T ′′ � T̄ , the information set h′i(nT ′′) ∈ H ′i is defined by3

h′i(nT ′′) :=
{

n′ ∈ T i
sΓ

: hi(n′) = hi(n)
}
.

b. if T ′ � T ′′ � T i
sΓ

, the information set h′i(nT ′′) ∈ H ′i is defined by

h′i(nT ′′) :=
{

n′ ∈ T ′′ : hi(n′) = hi(n)
}
.

c. Otherwise, if T ′ 6� T i
sΓ

and T ′ � T ′′ � T̄ , the information set h′i(nT ′′) ∈ H ′i is defined by

h′i(nT ′′) := hi(nT ′′).

When an extensive-form game with unawareness Γ is played according to a strategy profile sΓ, then
some players may discover something that they were previously unaware of. The discovered version
Γ′ of an “original” extensive-form game with unawareness Γ represents the views of the players af-
ter the extensive-form game with unawareness has been played according to a strategy profile sΓ. The
discovered version has the same set of players, the same join-semilattice of trees, the same player corre-
spondence, and the same payoff functions as the original game. What may differ are the information sets.
In particular, in a discovered version some players may from the beginning be aware of more actions than
in the “original” game Γ but only if in the “original” game it was possible to discover these action with
the strategy profile sΓ. The information sets in the discovered version reflect what players have become
aware of when playing Γ according to sΓ.

To understand part (ii) of Definition 2, note first that T i
sΓ

is the tree that represents the player i’s
awareness of physical moves in the game Γ after it has been played according to strategy profile sΓ.
It is determined by the information sets of player i that occur along the play-path in the upmost tree
according to sΓ. Now consider all information sets of player i that arise at nodes in the upmost tree T̄
in the “original” game Γ. These information sets may be on lower trees than T i

sΓ
. Since player i is now

aware of T i
sΓ

, all those information sets that in Γ were on a tree lower than T i
sΓ

are now lifted to tree T i
sΓ

,
the tree that in player i’s mind represents the physical moves of the strategic situation after Γ has been
played according to sΓ. Yet, this holds not only for reached nodes in the upmost tree T̄ but also for copies
of those nodes in trees T ′′ ∈ T, T i

sΓ
� T ′′ � T̄ . This is because by Property U4 of extensive-form games

with unawareness the information sets at copies of those nodes in trees T ′′ are also on trees lower than T i
sΓ

in Γ. When information sets are lifted to higher trees, they contain all nodes in such a tree that previously
gave rise to the information set at a lower tree in Γ. This explains part a. of (ii) of Definition 2.

Part b. pertains to information sets in trees below T i
sΓ

. These are trees that miss certain aspects that
player i is aware of in tree T i

sΓ
. These trees are relevant to player i nevertheless as she has to consider other

player’s views of the strategic situation, their views of her view etc. Since other players may be unaware
of aspect that player i is aware of, she should consider her own “incarnations” with less awareness. In
the discovered version, the information sets on trees T ′′ � T i

sΓ
model the same knowledge of events as in

information sets on tree T i
sΓ

provided that she is still aware of those events in T ′′. This is crucial for the
discovered version to satisfy property U5 of extensive-form games with unawareness.

Part c. just says that in the discovered version information set of player i in trees incomparable to T i
sΓ

remain identical to the original game Γ. These information sets represent awareness that necessarily has
not been discovered when Γ is played according to strategy profile sΓ.

The notion of discovered version is illustrated in Figure 4. This example is sufficiently rich to cover
at least cases a. and b. distinguished in (ii) of Definition 2. Consider the extensive-form game with

3As defined previously, we take nT ′′ the copy of node n ∈ T̄ in the tree T ′′. When T ′′ ≡ T̄ , then nT ′′ = n.
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Figure 4: Original (left game form) and Discovered Version (right game form)
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unawareness to the left, Γ, as the “original” game. The extensive-form games with unawareness to the
right is the discovered version Γ′ if players (and possibly nature) follow the strategy profiles indicated by
the orange dashed lines. Clearly, T 5 in Figure 4 corresponds to T̄ in Definition 2 (ii), T 1 to T ′, and T 3 to
T i

sΓ
. For case a., let T ′′ in Definition 2 (ii) be T 4. For case b., let T ′′ correspond to T 2.
It is intuitive that when a player discovers something, her awareness is raised. Consequently, discov-

ered versions of a game involve more awareness. The following definition makes this precise.

Definition 3 Consider two extensive-form games with unawareness Γ= 〈I,T,P,(Hi)i∈I,(ui)i∈I〉 and Γ′=
〈I′,T′,P′,(H ′i )i∈I′ ,(u′i)i∈I′〉 with I′ = I, T′ = T, P′ = P, and u′i = ui for all i ∈ I′. Γ′ has (weakly) more
awareness than Γ if for every node n and every active player i ∈ P(n), hi(n)⊆ T and h′i(n)⊆ T ′ implies
T ′ � T .

Discovered versions shall just reflect changes of awareness. The information about play, i.e., what
players know about the history in the game, should not change. That is, in a discovered version players
should have the same knowledge or ignorance about play modulo awareness as in the original game. The
following definition makes this precise.

Definition 4 Consider two extensive-form games with unawareness Γ= 〈I,T,P,(Hi)i∈I,(ui)i∈I〉 and Γ′=
〈I′,T′,P′,(H ′i )i∈I′ ,(u′i)i∈I′〉 with I′ = I, T′ = T, P′ = P, and u′i = ui for all i ∈ I′ such that Γ′ has (weakly)
more awareness than Γ. Γ′ preserves information of Γ if

(i) for any n and every active player i ∈ P(n), hi(n) consists of copies of nodes in h′i(n).

(ii) for any tree T ∈T, any two nodes n,n′ ∈ T and every active player i∈P(n)∩P(n′), if hi(n)= hi(n′)
then h′i(n) = h′i(n

′).
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Discovered versions are well-defined, have weakly more awareness than the original game and pre-
serve information of the original game.

Proposition 1 For any extensive-form game with unawareness Γ ∈ ΓΓΓ and any strategy profile sΓ ∈ SΓ

in this game, the discovered version Γ′ is an extensive-form game with unawareness. Moreover, Γ′ has
more awareness than Γ. Finally, Γ′ preserves the information of Γ.

Discovered versions do not depend on differences in strategies that are irrelevant to discoveries. They
only depend on the realized path. This follows immediately from Definition 2 because T i

sΓ
depends only

on H̃i(p(sΓ, T̄ )).
The players interaction may lead to discoveries, interaction in the discovered games may lead to

further discoveries etc. To model the set of discovery processes based on an extensive-form game with
unawareness, we essentially define a stochastic game in which each state represents an extensive-form
game with unawareness.

Definition 5 The discovery game based on ΓΓΓ is the stochastic game 〈ΓΓΓ,τ〉 defined as follows

• the set of states is a finite set of all extensive-form games with unawareness ΓΓΓ (with identical initial
building block 〈I, T̄ ,P,(ui)i∈i〉.)
• the transition probabilities are given by for Γ,Γ′ ∈ ΓΓΓ, s ∈ SΓ,

τ(Γ′ | Γ,s) =


1 if Γ′ is the discovered version of

Γ given s
0 otherwise

The discovery game is a stochastic game in which states are identified with extensive-form games
with unawareness all based on the same building blocks. This means that each stage game is an extensive-
form game with unawareness. The set of players is the set of players in the underlying extensive-form
games with unawareness (including nature if any). Each player’s set of actions is state-dependent and
consist of the strategies at the extensive-form games with unawareness. The transition probabilities
are degenerate in the sense that only transitions to discovered versions are allowed (given the strategy
profiles). Payoffs of players are given by the underlying extensive-form games with unawareness. Since
all those games have the same building blocks, payoffs are in fact the same in all states. What changes
from state to state are information sets (and hence the set of strategies available at those stage games).

Clearly, the discovery game cannot be interpreted as a game that players are aware of. Rather, it
is a convenient model for the modeler/analyst. Consequently, the supergame strategies of player in this
discovery game are not objects actually chosen by players but just conveniently summarize the modeler’s
belief about player’s play in all those games. A discovery game strategy of player i in the discovery game
〈ΓΓΓ,τ〉 is a mapping fi : ΓΓΓ −→

⋃
Γ∈ΓΓΓ ∆(SΓ,i) that assigns to each game Γ ∈ ΓΓΓ a probability distribution

over strategies of that player in this game Γ (i.e., fi(Γ) ∈ ∆(SΓ,i)). The notion makes clear that we only
consider discovery strategies that are stationary Markov strategies. For each player i ∈ I0 (including
nature) denote by Fi the set of all discovery strategies and by F = ×i∈I0Fi. Denote by f = ( fi)i∈I0 a
profile of discovery strategies. We extend the definition of transition probabilities in order to be able to
write τ(· | Γ, f ) for any Γ ∈ ΓΓΓ and f ∈ F .

Definition 6 A discovery process 〈ΓΓΓ,τ,( fi)i∈I0〉 consists of a discovery game 〈ΓΓΓ,τ〉 and a discovery
strategy fi : ΓΓΓ−→

⋃
Γ∈ΓΓΓ ∆(SΓ,i), one for each player i ∈ I0 (including nature if any).

In our formulation, every discovery process is a Markov process. An extensive-form game with
unawareness Γ ∈ ΓΓΓ is an absorbing state of the discovery process 〈ΓΓΓ,τ, f 〉 if τ(Γ | Γ, f ) = 1.
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Definition 7 An extensive-form game with unawareness Γ ∈ ΓΓΓ is a self-confirming game of a discovery
process 〈ΓΓΓ,τ, f 〉 if Γ is an absorbing state of 〈ΓΓΓ,τ, f 〉.

This terminology is justified by the fact in a self-confirming game play won’t lead to further discov-
eries and changes of awareness and the information structure. All players’ subjective representations of
the game are in a steady-state. In this sense, the game is self-confirming. It is easy to find examples of
self-confirming games in which players do no have common constant awareness.

Proposition 2 Every discovery process leads to a self-confirming game.

It is easy to come up with examples in which a discovery process has more than one self-confirming
game.

5 Rationalizable Discoveries

How to select among discovery processes? Which behavioral assumptions should be imposed on dis-
covery processes? Clearly, it would be absurd to assume that players chose optimal discovery strategies
since this would presume awareness of the discovery game and hence awareness of everything modelled
in ΓΓΓ. In other words, there wouldn’t be anything to discover.

We propose to restrict discovery processes to extensive-form rationalizable strategies (Pearce, 1984,
Battigalli, 1997, Heifetz, Meier, and Schipper, 2013). A rational player in a novel game should be able
to reason about the rationality of others, their (strong) beliefs about rationality etc. It is easy to find
examples in which restricting discovery processes to extensive-form rationalizable strategies effectively
selects among discovery processes and games that can be discovered in such processes.

Definition 8 Define, inductively, the following sequence of belief systems and strategies of player i ∈ I

B1
i = Bi

R1
i =

si ∈ Si :
there exists a belief system βi ∈ B1

i
with which for every information set
hi ∈ Hi player i is rational at hi


...

Bk
i =


βi ∈ Bk−1

i :

for every information set hi,
if there exists some profile
of the other players’ strategies
s−i ∈ Rk−1

−i = ∏ j 6=i Rk−1
j such

that s−i reaches hi, then βi(hi)

assigns probability 1 to R
k−1,Thi
−i


Rk

i =

si ∈ Si :
there exists a belief system πi ∈Πk

i
with which for every information set
hi ∈ Hi player i is rational at hi


The set of player i’s extensive-form rationalizable strategies is

R∞
i =

∞⋂
k=1

Rk
i .
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Denote by R∞
Γ,i the set of extensive-form rationalizable strategies of player i in the extensive-form

game with unawareness Γ. A rationalizable discovery process is now defined as a discovery process
where for each extensive-form game with unawareness each player is restricted to play extensive-form
rationalizable strategies only.

Definition 9 A discovery process 〈ΓΓΓ,τ,( fi)i∈I0〉 is a rationalizable discover process if for all players

i ∈ I, fi : ΓΓΓ−→
⋃

Γ∈ΓΓΓ ∆

(
R∞

Γ,i

)
.

Often, the analyst wants to analyze a particular game with unawareness. Thus, it will be helpful to
designate it as the initial state of the discovery game. We denote by 〈ΓΓΓ,τ,Γ0〉 the discovery game with
initial game Γ0.

The next proposition shows that for every extensive-form game with unawareness Γ0 there exists a
rationalizable self-confirming version.

Proposition 3 For every extensive-form game with unawareness Γ0 there exists a rationalizable discov-
ery process 〈ΓΓΓ,τ,Γ0,( fi)〉 that leads to a self-confirming game. We call such a self-confirming game a
rationalizable self-confirming game.

6 Equilibrium

Previously we argued that often extensive-form games with unawareness do not possess equilibria that
capture the result of a learning process because of the self-destroying nature of games with unaware-
ness. Yet, since for every extensive-form game with unawareness there exists a discovery process that
leads to a self-confirming version, the appropriate notion of equilibrium of a game with unawareness
should naturally involve the equilibrium in the self-confirming version. Moreover, we also argued to
restrict discovery processes to rationalizable discovery processes. This motivates to restrict equilibria to
rationalizable strategies as well since it would be odd to assume that players play extensive-form ratio-
nalizable strategies all along the discovery process but once a rationalizable self-confirming version is
reached, their equilibrium play might involve strategies that are not extensive-form rationalizable. That
is, we propose to use extensive-form rationalizability not only in order to put endogenously restrictions
on the games that can be discovered but also on the self-confirming equilibrium that may emerge in
final states of discovery processes. While self-confirming equilibrium is a rather weak solution con-
cept, the requirement of using only extensive-form rationalizable strategies strengthens it considerably
as extensive-form rationalizability involves forward induction.

Definition 10 A behavioral strategy profile π∗ = (π∗i )i∈I0 ∈ Π is a rationalizable self-confirming equi-
librium of the extensive-form game with unawareness Γ if for every player i ∈ I there is a mixed strategy
σ∗i equivalent to π∗i that assigns zero probability to every strategy of player i that is not extensive-form
rationalizable.

Rationalizable self-confirming equilibrium refines self-confirming equilibrium.
The following theorem asserts that for every finite extensive-form game with unawareness there

exists a steady state of conceptions and behavior emerging from rationalizable play.

Theorem 1 For every extensive-form game with unawareness there exists a rationalizable discovery
process leading to a rationalizable self-confirming game which possesses a rationalizable self-confirming
equilibrium.
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