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An abstract argumentation framework can be used to model the argumentative stance of an agent

at a high level of abstraction, by indicating for every pair of arguments that is being considered

in a debate whether the first attacks the second. When modelling a group of agents engaged in a

debate, we may wish to aggregate their individual argumentation frameworks to obtain a single such

framework that reflects the consensus of the group. Even when agents disagree on many details, there

may well be high-level agreement on important semantic properties, such as the acceptability of a

given argument. Using techniques from social choice theory, we analyse under what circumstances

such semantic properties agreed upon by the individual agents can be preserved under aggregation.

1 Introduction

Formal argumentation theory provides tools for modelling both the arguments an agent may wish to

employ in a debate and the relationships that hold between such arguments [4, 22, 23]. In the widely

used system of abstract argumentation, introduced in the seminal work of Dung [11], we abstract away

from the internal structure of arguments and only model whether or not one argument attacks another

argument. This is a useful perspective when we require a high-level understanding of how different

arguments relate to each other. But when several agents engage in a debate, they may differ on their

assessment of some of the arguments and their relationships. How best to model such scenarios of

collective argumentation is a question of considerable interest. Over the past decade or so, several

authors have started to contribute to its resolution (see, e.g., [1, 5, 7, 8, 9, 13, 24, 25]).

Specifically, when agents differ on their assessment of which attacks between the arguments are in

fact justified, i.e., when they put forward different attack-relations, we may wish to aggregate these indi-

vidual pieces of information to obtain a global view. In this paper, we analyse under what circumstances

a given aggregation rule will preserve relevant properties of the individual attack-relations, particularly

properties that relate to the various semantics that have been proposed for abstract argumentation. For

example, if all agents agree that argument A is acceptable, either because it is not attacked by any other

argument or because it can be successfully defended against any such attack, then we would like A to also

be considered acceptable relative to the attack-relation returned by our aggregation rule. Thus, argument

acceptability is an example for a property that, ideally, should be preserved under aggregation.

Our approach uses techniques originating in social choice theory, the study of collective decision

making [2, 16], the relevance of which to collective argumentation has previously been noted by several

of the aforementioned authors, starting with Tohmé et al. [25]. In particular, we make use of recent results

on graph aggregation [14]. Besides the formulation of a clear and simple model for the axiomatic study

of the preservation of semantic properties during aggregation, our contribution consists in delineating
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how fundamental axiomatic properties of aggregation rules interact with such preservation requirements.

Our technical results range from characterisation results that indicate what kind of aggregation rule can

satisfy certain combinations of desiderata, to impossibility results that show that only aggregation rules

that are clearly unacceptable from an axiomatic point of view (namely, so-called dictatorships) can pre-

serve the most demanding semantic properties.

This paper is organised as follows. Section 2 is a brief review of relevant concepts from the theory

of abstract argumentation. Section 3 introduces our model and Section 4 present our technical results on

the preservation of semantic properties under aggregation. Finally, we discuss related work in Section 5

and conclude, in Section 6, with suggestions for possible directions for future work.

2 Abstract Argumentation

In this section, we recall some of the fundamentals of abstract argumentation as originally introduced by

Dung [11]. An argumentation framework is a pair AF = 〈Arg,⇀〉, where Arg is a finite set of arguments

and ⇀ is an irreflexive binary relation on Arg.1 If A ⇀ B holds for two arguments A,B ∈ Arg, we say

that A attacks B. An attack-relation (⇀) ⊆ Arg×Arg is made up of a set of attacks att ∈ Arg×Arg.

For a set of arguments ∆ ⊆ Arg and an argument B ∈ Arg, we say that ∆ attacks B, denoted as ∆ ⇀ B, if

A⇀ B holds for some argument A∈∆. Given an argumentation framework AF, the question arises which

arguments to accept. For example, we may not want to accept two arguments that attack each other. A

semantics for abstract argumentation specifies which sets of arguments can be accepted together. Any

such set of arguments is called an extension of AF under the semantics in question.

For all the definitions of specific choices of semantics that follow, consider an arbitrary but fixed

argumentation framework AF = 〈Arg,⇀〉 and a set of arguments ∆ ⊆ Arg. We say that ∆ is conflict-free,

if there exist no arguments A,B∈∆ such that A⇀ B. We further say that ∆ defends the argument B ∈Arg,

if ∆ ⇀ A for all arguments A ∈ Arg such that A ⇀ B. Finally, ∆ is called admissible if it is conflict-free

and defends every single one of its members.

Definition 1. A stable extension of AF is a conflict-free set ∆ of arguments in Arg that attacks every

other argument B ∈ Arg\∆.

Definition 2. A preferred extension of AF is an admissible set of arguments in Arg that is maximal with

respect to set inclusion.

Definition 3. A complete extension of AF is an admissible set of arguments in Arg that includes all of

the arguments it defends.

The characteristic function of AF is the function fAF : 2Arg → 2Arg with fAF : ∆ 7→ {A ∈ Arg |
∆ defends A}, mapping any given set of arguments in Arg to the set of arguments it defends.

Definition 4. The grounded extension of AF is the least fixed point of its characteristic function fAF.

We can compute the grounded extension ∆ by initialising ∆ with the empty set /0 and then repeatedly

executing the program ∆ := fAF(∆), until no more changes occur. Unlike for the other three semantics,

there always is exactly one grounded extension. However, that extension may be empty. It is nonempty

if and only if there is at least one unattacked argument.

How do these semantics relate to each other? Every stable extension is also a preferred extension.

The set of stable extensions may be empty, while there always is at least one preferred extension. Every

1Neither the finiteness nor the irreflexivity assumption are crucial for our results, but they simplify exposition and clearly

are natural for most applications.
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Figure 1: Example for a profile with Arg = {A,B,C,D}.

preferred extension is also a complete extension. Finally, the grounded extension is always a complete

extension as well.

An interesting question is under what circumstances two or more semantics coincide. Probably the

clearest example is the case of an acyclic attack-relation: if ⇀ does not include any cycles, then the

grounded extension is also the only stable extension, the only preferred extension, and the only complete

extension. A weaker condition is coherence: AF is called coherent if every preferred extension of AF is

stable, i.e., if the two semantics coincide.

3 The Model

Fix a finite set of arguments Arg. Let N = {1, . . . ,n} be a finite set of n agents. Suppose each agent

i ∈ N supplies us with an argumentation framework AFi = 〈Arg,⇀i〉, reflecting her individual views

on the status of possible attacks between arguments. Thus, we are given a profile of attack-relations

⇀⇀⇀ = (⇀1, . . . ,⇀n).
2 What would be a good method of aggregating these individual argumentation

frameworks to arrive at a single argumentation framework that appropriately reflects the views of the

group as a whole? This is the central question we address in this paper. An aggregation rule is a function

F : (Arg×Arg)n → Arg×Arg mapping any given profile of attack-relations into a single attack-relation.

Example 1. The first aggregation rule that comes to mind is the majority rule: include attack A ⇀ B

in the outcome if and only if a (weak) majority of the individual agents do. If we apply this rule to the

profile shown in Figure 1, we obtain an argumentation framework with A ⇀ B, B ⇀C, and C ⇀ A. △

In the remainder of this section, we first define a number of specific aggregation rules and review

their properties. We focus on simple rules that are adaptations of well-known rules used in the social

choice literature, particularly in judgment aggregation [17] and graph aggregation [14]. We then adapt

several standard properties of aggregation rules, known as axioms in that same literature, to our setting.

Finally, we review several semantic properties of argumentation frameworks and formulate the question

of whether a given rule will preserve such a property.

3.1 Aggregation Rules

Recall that an aggregation rule is a function F , mapping any given profile ⇀⇀⇀= (⇀1, . . . ,⇀n) ∈ (Arg×
Arg)n of attack-relations to a single attack-relation F(⇀⇀⇀)⊆ Arg×Arg. We sometimes write (A ⇀ B) ∈
F(⇀⇀⇀) for (A,B) ∈ F(⇀⇀⇀). We use N⇀⇀⇀

att := {i ∈ N | att ∈ (⇀i)} to denote the set of supporters of the

attack att in profile ⇀⇀⇀.

2Note that we assume that all agents report an attack-relation over the same set of arguments Arg. As argued by Coste-

Marquis et al. [8], generalisations, where different agents may be aware of different subsets of Arg, are possible and interesting,

but—in line with most existing work in the area—we shall not explore them here.
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Definition 5. Let q ∈ {1, . . . ,n}. The quota rule Fq with quota q accepts all those attacks that are

supported by at least q agents:

Fq(⇀⇀⇀) = {att ∈ Arg×Arg | #N⇀⇀⇀
att > q}

The weak majority rule is the quota rule Fq with q = ⌊n
2
⌋ and the strict majority rule is the quota rule

Fq with q = ⌈n
2
⌉. Two further quota rules are also of special interest. The unanimity rule only accepts

attacks that are supported by everyone, i.e., this is Fq with q = n. The nomination rule is the quota rule

Fq with q = 1. Despite being a somewhat extreme choice, the nomination rule has some intuitive appeal

in the context of argumentation, as it reflects the idea that we should take seriously any conflict between

arguments raised by at least one member of the group.

Definition 6. Let C ∈ 2N \ { /0} be a nonempty coalition of agents. The oligarchic rule FC accepts all

those attacks that are accepted by all members of C:

FC(⇀⇀⇀) = {att ∈ Arg×Arg |C ⊆ N⇀⇀⇀
att}

Thus, any member of the oligarchy C can veto an attack from being accepted. Observe that the una-

nimity rule can also be characterised as the oligarchic rule FC with C = N. A subclass of the oligarchic

rules are the dictatorships. The dictatorship of dictator i ∈ N is the oligarchic rule FC with C = {i}. Thus,

under a dictatorship, to compute the outcome, we simply copy the attack-relation of the dictator. Intu-

itively speaking, oligarchic rules, and dictatorships in particular, are unattractive rules, as they unfairly

exclude everyone not in C from the decision process.

Some rules combine features of the quota rules and the oligarchic rules. For example, we may choose

to accept an attack only if it is accepted by (i) a weak majority of all agents and (ii) a small number of

distinguished agents to which we want to give the right to veto attacks. Such rules (sometimes called

qualified majority rules) are certainly more attractive than the oligarchic rules, but they are still unfair in

the sense of granting some agents more influence than others.

Definition 7. Agent i∈N has veto powers under aggregation rule F, if F(⇀⇀⇀)⊆ (⇀i) for every profile ⇀⇀⇀.

Thus, under an oligarchic rule FC the agents in C, and only those, have veto powers. With the

exception of the unanimity rule, a quota rule does not grant veto powers to any agent.

3.2 Axioms

Next, we introduce some basic axioms, encoding intuitively desirable properties of an aggregation rule F:

Definition 8. F is anonymous, if F(⇀⇀⇀) = F(⇀π(1), . . . ,⇀π(n)) holds for all profiles ⇀⇀⇀ and all permu-

tations π : N → N.

Definition 9. F is neutral, if N⇀⇀⇀
att = N⇀⇀⇀

att′ implies att ∈ F(⇀⇀⇀)⇔ att′ ∈ F(⇀⇀⇀) for all profiles ⇀⇀⇀ and all

attacks att, att′.

Definition 10. F is independent, if N⇀⇀⇀
att = N⇀⇀⇀′′′

att implies att ∈ F(⇀⇀⇀) ⇔ att ∈ F(⇀⇀⇀′′′) for all profiles ⇀⇀⇀,

⇀⇀⇀′′′ and all attacks att.

Definition 11. F is monotonic, if N⇀⇀⇀
att ⊆ N⇀⇀⇀′′′

att (together with N⇀⇀⇀
att′ = N⇀⇀⇀′′′

att′ for all attacks att′ 6= att) implies

att ∈ F(⇀⇀⇀)⇒ att ∈ F(⇀⇀⇀′′′) for all profiles ⇀⇀⇀, ⇀⇀⇀′′′ and all attacks att.

Definition 12. F is unanimous, if F(⇀⇀⇀)⊇ (⇀1)∩·· ·∩ (⇀n) holds for all profiles ⇀⇀⇀= (⇀1, . . . ,⇀n).

Definition 13. F is grounded, if F(⇀⇀⇀)⊆ (⇀1)∪ ·· ·∪ (⇀n) holds for all profiles ⇀⇀⇀= (⇀1, . . . ,⇀n).
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Anonymity is a symmetry (and thus fairness) requirement regarding agents, and neutrality is a sym-

metry requirement regarding attacks. Independence expresses that whether an attack is accepted should

only depend on its supporters. Monotonicity says that additional support for an accepted attack should

never cause it to be rejected. Unanimity postulates that an attack supported by everyone must be accepted,

while groundedness means that only attacks with at least one supporter can be collectively accepted.3

We observe that all quota rules and all oligarchic rules are easily seen to be unanimous, grounded,

neutral, independent, and monotonic. The quota rules furthermore are also anonymous. In fact, it is not

difficult to adapt a well-known result from judgment aggregation to our setting [10], so as to see that the

quota rules are the only aggregation rules that satisfy all of these six axioms (see also [14]).

3.3 Preservation of Semantic Properties

Typically, agents will disagree about which attacks are justified. But even then, there may be high-

level agreement on certain features. For example, they may all agree that, under a particular semantics,

argument A is acceptable. Whenever we observe such agreement on semantic features in a profile, we

would like those features to be preserved under aggregation. Thus, for our example, under the same

semantics, we would like A to be acceptable also in the argumentation framework computed by our

aggregation rule. In other words, we are interested in the preservation of properties of argumentation

frameworks under aggregation. Formally, an AF-property P ⊆ 2Arg×Arg is simply the set of all attack-

relations on Arg that satisfy P. But in the interest of readability, we write P(⇀) rather than (⇀) ∈ P.

Definition 14. Let F be an aggregation rule and let P be an AF-property. We say that F preserves P, if

for every profile ⇀⇀⇀ we have that P(⇀i) being the case for all agents i ∈ N implies P(F(⇀⇀⇀)).

This notion of preservation is known under the name of collective rationality in other parts of social

choice theory [3, 14, 20].

We now review the specific AF-properties for which we study preservation in this paper. Two of them

we have already introduced in Section 2, namely acyclicity and coherence. They are attractive properties,

because—if satisfied by an argumentation framework—they reduce our dependence on a specific choice

of semantics, thereby making decisions less controversial.

Recall that the grounded extension may be empty, i.e., this semantics may not suggest any arguments

to be accepted. Thus, argumentation frameworks that satisfy the AF-property of nonemptiness of the

grounded extension are of particular interest.

Let A ∈ Arg be one of the arguments under consideration. Then, for any given argumentation frame-

work, A may or may not belong to the grounded extension. Thus, every A ∈ Arg defines an AF-property,

namely the property of membership of A in the grounded extension, i.e., of acceptance of A under the

grounded semantics. We say that F preserves argument acceptability under the grounded semantics, if

it is the case that, for all arguments A ∈ Arg, whenever A belongs to the grounded extension of 〈Arg,⇀i〉
for all i∈N, then A also belongs to the grounded extension of 〈Arg,F(⇀⇀⇀)〉. For the stable, preferred, and

complete semantics, we require a more refined definition, given that extensions under these semantics

need not be unique. We say that F preserves argument acceptability under the stable semantics, if it is

the case that, for all arguments A ∈ Arg, whenever A belongs to some stable extension of 〈Arg,⇀i〉 for all

agents i ∈ N, then A also belongs to some stable extension of 〈Arg,F(⇀⇀⇀)〉. The corresponding concepts

for the preferred and the complete semantics are defined accordingly.4

3Note that, in line with the existing literature in argumentation theory on the one hand and social choice theory on the other,

we use the term “grounded” in two unrelated ways in this paper (grounded extensions vs. grounded aggregation rules).
4A further distinction between acceptability in some extension and acceptability in all extensions would be possible. We

leave the investigation of this issue to future work.
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Rather than just preserving the acceptability status of a single argument, we may also be interested in

preserving entire extensions. For example, we say that F preserves extensions under the stable semantics,

if it is the case that, for all sets ∆⊆ Arg, whenever ∆ is a stable extension of 〈Arg,⇀i〉 for all agents i∈ N,

then ∆ is also a stable extension of 〈Arg,F(⇀⇀⇀)〉. Again, the corresponding concept can also be defined

for the other three semantics. Similarly, we say that F preserves conflict-freeness, if it is the case that, for

all sets ∆ ⊆ Arg, whenever ∆ is conflict-free in 〈Arg,⇀i〉 for all agents i ∈ N, then ∆ is also conflict-free

〈Arg,F(⇀⇀⇀)〉. Finally, preservation of admissibility is defined accordingly.

To summarise, we have identified the following AF-properties that, in case all agents agree on one

of them being satisfied, we would like to see preserved under aggregation:

• acyclicity and coherence (reducing semantic ambiguity),

• nonemptiness of the grounded extension (enabling a sceptical approach to argument evaluation),

• argument acceptability under different semantics (allowing for agreement on arguments even in

the face of disagreement on the attacks between them), and

• being an extension under one of the four semantics or being either a conflict-free or an admissible

set (also allowing for semantic agreement despite disagreement on attacks).

Example 2. Consider again the profile of Figure 1 and recall that the (weak or strict) majority rule

will return the argumentation framework with A ⇀ B, B ⇀ C, and C ⇀ A. Thus, the majority rule does

not preserve acyclicity.5 What about some of the other AF-properties? The grounded extension of AF1

is {A,C,D}, that of AF2 is {B,D}, that of AF3 is {A,D}, and that of the majority outcome is {D}.

Thus, preservation of both nonemptiness of the grounded extension and argument acceptability under

the grounded semantics are not violated by this particular example (which, of course, is not to say that

they might not be violated for other profiles). △

4 Preservation Results

In this section, we present our results on the preservation of semantic properties under aggregation. We

begin with argument acceptability, and then turn to the various properties of sets of arguments, and

eventually to acyclicity and coherence.

4.1 Acceptability of an Argument

Our first result is going to demonstrate that preserving acceptability of an argument when using a “sim-

ple” aggregation rule is impossible, unless we are willing to use a dictatorship. This is true under any of

the four semantics. To prove this result—and some of those that follow—we are going to use a technique

developed by Endriss and Grandi [14] for the more general framework of graph aggregation, which in

turn has been inspired by the seminal work on preference aggregation of Arrow [3]. It amounts to show-

ing that, under certain assumptions, the collection of coalitions of agents that are sufficiently powerful to

force collective acceptance of an attack must form an ultrafilter.

Using our present terminology, Endriss and Grandi [14, Theorem 18] show that, for |Arg| > 3, any

unanimous, grounded, neutral, and independent aggregation rule F that preserves some AF-property P

must be a dictatorship whenever P belongs to what they call the family of implicative and disjunctive

properties. P is implicative if there exist a set Att ⊆ Arg×Arg of attacks and three attacks att1,att2,att3 ∈
Arg×Arg\Att such that, for any S ⊆ {att1,att2,att3}, we have P(Att∪S) if and only if S 6= {att1,att2}.

5This observation is closely related to the famous Condorcet Paradox in the theory of preference aggregation [21].
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Thus, P should require that, in the context of Att, accepting att1 and att2 implies accepting att3 (and all

seven patterns of acceptance consistent with that requirement are possible). P is disjunctive if there exist

Att ⊆ Arg×Arg and att1,att2 ∈ Arg×Arg\Att such that, for any S ⊆ {att1,att2}, we have P(Att∪ S) if

and only if S 6= /0. Thus, P should require that, given Att, we must accept at least one of att1 and att2 (and

all three patterns of acceptance consistent with that requirement are possible).6

In the appendix, we show that, under any of the four semantics and for |Arg| > 4, the property of

argument acceptability is both implicative and disjunctive. Thus, we obtain the following impossibility

result, showing that there exists no aggregation rule that satisfies all of our requirements:

Theorem 1. Let P be the property of argument acceptability under either the grounded, the stable, the

preferred, or the complete semantics. For |Arg|> 4, any unanimous, grounded, neutral, and independent

aggregation rule F that preserves P must be a dictatorship.

This is bad news. For scenarios with |Arg| 6 3, we can do better and show that also the nomination

rule preserves argument acceptability. In the interest of space, we omit the details and also do not discuss

such boundary conditions for our remaining results.

4.2 Conflict-Freeness and Admissibility

Argument acceptability is a property that relates to a single argument. Next, we turn to properties that

relate to sets of arguments. Our most basic property of sets of arguments is preserved under essentially

all reasonable aggregation rules:

Theorem 2. Every aggregation rule F that is grounded preserves conflict-freeness.

Proof. Let F be an aggregation rule that is grounded. Consider any set ∆ ⊆ Arg and any profile ⇀⇀⇀ =
(⇀1, . . . ,⇀n) such that ∆ is conflict-free in 〈Arg,⇀i〉 for all i ∈ N. For the sake of contradiction, assume

∆ is not conflict-free in 〈Arg,F(⇀⇀⇀)〉, i.e., there exist two arguments A,B ∈ ∆ such that (A ⇀ B)∈ F(⇀⇀⇀).
Due to the groundedness of F , there then must be at least one agent i ∈ N such that also A ⇀i B, i.e., ∆

is not conflict-free in 〈Arg,⇀i〉 either, in contradiction to our original assumption.

For admissibility, we obtain a significantly less broad but still positive result. It shows that there

exists a reasonable rule that preserves the admissibility of arbitrary sets of arguments:

Theorem 3. For |Arg|> 4, the only unanimous, grounded, anonymous, neutral, independent, and mono-

tonic aggregation rule F that preserves admissibility is the nomination rule.

Proof. We first show that the nomination rule indeed preserves admissibility. So let F be the nomination

rule. Consider any set ∆ ⊆ Arg and any profile ⇀⇀⇀ = (⇀1, . . . ,⇀n) such that ∆ is admissible in AFi =
〈Arg,⇀i〉 for all i ∈ N. For the sake of contradiction, assume ∆ is not admissible in 〈Arg,F(⇀⇀⇀)〉, i.e.,

there is an argument A ∈ ∆ that, in F(⇀⇀⇀), is attacked by an argument B ∈ Arg\∆ and there does not exist

a C ∈ ∆ such that (C ⇀ B) ∈ F(⇀⇀⇀). As (B ⇀ A) ∈ F(⇀⇀⇀) and as F is grounded, we must have B ⇀i A

for some i ∈ N. And as there does not exist a C ∈ ∆ such that (C ⇀ A) ∈ F(⇀⇀⇀), given the definition of

the nomination rule, there cannot exist an argument C ∈ ∆ such that C ⇀i A for that same agent i. Hence,

∆ is not admissible in AFi, in contradiction to our original assumption.

We still need to show that there can be no other aggregation rule than the nomination rule that

preserves admissibility and that satisfies all of the axioms mentioned in the statement of Theorem 3.

6Our definitions of implicativeness and disjunctiveness are special cases of the more general definitions given by Endriss

and Grandi [14]. They simplify exposition and are sufficient for our purposes here.



Weiwei Chen and Ulle Endriss 125

A B

CD

A B

CD

A B

CD

q−1 agents 1 agent n−q agents

Figure 2: Profile used in the proof of Theorem 3.

By the characterisation result for quota rules due to Dietrich and List [10] in the context of judgment

aggregation, which has been adapted to graph aggregation by Endriss and Grandi [14] and which we

have briefly recalled near the end of Section 3.1, this claim is equivalent to the claim that no quota rule

Fq with a quota q > 1 always preserves admissibility. So let us prove this.

Consider the generic profile shown in Figure 2 (and note that q > 1 ensures q−1 > 0, i.e., there is at

least one agent of the first kind). The set {A,B,C} is admissible in all argumentation frameworks in such

a profile. But when we aggregate using a quota rule Fq with a quota q > 1, we obtain an argumentation

framework with a single attack D ⇀ A, which means that A cannot be part of any admissible set. Hence,

no such rule can preserve admissibility.

4.3 The Property of Being an Extension

We continue our examination of properties relating to sets of arguments and turn to the property of being

an extension of a given argumentation framework. The following result can again be proved by reference

to the result of Endriss and Grandi [14]:

Theorem 4. For |Arg|> 5, any unanimous, grounded, neutral, and independent aggregation rule F that

preserves grounded extensions must be a dictatorship.

The required proof of the fact that all three properties are both implicative and disjunctive can be

found in the appendix. We conjecture that Theorem 4 can be extended to the preferred and the com-

plete semantics. The added difficulty lies in the fact that these semantics admit multiple extensions.

Interestingly, for stable extensions we obtain a much more positive result:

Proposition 5. The nomination rule preserves stable extensions.

Proof. Let F be the nomination rule. Consider any set ∆ ⊆ Arg and any profile ⇀⇀⇀= (⇀1, . . . ,⇀n) such

that ∆ is stable in 〈Arg,⇀i〉 for all i ∈ N. According to Theorem 2, given that F is grounded, F preserves

conflict-freeness. Thus, ∆ is conflict-free in 〈Arg,F(⇀⇀⇀)〉.
What remains to be shown is that ∆ attacks every argument B ∈ Arg\∆. In case ∆ = Arg, the claim

holds vacuously. Otherwise, consider an arbitrary argument B ∈ Arg \∆. We need to show that B is

attacked by some argument in ∆ in F(⇀⇀⇀). Take the argumentation framework AFi = 〈Arg,⇀i〉 for some

i ∈ N. As ∆ is stable in AFi by assumption, there exists an argument A ∈ ∆ such that A ⇀i B. As F is the

nomination rule, we also get (A ⇀ B) ∈ F(⇀⇀⇀) as claimed.

4.4 Nonemptiness of the Grounded Extension

We have seen that preserving grounded extensions is impossible for reasonable aggregation rules (see

Theorem 4). What about the seemingly less demanding requirement of at least preserving nonemptiness
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of the grounded extension? The good news is that we can do better for this property. For instance, it

is easy to check that the unanimity rule preserves nonemptiness of the grounded extension. Still, as we

shall see next, we cannot do much better: only rules that grant veto powers to some agents will work.

Recall that the grounded extension is nonempty if an only if at least one argument is not attacked

by any other argument. Thus, this AF-property is about the absence of attacks, while the technique

we employed to prove Theorem 4 (and Theorem 1) exploits the presence of certain attacks. We are

now going to present our preservation result regarding the nonemptiness of the grounded extension as

a corollary to a more general theorem about the preservation of AF-properties that require the absence

of certain attacks. Let k ∈ N. Let us call an AF-property P k-exclusive if there exist k distinct attacks

att1, . . . ,attk ∈ Arg×Arg such that (i) {att1, . . . ,attk} ⊆ (⇀) for no attack-relation ⇀ with P(⇀), and

(ii) for every S ( {att1, . . . ,attk} there exists an attack-relation ⇀ such that S ⊆ (⇀) and P(⇀). Thus,

you cannot accept all k attacks, but you should be able to accept any proper subset of them. We are able

to prove the following powerful theorem (recall that n is the number of agents in N):

Theorem 6. Let k > n and let P be an AF-property that is k-exclusive. Then under any neutral and

independent aggregation rule F that preserves P at least one agent must have veto powers.

Proof. Let k > n, let P be an AF-property that is k-exclusive, and let F be an aggregation rule that is

neutral and independent. We need to show that, if F preserves P, then F must give some agents the

power to veto the collective acceptance of attacks.

First, observe that, if an aggregation rule F is neutral and independent, then we can describe F by

listing all the coalitions C ⊆ N for which it is the case that, whenever exactly the agents in C support an

attack att, then att must be collectively accepted. Indeed, independence says that acceptance of an attack

should only depend on its supporters, and neutrality adds that this dependence must be the same for all

attacks. More formally, there exists a family of winning coalitions W ⊆ 2N such that, for all profiles ⇀⇀⇀

and all potential attacks att ∈ Arg×Arg, the following relationship holds:

att ∈ F(⇀⇀⇀) if and only if N⇀⇀⇀
att ∈ W

Recall that i ∈ N having veto powers under F means that F(⇀⇀⇀)⊆ (⇀i) for every profile ⇀⇀⇀. We can

now show that an agent i ∈ N has veto powers, if she is a member of all winning coalitions:

i ∈
⋂

C∈W

C implies F(⇀⇀⇀)⊆ (⇀i) for all profiles ⇀⇀⇀

If
⋂

C∈W C = /0, then the above claim holds vacuously. Otherwise, take any attack att ∈ F(⇀⇀⇀). As

att got accepted, N⇀⇀⇀
att must be a winning coalition, i.e., N⇀⇀⇀

att ∈ W and therefore i ∈ N⇀⇀⇀
att . But this is just

another way of saying att ∈ (⇀i), so we are done.

Next, we are going to show that the fact that F preserves the k-exclusive AF-property P implies that

the intersection of any k winning coalitions must be nonempty:

C1 ∩ ·· ·∩Ck 6= /0 for all C1, . . . ,Ck ∈ W

For the sake of contradiction, assume there do exist winning coalitions C1, . . . ,Ck ∈ W such that

C1 ∩ ·· · ∩Ck = /0. We construct a profile ⇀⇀⇀ = (⇀1, . . . ,⇀n) with P(⇀i) for all i ∈ N as follows: for

every j ∈ {1, . . . ,k}, exactly the agents in C j accept attack att j (for all other attacks, it is irrelevant

which agents accept them). As no agent is a member of all k winning coalitions, no agent accepts all

k attacks, so this construction indeed is possible. However, as each of the k attacks is supported by a

winning coalition, they all get accepted, i.e., {att1, . . . ,attk} ⊆ F(⇀⇀⇀), meaning that the outcome does not

satisfy P. Thus, we have found a contradiction to our assumption of F preserving P and are done.
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Let us briefly recap where we are at this point. We know that F is characterised by a family of

winning coalitions W . We also know that C1 ∩·· ·∩Ck 6= /0 for all C1, . . . ,Ck ∈ W . We need to show that

some agents have veto powers, and we know that this is the case if we can prove that C(1)∩·· ·∩C(ℓ) 6= /0,

where {C(1), . . . ,C(ℓ)} is some enumeration of the coalitions in W . Thus, we are done, if we can show

that C1 ∩ ·· · ∩Ck 6= /0 for all C1, . . . ,Ck ∈ W implies C(1) ∩ ·· · ∩C(ℓ) 6= /0. We are going to prove the

contrapositive, namely that the following holds for some C1, . . . ,Ck ∈ W :

C(1)∩ ·· ·∩C(ℓ) = /0 implies C1 ∩ ·· ·∩Ck = /0

In words, we need to show that in case the intersection of all winning coalitions is empty, then so is

at least one intersection of just k winning coalitions.

Recall that we have assumed k > n. We construct a set W ′ ⊆ W of k (or fewer) winning coalitions

as follows. Initially, set W ′ := /0. Then, for every j from 1 to ℓ in turn, add C( j) to W ′ if and only if the

following condition is satisfied:7

(

C( j) ∩
⋂

C∈W ′

C

)

(

(

⋂

C∈W ′

C

)

Thus, every additional C( j) is selected only if it causes the removal of at least one further agent from

the intersection. As there are only n agents, we therefore will pick at most n coalitions. Hence, we

will indeed arrive at a family W ′ of n or fewer—and thus certainly at most k—winning coalitions, the

intersection of which is empty. This completes the proof.

It now suffices to show that the property of having a nonempty grounded extension is an |Arg|-
exclusive property to obtain the following result (the proof of this fact can be found in the appendix):

Theorem 7. If |Arg| > n, then under any neutral and independent aggregation rule F that preserves

nonemptiness of the grounded extension at least one agent must have veto powers.

It is not difficult to prove that the converse holds as well: all rules that grant veto powers to at least

one agent preserve nonemptiness of the grounded extension.

4.5 Acyclicity and Coherence

Finally, if we apply our techniques to the properties of acyclicity and coherence, we obtain the following

results (the proofs of which can be found in the appendix):8

Theorem 8. If |Arg| > n, then under any neutral and independent aggregation rule F that preserves

acyclicity at least one agent must have veto powers.

Theorem 9. For |Arg|> 4, any unanimous, grounded, neutral, and independent aggregation rule F that

preserves coherence must be a dictatorship.

Thus, surprisingly, even though acyclicity is a stronger property than coherence, it is easier to pre-

serve under aggregation.

7By convention, let
⋂

C∈ /0C = N, i.e., the intersection of no winning coalitions is defined as the universe N of all agents.
8Theorem 8 was anticipated in the work of Tohmé et al. [25], who make a similar claim, but without appealing to the

neutrality axiom. We stress that Theorem 8 cannot be strengthened by dropping neutrality. Indeed, there are rules that preserve

acyclicity, that are independent (but not neutral), and that do not give veto powers to any of the agents. An example, for

N = {1,2} and Arg = {A,B}, is the rule that accepts A ⇀ B if at least one agent does and that accepts B ⇀ A if both agents do.
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5 Related Work

In this section, we briefly review related work on the aggregation of abstract argumentation frameworks.

Coste-Marquis et al. [8] were the first to address this problem, but without making explicit reference to

social choice theory. Instead, they focus on aggregation rules that minimise the distance between the

input argumentation frameworks and the output argumentation framework.

Tohmé et al. [25] were the first to explicitly use social choice theory to analyse the aggregation of

argumentation frameworks. Their focus is on the preservation of acyclicity and they show that qualified

majority rules (which grant veto powers to some agents) will always preserve this property.

Dunne et al. [13] define several preservation requirements on aggregation rules that directly refer to

the semantics of the argumentation frameworks concerned. This includes variants of what we call preser-

vation of extensions (“σ -unanimity”) and preservation of argument acceptability (“credulous acceptance

unanimity”). Their focus is on analysing the computational complexity of deciding whether a given ag-

gregation rule has a given property, rather than on the axiomatic method. In follow-up work, Delobelle

et al. [9] establish for several concrete rules whether or not they satisfy the preservation requirements

introduced by Dunne et al. [13].

While Endriss and Grandi [14] explicitly mention abstract argumentation as a possible domain of

application for the model of graph aggregation they develop, they do not present any technical results

related to argumentation.

Airiau et al. [1] introduce the concept of the rationalisability of a profile of argumentation frame-

works. A profile is rationalisable if the diversity of views it contains can be explained in terms of (i) an

underlying factual argumentation framework shared by all agents and (ii) everyone’s individual prefer-

ences. Thus, their work is concerned with understanding what kind of profiles a good aggregation rule

should be able to deal with, rather than with aggregation itself.

Finally, social choice theory has also been used to analyse the aggregation of different extensions for

one argumentation framework see, (e.g., [7, 24]). We note that this problem is different from the one

studied here and refer to the survey by Bodanza et al. [5] for a comparison.

6 Conclusion

Using a variety of techniques, we have attempted to paint a clear picture of the capabilities and limitations

of simple aggregation rules regarding the preservation of properties related to the semantics of abstract

argumentation frameworks. While the significance of this issue and the promise of social choice theory

for its resolution have previously been emphasised in the work of several authors [5, 9, 13, 25], this is

the first systematic analysis of its kind. Our results show that only the most basic of properties, namely

conflict-freeness, is preserved by essentially all rules. More demanding properties require either the

nomination rule, a rule granting some agents veto powers, or a rule that is dictatorial.

We stress that these results only apply to simple rules, in particular, to rules that satisfy the axiom of

independence. An alternative route, the one chosen by Coste-Marquis et al. [8], is to use distance-based

rules (which violate independence). Such rules can be designed so as to guarantee specific properties of

the outcome, so the question of preservation does not arise. On the downside, distance-based rules are

computationally intractable [15, 18, 19]. We also stress that our results are based on the assumption that

all agents report attack-relations over a single common set of arguments. Richer models, where different

agents may be aware of different sets of arguments, are clearly of great interest as well.

There are multiple directions in which to extend this work. First, our conjecture regarding the preser-
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vation of preferred and complete extensions should get settled. Second, one could study further proper-

ties of argumentation frameworks. We have already hinted at the possibility of distinguishing between

argument acceptability in some extensions (the property studied in this paper) and argument acceptabil-

ity in all extensions. Third, we should eventually go beyond the four classical semantics introduced by

Dung [11] and also consider others, such as the semi-stable semantics [6] or the ideal semantics [12].

Fourth, one could vary the axioms imposed on aggregation rules. The most immediately promising

direction here would be to investigate whether neutrality can be replaced by additional preservation

requirements, in analogy to results in preference and graph aggregation [3, 14]. Finally, it would be in-

teresting to investigate the strategic incentives of agents who are reporting an argumentation framework

to an aggregation rule and whose objective might be to get a certain argument accepted.
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Figure 3: Scenarios used in the proof of Theorem 1.

S ⊆ {att2,att3}, then C is not attacked by any other argument. If S = {att1} or S = {att1,att3}, then

C is defended by D, which is not attacked by any other argument. If S = {att1,att2,att3}, then C is

defended by A, which is not attacked by any other argument. Thus, in all of these seven cases, either C

is not attacked by any other argument or it is defended by an argument that is not attacked by any other

argument, i.e., in all cases C is acceptable under the grounded, the stable, the preferred, and the complete

semantics. On the other hand, if S = {att1,att2}, then {B,C,D} forms an isolated odd-length cycle. This

means that all of B, C, and D will be unacceptable under the grounded, the stable, the preferred, and the

complete semantics. We have thus found a set of attacks Att and three individual attacks att1, att2, att3
such that P(Att∪S) if and only if S 6= {att1,att2}. Hence, P is an implicative AF-property.

Next, we show that P is also disjunctive. Let D be the argument under consideration. Let Att =
{C ⇀ D}, att1 = A ⇀C, and att2 = B ⇀C. This scenario is depicted on the righthand side of Figure 3.

Consider all argumentation frameworks 〈Arg,Att ∪ S〉 with S ⊆ {att1,att2}. If S = {att1}, then D is

defended by A. If S = {att2}, then D is defended by B. If S = {att1,att2}, then D is defended by both

A and B. In all three cases, D is defended by some argument that is not attacked by any other argument.

Thus, D is acceptable under each of our four semantics. However, if S = /0, then D is attacked by C and

not defended by any other argument, which means that D is unacceptable under all four semantics. To

summarise, we have seen that P(Att∪S) if and only if S 6= /0. Hence, P is a disjunctive AF-property. �

Proof of Theorem 4

Recall that we need to show that, for |Arg|> 5, the property P of being a grounded extension is an AF-

property that is both implicative and disjunctive. In fact, as we shall see, we can show disjunctiveness

even in case |Arg| > 4. Let Arg = {A,B,C,D,E, . . .}. For the proofs of both properties, we focus on

∆ = {A,C,E} as the subset of arguments that may (or may not) form the grounded extension.

We first show that P is implicative. Let Att = {A ⇀ B,C ⇀ D}, att1 = B ⇀ C, att2 = D ⇀ A, and

att3 = E ⇀ D. This scenario is depicted on the lefthand side of Figure 4. Consider all argumentation

frameworks of the form AF = 〈Arg,Att∪ S〉 with S ⊆ {att1,att2,att3}, and for each of them the corre-

sponding characteristic function fAF. If S = {att1}, then fAF( /0) = {A,E}, f 2
AF( /0) = {A,C,E} = ∆, and

f 3
AF( /0) = f 2

AF( /0). Thus, the grounded extension is ∆ in this case. Using the same kind of reasoning,

it is easy to verify that the grounded extension is ∆ whenever S 6= {att,att2}. On the other hand, if

S = {att1,att2}, then we get fAF( /0) = {E} and f 2
AF( /0) = fAF( /0), i.e., the grounded extension now is {E}.

Thus, for our argumentation framework to have ∆ as its grounded extension, we must insist that, if both

att1 and att2 are accepted, then also att3 is accepted. Hence, P is implicative.

Next, we show that P is also a disjunctive AF-property. Let Att = {A ⇀ B,B ⇀ C,C ⇀ D,D ⇀

A}, att1 = E ⇀ B, and att2 = E ⇀ D. This is shown on the righthand side of Figure 4. Consider

AF = 〈Arg,Att∪ S〉 with S ⊆ {att1,att2}. If S = {att1}, then fAF( /0) = {E}, f 2
AF( /0) = {C,E}, f 3

AF( /0) =
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Figure 4: Scenarios used in the proof of Theorem 4.

{A,C,E) = ∆, and f 4
AF( /0) = f 3

AF( /0), i.e., ∆ is the grounded extension of AF. By analogous reasoning,

∆ is the grounded extension also for S = {att2} and for S = {att1,att2}. However, for S = /0, we get

fAF( /0) = {E} and f 2
AF( /0) = fAF( /0), i.e., the grounded extension now is just {E}. Thus, ∆ is the grounded

extension if and only if S 6= /0, meaning that att1 or att2 are accepted. Hence, P is disjunctive. �

Proof of Theorem 7

To obtain the claim as a corollary to Theorem 6, we need to show that the property of an argumentation

framework having a nonempty grounded extension is a k-exclusive AF-property for k = |Arg|. Recall

that having a nonempty grounded extension is equivalent to the property of having at least one argument

that is not attacked by any other argument. We are going to show that the latter property is k-exclusive

for k = |Arg|.

So let k = |Arg|. Take an arbitrary enumeration {A(1), . . . ,A(k)} of Arg and consider the set of attacks

{att1, . . . ,attk} with atti := A(i) ⇀ A(i+1) for i < k and attk := A(k) ⇀ A(1). Clearly, this set of attacks

meets our requirements: (i) if {att1, . . . ,attk} ⊆ (⇀), then ⇀ does not have the property of leaving at

least one argument without an attacker and (ii) for every S( {att1, . . . ,attk} there exists an attack-relation

⇀ with S ⊆ (⇀), namely S itself, that does leave one argument without an attacker. �

Proof of Theorem 8

Recall that, if we can show that acyclicity is an |Arg|-exclusive AF-property, then the claim follows

from Theorem 6. In fact, it is straightforward to show that acyclicity is a k-exclusive property for every

k ∈ {2, . . . , |Arg|}. To see this, consider the case where the attacks {att1, . . . ,attk} form a cycle, and

observe that the shortest (proper) cycle has length 2, while the longest cycle visits every argument exactly

once and thus has length |Arg|. �

Proof of Theorem 9

Recall that we need to show that, for |Arg|> 4, coherence is an AF-property that is both implicative and

disjunctive. Let P represent coherence and let Arg = {A,B,C,D, . . .}.

Let us first show that P is an implicative AF-property. Let Att = {D ⇀ B}, att1 = B ⇀ C, att2 =
C ⇀ D, and att3 = A ⇀ B. This scenario is shown on the lefthand side of Figure 5 and is identical to

the scenario used in the proof of Theorem 1. Now consider argumentation frameworks 〈Arg,Att∪ S〉
with S ⊆ {att1,att2,att3}. If either S = {att1}, S = {att3}, S = {att1,att3} or S = /0, the only preferred

extension is {A,C,D}, which is also stable. If S = {att2}, the only preferred extension is {A,B,C},

which is also stable. If S = {att2,att3} or S = {att1,att2,att3}, the only preferred extension is {A,C}
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Figure 5: Scenarios used in the proof of Theorem 9.

which once again also is stable. Thus, in all seven cases, AF is coherent. However, if S = {att1,att2},

the only preferred extension is {A}, which is not stable, as B, C, and D are not attacked by A. We have

thus found a set of attacks Att and three individual attacks att1, att2, att3 such that P(Att∪S) if and only

if S 6= {att1,att2}. In other words, P is an implicative AF-property.

Next, we show that P is also a disjunctive AF-property. Let Att = {B ⇀ C,C ⇀ D,D ⇀ B},

att1 = A ⇀ B, and att2 = A ⇀ D. This scenario is shown on the righthand side of Figure 5. Con-

sider argumentation frameworks 〈Arg,Att∪S〉 with S ⊆ {att1,att2}. If S = {att1} or S = {att1,att2}, the

only preferred extension is {A,C}, which is also stable. If S = {att2}, the only preferred extension is

{A,B}, which again is also stable. Thus, in all three cases every preferred extension is stable, i.e., AF is

coherent. On the other hand, if S = /0, then the only preferred extension is {A}, which is not stable, as B,

C, and D not attacked by A. To summarise, P(Att∪S) if and only if S 6= /0. Hence, P is disjunctive. �
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