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At the beginning of a dynamic game, players may have exogenous theories about how the oppo-

nents are going to play. Suppose that these theories are commonly known. Then, players will refine

their first-order beliefs, and challenge their own theories, through strategic reasoning. I develop and

characterize epistemically a new solution concept, Selective Rationalizability, which accomplishes

this task under the following assumption: when the observed behavior is not compatible with the

beliefs in players’ rationality and theories of all orders, players keep the orders of belief in ratio-

nality that are per se compatible with the observed behavior, and drop the incompatible beliefs in

the theories. Thus, Selective Rationalizability captures Common Strong Belief in Rationality (Batti-

galli and Siniscalchi, 2002) and refines Extensive-Form Rationalizability (Pearce, 1984; BS, 2002),

whereas Strong-∆-Rationalizability (Battigalli, 2003; Battigalli and Siniscalchi, 2003) captures the

opposite epistemic priority choice. Selective Rationalizability can be extended to encompass richer

epistemic priority orderings among different theories of opponents’ behavior. This allows to establish

a surprising connection with strategic stability (Kohlberg and Mertens, 1986).

Keywords: Forward induction, Strong Belief, Strong Rationalizability, Strong-∆-Rationalizability,

Strategic Stability.

1 Introduction

Consider the following dynamic game with perfect information.

Ann

N ւ ց B

0,0 Bob

R ւ ց A

−2,0 Ann

P ւ ց I

−1,−3 1,1

Ann can try to Bribe Bob, a public officer, or Not. If she does, Bob can Accept or Report her, so that Ann

loses two utils. If Bob accepts, Ann can Implement her plan, achieving the Pareto dominating outcome,

or repent (P) and speak with a prosecutor, harming both Bob and herself.

Suppose that Ann is rational1 and, at the beginning of the game, believes with probability 1 that Bob

would play R after B. I call this belief ”(first-order belief) restriction”. Then, she plays N. Suppose that

Bob is rational and believes that Ann is rational and that the restriction holds. Then, he expects Ann to

∗This is a short version of the paper for this volume. The full version of the paper can be found online on the author’s

institutional webpage.
1i.e. subjective expected utility maximizer.
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play N. So, what would Bob believe after observing B? He cannot believe at the same time that Ann is

rational and that the restriction holds: the two things are at odds given B. Which of the two beliefs will

Bob keep? This is the epistemic priority issue. Suppose that he keeps the belief that the restriction holds.

So, he drops the belief that Ann is rational. Then he can also expect Ann to play P after (B,A) and so

play R. If Ann believes that Bob reasons in this way, she can keep her restriction and then play N.

These lines of strategic reasoning are captured by Strong-∆-Rationalizability (Battigalli, [5]; Batti-

galli and Siniscalchi, [10]). In this process, the faith in the restrictions is so strong that Bob is ready to

deem Ann irrational after B. This could be the case if, for instance, the belief that Bob would play R

is suggested by a commonly believed social convention that always holds in context of the game (see

Battigalli and Friedenberg [6]). Suppose instead that in the context of the game, public officers are not

commonly believed to be incorruptible. However, Bob declares that he would play R in case of B. If Bob

observes that Ann plays B anyway, he might think that Ann has not taken his words seriously, rather than

thinking that Ann is irrational. Then, Bob would expect Ann to play I after A, hence he would play A

instead of R. If Ann believes that Bob is rational and keeps believing that she is rational after B, she must

believe that Bob will play A, differently than what the restriction suggests. Hence, under this reasoning

scheme, such restriction to first-order beliefs cannot hold.

Note that opposite conclusions were reached without any uncertainty about payoffs: the two situa-

tions do not represent two different types of Bob, but only two different strengths of the belief that he

would report Ann.

In Section 3, I construct a rationalizability procedure, Selective Rationalizability, that captures these

instances of forward induction reasoning in dynamic games with perfect recall.2 Selective Rationaliz-

ability refines a notion of Extensive-Form Rationalizability (Pearce, [23], Battigalli and Siniscalchi, [9]),

which I will call ”Rationalizability” for brevity. Thus, Selective Rationalizability represents a natural

way for players to refine their beliefs through (partial) coordination and consequent forward induction

considerations when lone strategic reasoning about rationality does not pin down a unique plan of ac-

tions. As above, Selective Rationalizability delivers an empty set when the ”tentative” first-order belief

restrictions of a player are at odds with strategic reasoning. In this case, Selective Rationalizability is

agnostic as to whether players will fall back on some merely rationalizable strategy, or will still refine

their beliefs with the restrictions, up to some feasible order.

Note that strong-∆-Rationalizability, instead, does not refine Rationalizability: in the example, N is

not a rationalizable outcome.3 It is worth noting that Selective Rationalizability can also be seen as an

instance of Strong-∆-Rationalizability, where the restrictions are the conjunction of the original restric-

tions and the rationalizable first-order beliefs. However, keeping the two separate has both conceptual

and technical advantages. The separation allows to investigate the epistemic priority issue between the

two different sources of belief restrictions, and to compare Strong-∆-Rationalizability and Selective Ra-

tionalizability for the same restrictions. In general, one could expect Selective Rationalizability to al-

ways yield a subset of the outcomes predicted by Strong-∆-Rationalizability. Two counterexamples in

the full version of the paper show that, (i) opposite to the example above, Selective Rationalizability can

yield non-empty predictions when Strong-∆-Rationalizability rejects the first-order belief restrictions;

and (ii) Selective Rationalizability and Strong-∆-Rationalizability can even yield non-empty disjoint

2For notational simplicity, here the focus is kept on complete information games. Just like Strong-∆-Rationalizability,

Selective Rationalizability can be easily extended to games with incomplete information.
3The game has no simultaneous moves and no relevant ties. Therefore, as shown by Battigalli [4] first and Heifetz and

Perea [19] later, backward induction and Extensive-Form Rationalizability predict the same unique outcome.
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predictions. However, as I show in [12], Selective Rationalizability and Strong-∆-Rationalizability are

outcome-equivalent when the belief restrictions correspond to a specific path of play.

In Section 4, I clarify with an epistemic characterization the strategic reasoning hypotheses that mo-

tivate Selective Rationalizability. To simplify the epistemic analysis, the game is assumed to have a finite

set of non-terminal histories, hence finite horizon, although Selective Rationalizability can be applied to

all games with a countable set of non-terminal histories, hence possibly infinite horizon. Selective Ratio-

nalizability captures the behavior of rational players who restrict their beliefs about opponents’ behavior

for some exogenous reason. Moreover, at the beginning of the game, players believe that opponents are

rational and have their own restrictions; that opponents believe that everyone else is rational and has

precisely the own restrictions; and so on. These beliefs are tentative because at some information set

of a player, the observed behavior of one opponent may be incompatible, say, with the opponent being

rational and, at the same time, having beliefs in her restricted set. In this case, the player will drop the

belief that the opponent has such restrictions, rather than dropping the belief that the opponent is rational.

More generally, players always keep all orders of belief in rationality that are per se compatible with the

observed behavior, and drop all orders of belief in the restrictions that are at odds with them. I call this

choice epistemic priority to rationality. Strong-∆-Rationalizability predicts instead the behavior of play-

ers who assign epistemic priority to the beliefs in the restrictions, and drop the incompatible beliefs in

rationality. Thus, Selective Rationalizability captures a version of Common Strong Belief in Rationality

(Battigalli and Siniscalchi, [9]), whereas Strong-∆-Rationalizability does not.

In Section 5, I extend the analysis to finer epistemic priority orderings. Each player can have multi-

ple theories, say two, about opponents’ behavior: a weaker theory and a stronger theory (in the sense of

more restrictive). Players reason according to everyone’s weaker theory like under Selective Rationaliz-

ability. On top of this, as long as compatible with strategic reasoning about the weaker theories, players

reason according to the stronger theories. So, when a player displays behavior which is not compatible

with strategic reasoning about both theories, the opponents keep believing that the player is reasoning

according to the weaker theories, and drop the belief that the opponent is reasoning according to the

stronger ones.4 In this short version of the paper, I consider two theories that correspond to an equi-

librium path and an equilibrium strategy profile. This allows to establish a surprising connection with

strategic stability (Kohlberg and Mertens [20]).

Since players’ theories of opponents’ behavior are assumed to be commonly known,5 the most nat-

ural application of Selective Rationalizability is explicit, pre-play coordination among players. Since a

non-binding agreement is purely cheap talk, if a player displays behavior which is not compatible with

rationality and belief in the agreement, the opponents are, in my view, more likely to abandon the be-

lief that the player believes in the agreement, rather than the belief that the opponent is rational. As in

the example, the agreement can also be interpreted as a set of public announcements.6 Thus, Selective

Rationalizability seems to be an appropriate tool to combine strategic reasoning and equilibrium play,

especially when the motivation for equilibrium is explicit coordination. The application of Selective

4Note that, by non-monotonicity of strong belief, strategic reasoning about the stronger theories can potentially lead to

behavior that cannot be rationalized under the weaker theories. For this reason, the epistemic priority issue arises.
5In the sense that players know what theories the opponents are supposed to have.
6Or, extending Selective Rationalizability to incomplete information games, the restrictions can model public news about a

state of nature. For instance, in a financial market, players can tentatively believe that everyone is reasoning according to the

same public information about a state of nature. Yet, if a player does not behave accordingly, the opponents may believe that

the player has different information rather than deeming the player irrational.



E. Catonini 105

Rationalizability to agreements and its relationship with equilibrium are deeply investigated in [14]. In

particular, the outcomes that Selective Rationalizability uniquely pins down for some restrictions do not

include and are not included in the set of subgame perfect equilibrium outcomes. However, I show in [13]

that there always exists a subgame perfect equilibrium in behavioral strategies whose possible outcomes

are delivered by Selective Rationalizability for particular restrictions. It is worth noting that the flexibil-

ity of Selective Rationalizability, which allows to model incomplete coordination instead of coordination

on full strategy profiles, can be crucial to induce an outcome of the game (see [14] for details).

2 Preliminaries

Consider a finite dynamic game with complete information and perfect recall. Some notation:

• I is the finite set of players, and for any profile (Xi)i∈I and any /0 6= J ⊆ I, I write XJ := × j∈JX j,

X := XI , X−i := XI\{i}, X−i, j := XI\{i, j};

• Hi is the set of information sets of player i, endowed with the precedence relation ≺;

• Z is the set of terminal histories;

• ui : Z → R is the payoff function of player i.

A strategy is a function si : h ∈ Hi 7→ si(h) ∈ Ai(h), where Ai(h) is the set of available actions of

player i at information set h. The set of all strategies is denoted by Si. A strategy profile clearly induces

one and only one terminal history; let ζ : S → Z denote the map which associates each strategy profile

s ∈ S with the induced terminal history z ∈ Z. The set of strategies of player i which allow to reach an

information set h (not necessarily of player i!) is

Si(h) := {si ∈ Si : ∃s−i ∈ S−i,∃x ∈ h,x ≺ ζ ((si,s−i))} .
For any (S j) j∈I ⊂ S, let Si(h) := Si(h)∩Si. If h ∈ Hi, S−i(h) represents the partial observation by player

i of opponents’ strategies up to h. For any J ⊆ I, Hi(SJ) :=
{

h ∈ Hi : SJ(h) 6= /0
}

is the set of information

sets of i compatible with SJ .

Players update their beliefs about opponents’ strategies and beliefs as the game unfolds. A Condi-

tional Probability System (Renyi, [24]; henceforth CPS) assigns to each information set a belief, con-

ditional on the observed opponents’ behavior. Here I define CPS’s over the opponents’ state space

Ω−i := × j 6=i(S j ×Tj), where epistemic type spaces (Tj) j∈I will be defined in Section 4.

Definition 1 A Conditional Probability System on (Ω−i,(T−i × S−i(h))h∈Hi
), with Borel sigma algebra

B(Ω−i), is a mapping µ(·|·) : B(Ω−i)× (T−i ×S−i(h))h∈Hi
→ [0,1] satisfying the following axioms:

CPS-1. for every C ∈ (T−i ×S−i(h))h∈Hi
, µ(C|C) = 1;

CPS-2. for every C ∈ (T−i ×S−i(h))h∈Hi
, µ(·|C) is a probability measure on Ω−i;

CPS-3. for every E ∈ B(Ω−i) and B,C ∈ (T−i ×S−i(h))h∈Hi
, if E ⊆ B ⊆C then µ(E|B)µ(B|C) = µ(E|C).

The set of all CPS’s of player i is denoted by ∆Hi(Ω−i).
7 For brevity, conditioning events will be

indicated with just the information set.

CPS’s on strategies are defined by replacing Ω−i with S−i and (T−i ×S−i(h))h∈Hi
with (S−i(h))h∈Hi

.

For any J ⊆ I\{i} and SJ ⊆ SJ , I say that µi ∈ ∆Hi(S−i) strongly believes (Battigalli and Siniscalchi, [9])8

7If each Ωi is compact metrizable, endowing the set ∆(Ω−i) of Borel probability measures on Ω−i with the topology of

weak convergence and (∆(Ω−i))
Hi with the product topology, Battigalli and Siniscalchi [8] prove that ∆Hi(Ω−i) is a compact

metrizable subset of (∆(Ω−i))
Hi .

8Battigalli and Siniscalchi make a stricter use of the term strong belief, by referring only to Borel subsets of Ω−i or S−i.



106 Rationalizability and Epistemic Priority Orderings

SJ if µi(SJ ×SI\(J∪{i})|h) = 1 for all h ∈ Hi(SJ).

I consider players who reply rationally to their conjectures. By rationality I mean that players, at

every information set, choose an action that maximizes expected utility given their belief about how the

opponents will play and the expectation to choose rationally again in the continuation of the game. This

is equivalent (see Battigalli [3]) to playing a sequential best reply to the CPS.

Definition 2 Fix µi ∈ ∆Hi(S−i). A strategy si ∈ Si is a sequential best reply to µi if for each h ∈ Hi(si), si

is a continuation best reply to µi(·|h), i.e. for all s̃i ∈ Si(h),

∑
s−i∈S−i(h)

ui(ζ (si,s−i))µi(s−i|h)≥ ∑
s−i∈S−i(h)

ui(ζ (s̃i,s−i))µi(s−i|h).

The set of sequential best replies to a CPS µi ∈ ∆Hi(S−i) is denoted by ρ(µi).

3 Selective Rationalizability

Before defining Selective Rationalizability, I have to pin down the behavior of players when they only

reason about rationality. This task has already been accomplished in the literature under different as-

sumptions. Pearce [23] defines Extensive-Form Rationalizability under structural consistency (an un-

derlying feature also of sequential equilibrium). Battigalli [2] assumes strategic independence, which

requires players to maintain the first-order belief about each opponent whenever her individual behavior

does not contradict them. Battigalli and Siniscalchi [9] remove any assumption of independence and

require players to maintain each order of belief in rationality only until none of the opponents contradict

it. Then, they give to the resulting elimination procedure, Strong Rationalizability, an epistemic char-

acterization based on the notion of strong belief. For this reason, I adopt Strong Rationalizability as a

starting point, but I amend it by introducing independent rationalization: players maintain an order of

belief in rationality of an opponent as long as her individual behavior does not contradict it. The moti-

vation for this choice is two-fold. First, it is coherent with the emphasis on the persistence of beliefs in

rationality. Second, there is an important motivation for the adoption of independent rationalization in

Selective Rationalizability, which will be explained later. As far as Strong Rationalizability is concerned,

it is easy to observe that independent rationalization is immaterial for the predicted outcomes, since it

kicks in at an information set only when it is not reached anymore by some opponent. Instead, I do not

adopt strategic independence. This is not in contradiction with independent rationalization: there can be

correlations9 also among the choices of players with different orders of belief in rationality (and actually,

players do commonly believe in rationality along the rationalizable paths). However, assuming strategic

independence would complicate the notation but not alter the results. For brevity and to distinguish it

from the original notion of Strong Rationalizability, I will call this version simply ”Rationalizability”.

Definition 3 (Rationalizability) Consider the following procedure.

(Step 0) For each i ∈ I, let S0
i = Si.

(Step n>0) For each i ∈ I and si ∈ Si, let si ∈ Sn
i if and only if there is µi ∈ ∆Hi(S−i) such that:

R1 si ∈ ρ(µi);

9For instance, a player can believe that a sunny day will induce more optimistic beliefs in two opponents (regardless of their

strategic sophistication); see, for instance, Aumann [1] and Brandenburger and Friedenberg [11].
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R2 µi strongly believes S
q
j for all j 6= i and q < n.

Finally let S∞
i = ∩n≥0Sn

i . The profiles in S∞ are called rationalizable.

Strong-∆-Rationalizability is defined exactly like Strong Rationalizability, except that at each step

only beliefs µi in a restricted set of CPS’s ∆i ⊂ ∆Hi(S−i) are allowed.

Selective Rationalizability refines Rationalizability in the following way. Each player has an ex-

ogenous theory of opponents’ behavior and refines the rationalizable first-order beliefs according to this

theory. The theory of player i is represented by a set of CPS’s ∆i ⊆ ∆Hi(S−i) over opponents’ strategies.

Players are aware of the theories of everyone else. Therefore, players can also expect each opponent

to refine her first-order beliefs according to the own theory. This expectation towards an opponent is

maintained as long as the opponent herself is not observed making a move that contradicts it. Moreover,

players expect each opponent to reason about everyone else in the same way. Also this expectation is

maintained as long as the opponent herself does not make a move that contradicts it. And so on. Thus,

Selective Rationalizability is defined under independent rationalization. This allows better comparabil-

ity with the equilibrium literature. Without independent rationalization, if a player deviates from the

agreed-upon equilibrium path, each opponent is free to believe that any other opponent is not going to

implement her threat. In this way, no coordination of threats would be required. These issues are widely

discussed in [14]. Note however that independent rationalization is immaterial for the message of this

paper and for the analysis of all the examples: players are only two in all games except for the game of

Section 5, where independent rationalization plays no role anyway.

Definition 4 (Selective Rationalizability) Fix a profile (∆i)i∈I of compact subsets of CPS’s.

Let ((Sm
i )i∈I)

∞
m=0 denote the Rationalizability procedure. Consider the following procedure.

(Step 0) For each i ∈ I, let S0
i,R∆ = S∞

i .

(Step n>0) For each i ∈ I and si ∈ Si, let si ∈ Sn
i,R∆ if and only if there is µi ∈ ∆i such that:

S1 si ∈ ρ(µi);

S2 µi strongly believes S
q
j,R∆ for all j 6= i and q < n;

S3 µi strongly believes S
q
j for all j 6= i and q ∈ N.

Finally, let S∞
i,R∆ = ∩n≥0Sn

i,R∆. The profiles in S∞
R∆ are called selectively-rationalizable.

Step 0 initializes Selective Rationalizability with the rationalizable strategy profiles. This is only to

stress that Selective Rationalizability refines Rationalizability: S3 already implies that players strongly

believe in the rationalizable strategies of each opponent, and that the strategies surviving Step 1 are

rationalizable. Indeed, Selective Rationalizability can also be seen as an extension of Rationalizability,

in a unique elimination procedure where the first-order belief restrictions kick in once no more strategies

can be eliminated otherwise.

Selective Rationalizability can be simplified in different ways according to the structure of the restric-

tions. S3 can be substituted by the requirement that strategies be rationalizable when first-order beliefs

are not restricted at the non-rationalizable information sets.

Definition 5 I say that ∆i ⊆ ∆Hi(S−i) is rationalizable if µ∗
i ∈ ∆i whenever there exists µi ∈ ∆i such that

µ∗
i (·|h) = µi(·|h) for all h ∈ Hi(S

∞).
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Proposition 1 Suppose that for every i ∈ I, ∆i is rationalizable. Then, S3 can be substituted by si ∈ S0
i =

S∞
i in the definition of Selective Rationalizability.

Proposition 2 Fix (∆i)i∈I ⊆×i∈I∆
Hi(S−i) with S∞

R∆ 6= /0. There exists a profile (∆∗
i )i∈I of rationalizable10

subsets of CPS’s such that ζ (S∞
R∆∗) = ζ (S∞

R∆).

Thus, the class of rationalizable restrictions suffices to yield all the possible behavioral implications

of Selective Rationalizability.

Selective Rationalizability and Strong-∆-Rationalizability can yield the empty set. This happens

when at some step there is no µi ∈ ∆i that satisfies S2 and S3, or the equivalent of S2 for Strong-∆-

Rationalizability. This means that the restrictions are not compatible with strategic reasoning about

rationality and the restrictions themselves.

4 Epistemic framework and characterization theorem

I adopt the epistemic framework of Battigalli and Prestipino [7], dropping the incompleteness of informa-

tion dimension. Players’ beliefs over strategies of all orders are given an implicit representation through

a compact, complete and continuous type structure (Ωi,Ti,gi)i∈I ,
11 where for every i ∈ I, Ωi = Si ×Ti, Ti

is a compact metrizable space of epistemic types, and gi = (gi,h)h∈Hi
: Ti → ∆Hi(Ω−i) is a continuous and

onto12 belief map. I will call ”events” the elements of the Borel sigma-algebras on each Ωi, and of the

product sigma algebras on the Cartesian spaces ΩJ :=×i∈J⊆IΩi.

The first-order belief map of player i, fi =( fi,h)h∈Hi
: Ti →∆Hi(S−i), is defined as fi,h(ti)=MargS−i

gi,h(ti)
for all i ∈ I and h ∈ Hi, so it inherits continuity from gi. The event in Ωi where the restrictions of player

i hold is

[∆i] := {(si, ti) ∈ Ωi : fi(ti) ∈ ∆i} ;

[∆i] is compact because ∆i is compact and fi is continuous. The cartesian set where the restrictions of all

players hold is [∆] := ×i∈I [∆i].

From now on, fix a Cartesian (across players) event E = ×i∈IEi ⊆ Ω. The closed13 event where

player i believes in E−i at an information set h ∈ Hi is defined as

Bi,h(E−i) := {(si, ti) ∈ Ωi : gi,h(ti)(E−i) = 1} .

The closedness of Bi,h(E−i) implies the closedness of all the following belief events. The event where i

believes in E−i at every information set is Bi(E−i) := ∩h∈Hi
Bi,h(E−i).

10Although it is not formally shown, it is straightforward to observe that if each ∆i is compact, each ∆∗
i constructed in the

proof is compact too. This shows that the epistemic characterization of Selective Rationalizability holds under (∆∗
i )i∈I ; it is

however immaterial for the results of this section.
11Friedenberg [16] proves that in static games, such a type structure contains all hierarchies of beliefs about strategies.

Although this result has not been formally extended to dynamic games, to the best of my knowledge, no counterexample to

this extension has ever been found. However, the canonical type structure for CPS of Battigalli and Siniscalchi [8] is compact,

complete, and continuous (and it contains all collectively coherent hierarchies of beliefs by construction).
12This imposes to choose type spaces with the cardinality of the continuum.
13See Battigalli and Prestipino [7].
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If ProjSE = S, E is an epistemic event. Else, it could be impossible for player i to believe in E−i at

some information set h ∈ Hi, because ProjS−i
E−i ∩S−i(h) = /0. However, player i may want to believe in

E−i as long as not contradicted by observation. The event where this persistency of the belief holds is:

SBi(E−i) :=
⋂

h∈Hi:ProjS−i
E−i∩S−i(h) 6= /0

Bi,h(E−i).

The strong belief operator SBi is non-monotonic: if E−i ⊂ F−i, it needs not be the case that SBi(E−i)⊂
SBi(F−i). This will explain why Strong-∆-Rationalizability is not a refinement of Strong Rational-

izability, and Selective Rationalizability, for the same restrictions, is not a refinement of Strong-∆-

Rationalizability.

Suppose now that, for each opponent j, player i believes that the true pair (s j, t j) is in E j, as long as

this is not contradicted by observation. Then I say that i strongly believes in E j for all j 6= i. Formally, I

define the independent strong belief operator as

SBi(E−i) := ∩ j 6=iSBi(E j ×Ω− j,i).

Note that (si, ti) ∈ SBi(E−i) if and only if, for each j 6= i, gi(ti) strongly believes in E j, i.e. gi,h(ti)(E j ×
Ω−i, j) = 1 for all h ∈ Hi with ProjS j

E j ∩S j(h) 6= /0.

Let B(E) := ×i∈IBi(E−i), SB(E) := ×i∈ISBi(E−i), and CSBi(E) := Ei ∩ SBi(E−i). The correct and

mutual strong belief in the event E is denoted by:

CSB(E) :=×i∈ICSBi(E) = E ∩SB(E).

Let B0(E) := E =CSB0(E). For all n ∈ N, define the following n-th order belief operators: Bn+1(E) :=
B(Bn(E)) and CSBn+1(E) :=CSB(CSBn(E)). An epistemic event E is transparent when it holds and is

believed by all players at every information set and at every order. The corresponding event is B∗(E) :=
∩n≥0Bn(E). If E is not an epistemic event, I will be interested in the event CSB∞(E) := ∩n≥0CSBn(E).

First-order beliefs and higher-order beliefs have no bite in terms of behavior and predictions over

opponents’ behavior without rationality and beliefs in rationality. The ”rationality of player i” event is

denoted by

Ri := {(si, t) ∈ Ωi : si ∈ ρ( fi(ti))} ,
and it is closed whenever ρ ◦ fi, as assumed here, is upper-hemicontinuous.14 The rationality event is

R :=×i∈IRi.

Here I consider rational players who keep, as the game unfolds, the highest order of belief in rational-

ity of each opponent that is consistent with her observed behavior. Players further refine their first-order

beliefs through the own restrictions. All this is captured by the event [∆]∩CSB∞(R). The event ”ratio-

nality and common independent strong belief in rationality” CSB∞(R) characterizes Rationalizability.15

Furthermore, players believe, as long as not contradicted by observation, that each opponent: (1) reasons

in the same way; (2) believes, as long as not contradicted by observation, that everyone else reasons in

the same way; and so on. The n-th order of this belief is captured by the event CSBn([∆]∩CSB∞(R)), and

it characterizes the n+1-th step of Selective Rationalizability. The event CSB∞([∆]∩CSB∞(R)) captures

all the steps of reasoning at once.

14Finiteness suffices for upper-hemicontinuity.
15Analogously, ”rationality and common strong belief in rationality” characterizes Strong Rationalizability (Battigalli and

Siniscalchi [9]).
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Theorem 1 Fix a profile ∆ = (∆i)i∈I of compact subsets of CPS’s. Then, for every n ≥ 0,

Sn+1
R∆ = ProjSCSBn([∆]∩CSB∞(R)),

and

S∞
R∆ = ProjSCSB∞([∆]∩CSB∞(R)).

The comparison between the characterization of Selective Rationalizability and the characterization

of Strong-∆-Rationalizability proposed by Battigalli and Prestipino [7] clarifies the epistemic priority

difference behind the two solution concepts. In the event CSB
∞
(R∩B∗([∆]))⊂ B∗([∆]) that characterizes

Strong-∆-Rationalizability,16 players keep at every information set every order of belief in the restric-

tions. In the event CSB∞([∆]∩CSB∞(R)) ⊂CSB∞(R), players keep at every information set the highest

order of belief in each opponent’s rationality which is per se compatible with her observed behavior.

5 Finer epistemic priority orderings

Consider the following game, where after I Cleo chooses the matrix.

M1 L R

Cleo — I −→ U 1,1,3.3 0,0,3.3
↓ O D 0,0,3.3 1,1,3.9

A\B W E M2 L R

N 2,2,3.6 0,0,0 U 0,0,0 1,1,8.1
S 0,0,0 2,2,4 D 1,1,8.1 0,0,0

All strategies are rationalizable. Suppose that players have theories of opponents’ behavior that come

from an equilibrium or an incomplete agreement among all players. An incomplete agreement or an

equilibrium17 align any two players’ beliefs about a third player’s moves. Are there restrictions of this

kind under which Selective Rationalizability yields outcome (O,(S,E))? Yes. It is sufficient that Cleo

expects Ann and Bob to play (S,E) after O and, for instance, (U,L) after I. Then, upon observing I, Ann

and Bob drop the belief that Cleo has the aforementioned first-order belief restrictions. Thus, they can

expect Cleo to pick any of the two matrices. If they believe that Cleo picks matrix M1, Ann may play U

when she believes that Bob will play L, and vice versa.

Suppose now instead that Ann and Bob have an alternative theory to rationalize Cleo’s move. They

believe that Cleo believed that they would have coordinated on (S,E) after O, but does not believe that

they will play (U,L) after I. If Ann and Bob rationalize the move of Cleo under this light, they expect

Cleo to pick M2, because (I,M1) is not rational given the belief in (S,E). Under M2, Ann and Bob

cannot coordinate on (U,L).
Suppose now that Cleo expects Ann and Bob to play (N,W ) after O and (U,L) after I. Upon observ-

ing I, as above, Ann and Bob believe the Cleo believed in (N,W ) after O, but does not believe in (U,L)
after I. But this does not exclude that Cleo would play M1, hoping in (D,R). Thus, Ann may play U

when she believes that Bob will play L, and vice versa. So, Cleo’s initial restrictions are compatible with

the belief that Ann and Bob have the same restrictions about each other’s moves, and will rationalize I

16CSB
∞

is defined like CSB∞ starting from SBi instead of SBi.
17With the notable exception of self-confirming equilibrium (Fudenberg and Levine [17]).
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under her belief in (N,W ) only. The restrictions yield outcome (O,(N,W )) as unique prediction not just

under Selective Rationalizability, but also under the additional strategic reasoning hypotheses.

Note a paradoxical fact: to convince Cleo to play O, Ann and Bob must promise to play (N,W ),
which yields Cleo a payoff of 3.6, instead of (S,E), which yields Cleo a payoff of 4. The intuitive

explanation is that a higher expectation of Cleo after O allows her to take a convincing position of power

after I.

Two important questions arise now. First: does the exclusion of (O,(S,E)) and not of (O,(N,W ))
correspond to some existing equilibrium refinement? Note that both outcomes are induced by a subgame

perfect equilibrium in (extensive-form/strongly) rationalizable strategies. Second, and most importantly:

can the strategic reasoning above be modeled as an epistemic priority order between different theories of

opponents behavior and be captured by a solution concept analogous to Selective Rationalizability?

The answer to the first question is yes: strategic stability a la Kohlberg and Mertens [20].18

Definition 6 (Kohlberg and Mertens [20]) For each i ∈ I, let Σi be the set of mixed strategies of i, i.e.

the set of probability distributions over Si. A closed set of mixed equilibria Σ̂ ⊆ Σ is stable if it is minimal

with respect to the following property: for any ε > 0, there exists δ0 > 0 such that for any completely

mixed (σi)i∈I ∈ Σ and (δi)i∈I with δi < δ0 for all i ∈ I, the perturbed game where for every i ∈ I, every

si ∈ Si is substituted by (1−δi)si +δiσi has a mixed equilibrium ε-close to Σ̂.

Consider first a set of two mixed equilibria Σ̂ = {(σi)i∈I ,(σ
′
i )i∈I} inducing outcome (O,(N,W )),

where σC(O) = σ ′
C(O) = 1, σA(N.D) = σB(W.R) = 1/

√
2, and σ ′

A(N.D) = σ ′
B(W.R) = 2/3. Under σ ,

Cleo is actually indifferent between O and I.M1, while under σ ′, she is indifferent between O and I.M2.

I show that Σ̂ is stable. Fix any completely mixed (σ̃i)i∈I ∈ Σ, an arbitrarily small δ0, and (δi)i∈I with

δi < δ0 for all i ∈ I. Consider the game perturbed as in Definition 6 and indicate with tilde the perturbed

strategies. If σ̃A(I.M1) > σ̃A(I.M2) (resp., σ̃A(I.M1) < σ̃A(I.M2)), assign small probability to Ĩ.M1

(resp., Ĩ.M2) and the complementary probability to Õ in such a way that I.M1 and I.M2 are played with

probability 1/2. Then, after I, Ann and Bob are indifferent between their actions regardless of the belief

about the action of the other. Thus, since all strategies are perturbed in the same way, Ann and Bob are

indifferent between Ñ.U and Ñ.D, and between W̃.L and W̃.R. Assign probability to these strategies in

such a way that Cleo is indifferent between Õ and Ĩ.M1 (resp., Ĩ.M2).19 For any ε > 0, by picking a

small enough δ0, we have an equilibrium in the perturbed strategies where the induced probabilities over

the original strategies are ε-close to those assigned by σ (resp., σ ′).
Instead, there is no stable set of equilibria inducing (O,(S,E)): any perturbation of O that gives

negligible probability to I.M1 with respect to I.M2 cannot be compensated by giving positive probability

to Ĩ.M1, because Ĩ.M1 cannot be optimal under belief in (S,E) (albeit perturbed). Thus, Ann and Bob

must play a (perturbed) equilibrium of matrix M2, which cannot discourage a deviation to Ĩ.M2.

This is not the first time that a connection between equilibrium refinements a la strategic stabil-

ity and rationalizability is established. In signaling games, Battigalli and Siniscalchi [10] show that

18Strategic stability has been chosen over Forward Induction equilibria of Govindan and Wilson [18] or Man [21] because

the latter do not refine extensive-form rationalizability, hence do not capture all orders of strong belief in rationality. Strategic

stability, instead, refines iterated admissibility, which in generic games corresponds to extensive-form rationalizability (Shimoji,

[25]).
19Since the perturbed strategies assign positive probability to S and E, the expected payoff of Cleo after O is lower than 3.6.

Thus, N.U and N.L (resp., N.D and N.R) must be assigned probability higher than 1/
√

2 (resp., than 2/3).
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when an equilibrium outcome satisfies the Iterated Intuitive Criterion (Cho and Kreps [15]), Strong-∆-

Rationalizability yields a non-empty set for the corresponding restrictions (i.e. the belief that opponents

play compatibly with the path). In [14] I prove that Selective Rationalizability yields the empty set for

a class of non strategically stable equilibrium paths: those that can be upset by a convincing deviation

(Osborne [22]). So, one could think that strategic stability simply requires non-emptiness of Selective

Rationalizability under the belief in the equilibrium path. This is false. In the example above, Selective

Rationalizability yields a non-empty set under the belief in (O,(S,E)) (but does not yield (O,(S,E)) as

unique prediction). Thus, there is no incompatibility between the belief in the path and the rationalization

of deviations based on it (unlike for equilibrium paths that can be upset by a convincing deviation). The

problem is the incompatibility between the rationalization of deviations based on the belief in the path

and the threats that sustain the path in equilibrium. This calls for a rationalizability procedure that takes

both into account in a given epistemic priority ordering; in particular the ”theory” that players comply

with the path will be assigned higher epistemic priority with respect the ”theory” that players implement

also the equilibrium threats. In the full version of the paper, I construct and characterize epistemically

such rationalizability procedure. The scope is expanded to an arbitrary number of theories of opponents’

behavior, of an arbitrary nature (i.e. not just path versus full equilibrium behavior). Without the ambition

to perfectly characterize strategic stability, the application of this rationalizability procedure to an equi-

librium path and profile captures in a general and transparent way the spirit of the strategic reasoning

stories in the background of strategic stability and related refinements.

6 Appendix

For each i ∈ I and h ∈ Hi, let p(h) be the immediate predecessor of h.

Lemma 1 Fix a profile of rationalizable subsets of CPS’s (∆i)i∈I .

For every n ≥ 0, i ∈ I, h ∈ Hi(S
n
i,R∆)\Hi(S

∞) with p(h) ∈ Hi(S
∞), and si ∈ S∞

i (h), there exists s∗i ∈ Sn
i,R∆

such that s∗i (h
′) = si(h

′) for all h′ � h.

Proof. By S0
i,R∆ = S∞

i , the result trivally holds for n = 0. Fix n > 0 and suppose to have proved the

result for all q < n. Fix i ∈ I, h ∈ Hi(S
n
i,R∆)\Hi(S

∞) with p(h) ∈ Hi(S
∞), and si ∈ S∞

i (h). Fix µi ∈ ∆i that

satifies S2 and S3 with ρ(µi)(h) 6= /0 (it exists by h ∈ Hi(S
n
i,R∆)) and µ ′

i that satisfies S3 with si ∈ ρ(µ ′
i ).

For each j 6= i and s j ∈ S∞
j (h), letting m :=max

{
q < n : S

q
j,R∆(h) 6= /0

}
, by the Induction Hypothesis there

exists s∗j ∈ Sm
j,R∆(h) such that s∗j(h

′) = s j(h
′) for all h′ � h. Let ηh

j (s j) := s∗j . For each s j ∈ S j(h)\S∞
j (h), let

ηh
j (s j) := s j. Since µi strongly believes S0

−i,R∆ = S∞
−i, h 6∈Hi(S

∞
−i), and p(h)∈Hi(S

∞
−i), µi(S−i(h)|p(h)) =

0. Thus, I can construct µ∗
i that satisfies S2 and S3 as (i) µ∗

i (·|h′) = µi(·|h′) for all h′ 6� h, and (ii)

µ∗
i (s−i|h′) = µ ′

i (× j 6=i(η
h
j )

−1(s j)|h′) for all h′ � h and s−i = (s j) j 6=i ∈ S−i(h). By (i) and rationalizability

of ∆i, µ∗
i ∈ ∆i. By (i) and (ii), there exists s∗i ∈ ρ(µ∗

i )(h) ⊆ Sn
i,R∆ such that s∗i (h

′) = si(h
′) for all h′ � h.

�

Proof of Proposition 1. Fix n ∈N, i ∈ I, µi ∈ ∆i that satifies S2 at n, and si ∈ ρ(µi)∩S∞
i . Fix µ ′

i that

satisfies S3 with si ∈ ρ(µ ′
i ). Fix h ∈ Hi(si)\Hi(S

∞) with p(h) ∈ Hi(S
∞). For each j 6= i and s j ∈ S∞

j (h),

letting m := max
{

q < n : S
q
j,R∆(h) 6= /0

}
, by Lemma 1 there exists s∗j ∈ Sm

j,R∆(h) such that s∗j(h
′) = s j(h

′)

for all h′ � h. Let ηh
j (s j) := s∗j . For each s j ∈ S j(h)\S∞

j (h), let ηh
j (s j) := s j. Since µi strongly believes
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S0
−i,R∆ = S∞

−i, h 6∈ Hi(S
∞
−i), and p(h)∈Hi(S

∞
−i), µi(S−i(h)|p(h)) = 0. Thus, there exists µ∗

i that satisfies S2

and S3 such that (i) µ∗
i (·|h) = µi(·|h) for all h ∈ Hi(S

∞), and (ii) µ∗
i (s−i|h′) = µ ′

i (× j 6=i(η
h
j )

−1(s j)|h′) for

all h ∈ Hi(si)\Hi(S
∞) with p(h) ∈ Hi(S

∞), h′ � h, and s−i = (s j) j 6=i ∈ S−i(h). By (i) and rationalizability

of ∆i, µ∗
i ∈ ∆i. By (i) and (ii), si ∈ ρ(µi)⊆ Sn

i,R∆. �

Proof of Proposition 2. For each i ∈ I, let ∆i be the set of all µi ∈ ∆i that satisfy S3 and S2 under

(∆ j) j∈I for all n ∈ N. By finiteness,20 (1) S∞
R∆

= S1
R∆

= ×i∈Iρ(∆i) = S∞
R∆. Let µi ∈ ∆∗

i if and only if

there exists µ i ∈ ∆i such that µi(·|h) = µ i(·|h) for all h ∈ Hi(S
∞). Obviously, ∆i ⊆ ∆∗

i for all i ∈ I; thus,

S1
R∆

⊆ S1
R∆∗ .

I show first that ∆∗
i is rationalizable. Fix µi and µ i ∈ ∆∗

i such that µi(·|h) = µ i(·|h) for all h ∈ Hi(S
∞).

Then, there exists µ i ∈ ∆i such that µ i(·|h) = µ i(·|h) = µi(·|h) for all h ∈ Hi(S
∞), so µi ∈ ∆∗

i .

Fix i ∈ I and si ∈ S1
i,R∆∗ . Fix µi ∈ ∆∗

i such that si ∈ ρ(µi). By definition of ∆∗
i , there exists µ i ∈

∆i ⊆ ∆∗
i such that µi(·|h) = µ i(·|h) for all h ∈ Hi(S

∞). Thus, there exists si ∈ ρ(µ i) ⊆ ρ(∆i) = S1
i,R∆

such that si(h) = si(h) for all h ∈ Hi(S
∞)⊇ Hi

(
S1

R∆∗
)
. Hence, by S1

R∆
⊆ S1

R∆∗ , (⋆) Hi(S
1
j,R∆∗)∩Hi(S

∞) =

Hi(S
1
j,R∆

)∩Hi(S
∞) for all j 6= i, and by ζ (S1

R∆∗)⊆ ζ (S∞), (2) ζ (S1
R∆∗) = ζ (S1

R∆
).

Since si ∈ S2
i,R∆

= S1
i,R∆

, there exists µ i ∈ ∆i that strongly believes (S1
j,R∆

) j 6=i such that si ∈ ρ(µ i).

For each h ∈ Hi(S
∞) and s−i ∈ S−i with µ i(s−i|h) > 0, since µ i strongly believes in S∞

−i, si ∈ S∞
i , and

si(h
′)= si(h

′) for all h′ ∈Hi(S
∞), ζ (si,s−i)= ζ (si,s−i). Thus, by si ∈ ρ(µ i), si is a continuation best reply

to µ i(·|h) too. Fix µ ′
i that satisfies S3 such that si ∈ ρ(µ ′

i ). Fix h ∈ Hi(si)\Hi(S
∞) with p(h) ∈ Hi(S

∞).

For each j 6= i and s j ∈ S∞
j (h), letting m := max

{
q = 0,1 : S

q
j,R∆∗(h) 6= /0

}
, by Lemma 1 there exists

s∗j ∈ Sm
j,R∆∗(h) such that s∗j(h

′) = s′j(h
′) for all h′ � h. Let ηh

j (s j) := s∗j . For each s j ∈ S j(h)\S∞
j (h), let

ηh
j (s j) := s j. Since µ i strongly believes S∞

−i, h 6∈ Hi(S
∞
−i), and p(h) ∈ Hi(S

∞
−i), µ i(S−i(h)|p(h)) = 0. For

all j 6= i, by S1
R∆

⊆ S1
R∆∗ and (⋆), µ i(S

1
j,R∆∗×S−i, j|h) = 1 for all h∈Hi(S

1
j,R∆∗)∩Hi(S

∞). Thus, there exists

µ∗
i that satisfies S3 and strongly believes (S1

j,R∆∗) j 6=i such that (i) µ∗
i (·|h) = µ i(·|h) for all h ∈ Hi(S

∞),

and (ii) µ∗
i (s−i|h′) = µ ′

i (× j 6=i(η
h
j )

−1(s j)|h′) for all h ∈ Hi(si)\Hi(S
∞) with p(h) ∈ Hi(S

∞), h′ � h, and

s−i = (s j) j 6=i ∈ S−i(h). By (i) and rationalizability of ∆∗
i , µ∗

i ∈ ∆∗
i . By (i) and (ii), si ∈ ρ(µi) ⊆ S2

i,R∆∗ .

Thus, (3) S∞
R∆∗ = S1

R∆∗ . By 1-2-3, ζ (S∞
R∆∗) = ζ (S∞

R∆). �

PROOF OF THEOREM 1.

First, I prove a generalized version of Theorem 1. Applying this generalized version to Rationaliz-

ability yields the hypotheses to apply it to Selective Rationalizability and prove Theorem 1.

Consider this generalized rationalizability procedure:

Definition 7 Fix a profile of compact subsets of CPS’s (∆i)i∈I . Fix another profile of compact subsets of

CPS’s (∆G
i )i∈I . Fix n ≥ 1 and, if n > 1, suppose to have defined ((S

q
i,G)i∈I)

n−1
q=1. For every i ∈ I and si ∈ Si,

let si ∈ Sn
i,G if and only if there exists µi ∈ ∆i such that:

G1 si ∈ ρ(µi);

G2 µi strongly believes S
q
j,G for all j 6= i and q < n;

20Or other milder conditions which guarantee that every si ∈ S∞
i,R∆ is a sequential best reply to some belief µi that strongly

believes ((S
q
j,R∆) j∈I)

∞
q=0.
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G3 µi ∈ ∆G
i .

Call ∆n,G
i the set of all µi ∈ ∆i that satisfy G2 and G3.

Finally, let S∞
i,G = ∩n≥1Sn

i,G and ∆∞,G
i = ∩n≥1∆n,G

i .

Consider the following property for a Cartesian event E =×i∈IEi ⊆ Ω.

Definition 8 A Cartesian event E = ×i∈IEi satisfies the ”completeness property” if for every i ∈ I,

ti ∈ProjTi
Ei, si ∈ ρ( fi(ti)), and maps21 (τ j) j 6=i with τ j : s j ∈ProjS j

E j 7→ (s j, t j) ∈ E j for all j 6= i, there

exists t ′i ∈ Ti such that (si, t
′
i) ∈ Ei, fi(t

′
i) = fi(ti), and gi,h(t

′
i) [τ j(s j)×Ω−i, j] = fi,h(ti) [s j ×S−i, j] for all

h ∈ Hi, j 6= i, and s j ∈ProjS j
E j.

Now I can state a generalized characterization theorem.22

Lemma 2 Fix a closed, Cartesian event E = ×i∈IEi ⊆ R with the completeness property such that for

each i ∈ I, fi(ProjTi
E) = ∆i ∩∆G

i (which implies S1
G =ProjSE).23

Then, for every n ∈N, CSBn−1(E) has the completeness property and for each i ∈ I, fi(ProjTi
CSBn−1(E))

= ∆n,G
i if n = 1, and fi(ProjTi

CSBi(CSBn−2(E))) = ∆n,G
i if n > 1 (which implies Sn

G =ProjSCSBn−1(E)).24

Moreover, CSB∞(E) has the completeness property and for each i ∈ I, fi(ProjTi
CSB∞(E)) = ∆∞,G

i

(which implies S∞
G =ProjSCSB∞(E)).25

Proof. For finite n, the proof is by induction.

Induction Hypothesis (n=1,...,m): the Lemma holds for n = 1, ...m.

Basis step (n=1): the Lemma holds for n = 1 by hypothesis.

Inductive step (n=m+1): Let F =×i∈IFi :=CSBm−1(E) and G =×i∈IGi :=CSBm(E), where for all

i ∈ I, Fi =CSBi(CSBm−2(E)) and Gi =CSBi(F)

Fix i ∈ I and µi ∈ ∆m+1,G
i ⊆ ∆m,G

i . Then, by the Induction Hypothesis, there exists ti ∈ProjTi
Fi such

that fi(ti) = µi. Fix maps (τ j) j 6=i with τ j : s j ∈ProjS j
Fj 7→ (s j, t j) ∈ Fj for all j 6= i. By the Induction

Hypothesis, F has the completeness property. So, there exists (s′i, t
′
i)∈Fi such that fi(t

′
i)= fi(ti) = µi, and

for every h ∈ Hi, j 6= i, and s j ∈ProjS j
Fj, gi,h(t

′
i) [τ j(s j)×Ω−i, j] = fi,h(ti) [s j ×S−i, j]. Then, since fi(ti) =

µi ∈ ∆m+1,G
i strongly believes Sm

j,G =ProjS j
Fj (by the Induction Hypothesis), gi(t

′
i) strongly believes Fj.

So, (s′i, t
′
i) ∈ SBi(F−i)∩Fi. Thus, (s′i, t

′
i) ∈ Gi.

Fix i ∈ I and ti ∈ProjTi
Gi. Since ti ∈ProjTi

Fi, by the Induction Hypothesis fi(ti) ∈ ∆m,G
i . Since

ti ∈ProjTi
SBi(F), gi(ti) strongly believes Fj for all j 6= i, hence fi(ti) strongly believes ProjS j

Fj. By

the Induction Hypothesis ProjS j
Fj = Sm

j . So fi(ti) ∈ ∆m+1,G
i .

Now I show that G has the completeness property. Fix i ∈ I, ti ∈ProjTi
Gi ⊆ProjTi

Fi, si ∈ ρ( fi(ti)), and

maps (τ j) j 6=i with τ j : s j ∈ ProjS j
G j 7→ (s j, t j)∈G j ⊆Fj for all j 6= i. Extend each τ j to τ ′

j : s j ∈ProjS j
Fj 7→

21Note that the maps are injective.
22The event E can be empty, just like CSB∞(R)∩ [∆] in Theorem 1.
23⊆ is guaranteed by the completeness property of E; ⊇ is guaranteed by the fact that E ⊆ R.
24For n> 1, ProjTi

CSBn−1(E) must be substituted by fi(ProjTi
CSBi(CSBn−2(E))) because for some j 6= i, CSB j(CSBn−2(E))

may be empty (and thus CSBn−1(E) too) while ∆
n,G
i is not.

25Finiteness implies that for every si ∈ S∞
i,G, si ∈ ρ(µi) for some µi ∈ ∆

∞,G
i , but it can be substituted by mild regularity

conditions (see, for instance, Battigalli [5]).
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(s j, t j)∈Fj in such a way that for every s j ∈ProjS j
G j, τ ′

j(s j)= τ j(s j). By the Induction Hypothesis, F has

the completeness property. So, there exists t ′i ∈ Ti such that (si, t
′
i)∈Fi, fi(t

′
i)= fi(ti), and for every h∈Hi,

j 6= i, and s j ∈ProjS j
Fj ⊇ProjS j

G j, gi,h(t
′
i)[τ

′
j(s j)×Ω−i, j] = fi,h(ti) [s j ×S−i, j]. Since ti ∈ProjTi

SBi(F−i),
fi(ti) strongly believes ProjS j

Fj for all j 6= i. Then, by construction, gi(t
′
i) strongly believes Fj. So

(si, t
′
i) ∈ SBi(F−i). Thus, (si, t

′
i) ∈ Gi. Note that for every h ∈ Hi, j 6= i, and s j ∈ProjS j

G j, gi,h(t
′
i)[τ j(s j)×

Ω−i, j] = fi,h(ti) [s j ×S−i, j]. �

Now I prove that the lemma holds for n = ∞. By finiteness, there is M ∈ N such that S∞
G = SM

G . Let

F :=CSBM(E) and G :=CSB∞(E) = ∩n≥0CSBn(E).

Fix i ∈ I and µi ∈ ∆∞,G
i = ∆M+1,G

i .

By finiteness, the existence of such µi implies that ∆∞,G
j 6= /0 for all j 6= i, so S∞

G 6= /0. As shown above,

for every s ∈ S∞
G and q ≥ 0, ({s}× T)∩CSBq(E) 6= /0. Since each CSBq(E) and ({s}× T ) are closed

(see Section 4), (({s}×T )∩CSBq(E))q≥0 is a sequence of nested, nonempty closed sets, so it has the

finite intersection property. Since Ω is compact, ({s}× T)∩G 6= /0. Then, for each j ∈ I, there exists

τ j : s j ∈ProjS j
F 7→ (s j, t j) ∈ ProjΩ j

G.

As shown above, there exists ti ∈ProjTi
F such that fi(ti) = µi, and F has the completeness property.

So, there exists (s′i, t
′
i) ∈ ProjΩi

F such that for every i ∈ I, fi(t
′
i) = fi(ti), and for every h ∈ Hi, j 6= i, and

s j ∈ProjS j
F , gi,h(t

′
i)[τ j(s j)×Ω−i, j] = fi,h(ti) [s j ×S−i, j]. Then, since fi(ti) = µi ∈ ∆∞,G

i strongly believes

S∞
j,G =ProjS j

F (shown above), gi(t
′
i) strongly believes ProjΩ j

G. Hence, for each q ≥ M, since S
q
G = S∞

G

and CSBq(E) ⊃ G, gi(t
′
i) strongly believes ProjΩ j

CSBq(E). So, (s′i, t
′
i) ∈ SBi(CSBq(E)). Repeating for

each i ∈ I, CSBq+1(E) 6= /0. Then (s′i, t
′
i) ∈ ProjΩi

CSBq+1(E) for all q ≥ M. Thus (s′i, t
′
i) ∈ ProjΩi

G 6= /0.

Fix i ∈ I and ti ∈ProjTi
G. For every q ≥ 1, ti ∈ProjTi

CSBq−1(E), thus, as shown above, fi(ti) ∈ ∆
q,G
i .

Then, fi(ti) ∈ ∆
∞,G
i .

Now I show that G has the completeness property. Fix i ∈ I, ti ∈ProjTi
G ⊆ProjTi

F , si ∈ ρ( fi(ti)),
and maps (τ j) j 6=i with τ j : s j ∈ ProjS j

G 7→ (s j, t j) ∈ ProjΩ j
G ⊆ ProjΩ j

F for all j 6= i. As shown above,

ProjSG = S∞
G = SM

G =ProjSF , and F has the completeness property. So, there exists t ′i ∈ Ti such that

(si, t
′
i) ∈ ProjΩi

F , fi(t
′
i) = fi(ti), and for every h ∈ Hi, j 6= i, and s j ∈ProjS j

F =ProjS j
G, gi,h(t

′
i)[τ j(s j)×

Ω−i, j] = fi,h(ti) [s j ×S−i, j]. Since ti ∈ProjTi
SBi(F), fi(ti) strongly believes ProjS j

F =ProjS j
G for all j 6= i.

Then, gi(t
′
i) strongly believes ProjΩ j

G. Hence, for each q ≥ M, since ProjSF = ProjSCSBq(E) =ProjSG

and CSBq(E) ⊃ G, gi(t
′
i) strongly believes ProjΩ j

CSBq(E). So, (si, t
′
i) ∈ SBi(CSBq(E)). Then (si, t

′
i) ∈

ProjΩi
CSBq+1(E) for all q ≥ M. Thus (si, t

′
i) ∈ ProjΩi

G. �

Proof of Theorem 1.

For each i ∈ I, let ∆∞,G
i be the set of CPS’s that satisfy S3. Theorem 1 is given by Lemma 2 with

E = [∆]∩CSB∞(R) and ∆G
i = ∆∞,G

i for all i ∈ I. I show that [∆]∩CSB∞(R) satisfies the hypotheses of

Lemma 2.

The event R = ×i∈IRi is closed (see Section 4). Now I show that it has the completeness property.

Fix i ∈ I, ti ∈ProjTi
R, si ∈ ρ( fi(ti)), and, for each j 6= i, τ j : s j ∈ProjS j

R 7→ (s j, t j) ∈ R j. Extend each

τ j to τ ′
j : s j ∈ S j 7→ (s j, t j) ∈ Ω j in such a way that for every s j ∈ProjS j

R, τ ′
j(s j) = τ j(s j). Define νi ∈

(∆(S−i×T−i))
Hi as νi(× j 6=iτ

′
j(s j)|h) = fi,h(ti)[s−i] for all h ∈ Hi and s−i = (s j) j 6=i ∈ S−i (it is well defined

because each τ ′
j is injective). It is easy to verify that νi is a CPS given that fi(ti) is a CPS.26 By ontoness

26A detailed argument for this under finiteness can be found in [7], in the proof of Lemma 1.
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of gi, there exists t ′i ∈ Ti such that gi(t
′
i) = νi. Clearly, fi(t

′
i) = fi(ti), which implies (si, t

′
i) ∈ Ri, and

gi,h(t
′
i) [τ j(s j)×Ω−i, j] = fi,h(ti) [s j ×S−i, j] for all h ∈ Hi, j 6= i, and s j ∈ProjS j

R.

Note that (trivially) fi(ProjTi
Ri) = ∆Hi(S−i).

So, I can apply Lemma 2 with E = R and ∆G
i = ∆Hi(S−i), so that ((Sn

i,G)i∈I)
∞
n=0 is Rationalizability.

Thus, CSB∞(R) is a closed Cartesian event with the completeness property where fi(ProjTi
CSB∞(R)) =

∆∞,G
i for all i ∈ I. Then, it is easy to check that E = [∆]∩CSB∞(R) is a closed Cartesian event with the

completeness property where fi(ProjTi
E) = ∆i ∩∆∞,G

i for all i ∈ I. �
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