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Much of the theoretical work on strategic voting makes strong assumptions about what voters know
about the voting situation. A strategizing voter is typically assumed to know how other voters will
vote and to know the rules of the voting method. A growing body of literature explores strategic
voting when there is uncertainty about how others will vote. In this paper, we study strategic voting
when there is uncertainty about the voting method. We introduce three notions of manipulability
for a set of voting methods: sure, safe, and expected manipulability. With the help of a computer
program, we identify voting scenarios in which uncertainty about the voting method may reduce or
even eliminate a voter’s incentive to misrepresent her preferences. Thus, it may be in the interest of
an election designer who wishes to reduce strategic voting to leave voters uncertain about which of
several reasonable voting methods will be used to determine the winners of an election.

1 Introduction

A well-known fact in the study of voting methods is that strategic voting cannot be avoided (see, e.g.,
[35, 21]). A voter has an incentive to vote strategically, or manipulate, if she will achieve a prefer-
able outcome by misrepresenting her true preferences about the candidates. There are two fundamental
results showing that every reasonable voting method is susceptible to strategic voting. The Gibbard-
Satterthwaite theorem [13, 32] shows that every voting method for three or more candidates that is reso-
lute (i.e., always elects a single winner), unanimous (i.e., never elects a candidate y if all voters rank an-
other candidate x above y), and non-dictatorial (i.e., does not always elect the favorite candidate of some
distinguished voter) can be manipulated. To study strategizing for irresolute voting methods, which may
select more than one candidate as a winner, additional assumptions are needed about the voters’ rankings
of sets of candidates. The Duggan-Schwartz theorem [9] shows that every voting method—whether res-
olute or irresolute—for three or more candidates that is non-imposed (i.e., any candidate can be elected)
and has no nominator (i.e., no voter can always ensure that her top ranked candidate is among the set of
winners) can be manipulated by a optimist or pessimist, defined as a voter who compares sets of candi-
dates in terms of her highest (resp. lowest) ranked candidate in each set. Related results by Kelly [19],
Benoit [2], Feldman [11], and Gärdenfors [12], among others, show that manipulation is unavoidable
under different assumptions about how to lift a voter’s ranking of candidates to sets of candidates.

In the theorems mentioned above, a voter’s decision to manipulate relies on strong assumptions about
what the voter knows about the voting situation. Two key assumptions are: (1) the strategizing voter
knows how the other voters in the population will vote or have voted; (2) the strategizing voter knows
and understands the rules of the voting method. There is a growing body of literature that explores
weakening assumption (1) [6, 27, 5, 22, 30, 36]. One reason voters may be uncertain about how other
voters will vote, even if they know other voters’ true preferences, is because they think that other voters
might be voting strategically. There are sophisticated game-theoretic models that explore the implications
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of weakening assumption (1) for this reason (consult part II of [21] for an overview of this literature).
Whatever the reason, when voters have partial information about how other voters will vote, the decision
about whether to manipulate is more complicated, since voters are uncertain about which sets of winners
will result from their decision to manipulate. One natural assumption is that voters are risk averse and
only strategize when doing so cannot lead to a worse outcome (according to their true preferences) and
might lead to a better outcome [6] (cf. [30] for other assumptions about how voters decide to strategize).

The potentially negative aspects of strategic voting (see, e.g., [31, 7]) have motivated the search
for barriers against manipulation.1 One potential barrier, investigated mostly in the AI literature, is the
computational complexity of determining a profitable manipulation for a given voting method (see, e.g.,
[10, 7]). In this paper, we will investigate another potential barrier against strategic voting: adding
uncertainty about the voting method that will be used to determine the set of winners. Thus, we weaken
assumption (2) above. Suppose that S is a set of voting methods. We assume that the voters know that
one of the methods from S will be used to select the winners, but they do not know which one—hence
we call S the uncertainty set. To simplify the initial study, in this paper we assume that a strategizing
voter knows how the other voters will vote or have voted. This assumption is not unrealistic in certain
voting situations; for example, in a hiring committee meeting in which committee members are asked
to sequentially report their rankings of job candidates, the committee member last in the sequence will
already know how all the other members have ranked the candidates.

As in the situation where a voter has partial information about how other voters will vote, in the
situation where a voter has uncertainty about the voting method, the voter must take into account different
possible winning sets of candidates when deciding whether to strategize. Given a ranking of sets of
candidates, we consider three ways for a voter to solve this decision problem. From the most conservative
to the least conservative, the three types of manipulation are:

1. Sure manipulation: It is certain that submitting an insincere ranking will lead to a better outcome
no matter which voting method is used.

2. Safe manipulation: It is certain that submitting an insincere ranking will lead to an outcome that is
at least as good and might lead to a better outcome.2

3. Expected manipulation: Given a probability distribution on the set of voting methods, submitting
an insincere ranking is more likely to lead to a better outcome than to lead to a worse outcome.

We aim to find combinations of voting methods that reduce or even eliminate a voter’s incentive to
strategize (given one of the above notions of manipulation and a ranking of sets of candidates). That is,
does uncertainty about the voting method reduce the chance that voters will strategize?

If so, it may be in the interest of an election designer who wishes to reduce strategic voting to
leave voters uncertain about which of several voting methods will be used to determine the winners of
an election. Though perhaps implausible in the case of a democratic political election, creating such
uncertainty does not seem an implausible choice by, e.g., the Chair of a hiring committee. Moreover, if
committee members judge each of the possible voting methods to be reasonable and also wish to reduce
strategic voting, they may well endorse the choice of the Chair to create such uncertainty.3

1It has been argued that strategic voting also has positive aspects (see, e.g., [8]). In this paper, we will not debate whether the
negative aspects outweigh the positive. Our point is about what barriers are available if one wishes to reduce strategic voting.

2In [17] and [34] the term ‘safe manipulation’ is used in a different sense and in a different context involving manipulation
by coalitions of voters.

3Naturally, the Chair should be required to fix the voting method to be used before seeing the votes, so that the Chair cannot
pick the voting method that produces his or her favored outcome based on the already submitted votes.
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Another way that voters may be uncertain about the outcome of an election is that a voting method
may use randomization to select the winners. A probabilistic voting method assigns a lottery over the set
of candidates to each collection of rankings of the candidates for the voters (see [4] for a recent survey
of results about probabilistic voting methods). Gibbard [14] noted that a random dictatorship is immune
to strategizing.4 Suppose that S is a set of dictatorships—one for each voter. After the voters submit
their rankings, one of the dictatorships in S is chosen, and the candidate ranked first by the dictator is
selected as the winner. Assuming voters submit rankings of the candidates without ties, this method
always selects a single winner. It is clear that no voter has an incentive to misrepresent their top choice,
since either they will not be chosen as the dictator, in which case their ranking will be ignored, or they
will be chosen as the dictator, in which case their top choice is guaranteed to win. Of course, each
dictatorship is immune to strategizing by itself. Beyond this example of random dictatorship, there are
general results suggesting that randomization can be an effective barrier to manipulation [26, 1].

The relationship between our work and probabilistic voting methods is clarified at the end of this
paper. In short, although any uncertainty set S of voting methods determines a probabilistic voting
method FS, none of our three notions of manipulation above with respect to S is equivalent to a standard
notion of manipulation with respect to the probabilistic voting method FS. In addition, since the mapping
S 7→ FS from uncertainty sets of voting methods to probabilistic voting methods is not one-to-one, there
is no obvious definition of sure, safe, or even expected manipulation for probabilistic voting methods
such that for any uncertainty set S of voting methods, S is susceptible to sure/safe/expected manipulation
if and only if FS is susceptible to sure/safe/expected manipulation. Thus, there is no obvious way to
reframe our investigation purely in the language of probabilistic voting methods.

Both our approach and that of probabilistic voting methods involve a loss of transparency at the time
of the vote. However, the approaches seem to differ in the explainability of the outcome after the vote.
In our approach, the election designer may simply inform voters after the vote of which voting method
f from S was used to determine the outcome of the election, so the algorithm for f can be used to
explain why the election had one outcome rather than another. This may be a more intelligible reason for
voters than “this was the outcome of the lottery.” Abstractly, the difference is that in our setting, initially
the voters have subjective uncertainty about which deterministic mechanism will be used; but after this
subjective uncertainty is removed, there is an explanation of why the election had one outcome rather
than another in terms of the deterministic mechanism applied to the voters’ inputs.5 By contrast, with a
probabilistic voting method, the only available “explanation” of the outcome is in terms of an inherently
stochastic mechanism applied to the voters’ inputs, which may fail to explain why the election had one
outcome rather than another with non-zero probability (cf. [18, p. 24], [29, p. 238]).6 Of course, whether
such a contrastive explanation is desirable may vary from case to case.

Our findings in this paper are of two main types: analytic results with mathematical proofs and data
from computer searches. For these searches we generalize to sets of voting methods a standard index
of manipulability for a single voting method, known as the Nitzan-Kelly index [25, 20], which gives
the percentage of profiles with n candidates and m voters in which at least one voter in the profile has

4Cf. [16], where voters are assumed to submit utility functions over the set of candidates. In this paper, we restrict attention
to the case where voters submit rankings of the candidates.

5That the voters have subjective uncertainty about which method in S will be used does not imply that the election designer
uses a chance process to determine which method will be used. As in standard voting theory, we make no assumption about
how the election designer chooses the voting method, whether by randomization, consideration of axiomatic properties, etc.

6In the case where f is an irresolute voting method that outputs a winning set X of candidates in a given election, a single
winner may be chosen by lottery; but still we have an explanation in terms of the algorithm for f of why the field was narrowed
to X rather than some other winning set before applying tiebreaking.
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an incentive to manipulate. In probabilistic terms, assuming the Impartial Culture Model [15] in which
every profile is equally probable, this index gives the probability that in a randomly chosen profile, at
least one voter has an incentive to manipulate. Similarly, we report data on the percentage of profiles in
which at least one voter has an incentive to manipulate against a set S of voting methods. All of the data
in the paper were produced by a Python script available at https://github.com/epacuit/strategic-voting.

The rest of the paper is organized as follows. The next section introduces our formal framework,
including the definitions of the voting methods we study in this paper. The three notions of manipulation
are studied in Sections 3, 4, and 5, respectively. Section 6 discusses the connections with probabilistic
social choice. Finally, in Section 7 we conclude with some pointers to future work.

2 Preliminaries

Let C be a nonempty finite set of candidates and V a nonempty finite set of voters. We use lower case
letters from the beginning and end of the alphabet a,b,c, . . . ,x,y,z, . . . for elements of C and lower case
letters from the middle of the alphabet i, j,k, . . . for elements of V .

A voter’s ranking of the set of candidates is a strict linear order P on C. Let L(C) be the set of all
strict linear orders on C. For P ∈ L(C) and X ⊆ C, let max(X ,P) be the maximally ranked element of
X , i.e., max(X ,P) = y where for all x ∈ X , if x 6= y, then y P x (such an element always exists since P
is assumed to be a strict linear order). Similarly, let min(X ,P) be the minimally ranked element of X ,
i.e., min(X ,P) = y where for all x ∈ X , if x 6= y, then x P y. We say y ∈ C is ranked rth by P when
|{x ∈C | x P y}|= r−1.7 So, for example, y is ranked 1st by P if and only if max(C,P) = y. To simplify
our notation, we specify a ranking by simply listing candidates from highest to lowest in the ranking,
e.g., abcd for the ranking a P b P c P d.

A profile P for (C,V ) is an element of L(C)V , i.e., a function assigning to each i ∈ V a relation
Pi ∈ L(C). If |C| = n and |V | = m, we call a profile for (C,V ) an (n,m)-profile. A pointed profile for
(C,V ) is a pair (P, i) where P is a profile and i ∈ V . For x,y ∈C, let P(x,y) = {i ∈ V | xPiy}. We write
NP(x,y) for the number of voters in P ranking x above y, i.e., NP(x,y) = |P(x,y)|. We say that a majority
prefers x to y in P, denoted x >M

P y, when NP(x,y) > NP(y,x). Let NetP(x,y) = NP(x,y)−NP(y,x). So
x >M

P y if and only if NetP(x,y) > 0. Finally, from the strict linear order Pi we define the weak relation
Ri by xRiy iff xPiy or x = y.

A voting method for (C,V ) is a function assigning a nonempty subset of candidates, called the win-
ning set, to each profile, i.e., f : L(C)V →℘(C) \ {∅}. The following are the voting methods we will
discuss in this paper (also see, e.g., [28]).

(1) Positional scoring rules: Suppose 〈s1,s2, . . . ,sm〉 is a vector of numbers, called a scoring vector,
where for each l = 1, . . . ,m−1, sl ≥ sl+1. Suppose P∈ L(C). The score of x∈C given P is score(P,x)= sr

where r is the rank of x in P. For each profile P and x∈C, let score(P,x) =∑
n
i=1 score(Pi,x). A positional

scoring rule for a scoring vector~s assigns to each profile P the set of candidates that maximize their score
according to~s in P. That is, a voting method f is a positional scoring rule for a scoring vector~s provided
that for all P ∈ L(C)V , f (P) = argmaxx∈Cscore(P,x). We study two such rules:

Borda: the positional scoring rule for 〈n−1,n−2, . . . ,1,0〉.
Plurality: the positional scoring rule for 〈1,0, . . . ,0〉.
(2) The Condorcet winner in a profile P is a candidate x ∈ C that is the maximum of the majority

ordering, i.e., for all y ∈C, if x 6= y, then x >M
P y. The Condorcet voting method is:

7As usual, for a set A, |A| is the number of elements in A.

https://github.com/epacuit/strategic-voting
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Condorcet(P) =

{
{x} if x is the Condorcet winner in P
C if there is no Condorcet winner.

(3) The win-loss record for a candidate x ∈C in a profile P is the number of candidates z such that
a majority prefers x to z in P minus the number of candidates z such that a majority prefers z to x in P.
Formally, for each P and x∈C, let wlP(x) = |{z | NetP(x,z)> 0}|−|{z | NetP(z,x)> 0}|. The Copeland
winners are the candidates with maximal win-loss records: Copeland(P) = argmaxx∈C(wlP(x)).

(4) The support for a candidate x ∈C in a profile P is found by calculating for each candidate y 6= x
the number of voters who rank x above y and then taking the minimum of these values. Formally, for
each P and x∈C, let supp(x,P) = min({NP(x,y) | y∈C,y 6= x}). The MaxMin (also known as Simpson’s
Rule) winners are the candidates with maximal support: MaxMin(P) = argmaxx∈C(supp(x,P)).

(5) PluralityWRunoff: Calculate the plurality score for each candidate—the number of voters
who rank the candidate first. If there are 2 or more candidates with the highest plurality score, remove
all other candidates and select the Plurality winners from the remaining candidates. If there is one
candidate with the highest plurality score, remove all candidates except the candidates with the highest
or second-highest plurality score, and select the Plurality winners from the remaining candidates.

(6) Hare: Iteratively remove all candidates with the fewest number of voters who rank them first,
until there is a candidate who is a majority winner, i.e., ranked first by a majority of voters. If, at some
stage of the removal process, all remaining candidates have the same number of voters who rank them
first (so all candidates would be removed), then all remaining candidates are selected as winners.

(7) Coombs: Iteratively remove all candidates with the most number of voters who rank them last,
until there is a candidate who is a majority winner. If, at some stage of the removal process, all remaining
candidates have the same number voters who rank them last (so all candidates would be removed), then
all remaining candidates are selected as winners.

(8) Baldwin: Iteratively remove all candidates with the smallest Borda score, until there is a single
candidate remaining. If, at some stage of the removal process, all remaining candidates have the same
Borda score (so all candidates would be removed), then all remaining candidates are selected as winners.

(9) Rather than removing candidates with the lowest Borda score, the next two methods remove all
candidates who have a Borda score below the average Borda score for all candidates. There are two
versions of this voting method [24]: StrictNanson iteratively removes all candidates whose Borda

score is strictly smaller than the average Borda score (of the candidates remaining at that stage), until
one candidate remains. WeakNanson iteratively removes all candidates whose Borda score is less than or
equal to the average Borda score (of the candidates remaining at that stage), until one candidate remains.
If, at some stage of the removal process, all remaining candidates have the same Borda score (so all
candidates would be removed), then all remaining candidates are selected as winners.
Definition 2.1. Let Methods be the set of 11 voting methods described above.

We are interested in situations in which the strategizing voter is uncertain about which voting method
will be used to determine the winner(s). As noted in Section 1, we represent such uncertainty by a set S
of voting methods, called the uncertainty set. This is the set of voting methods f such that it is consistent
with the strategizing voter’s knowledge that f will be used.

Each of the above methods may select more than one winner for a given profile. Thus, to discuss
strategizing, one needs a notion of when one set of candidates is “preferable” to another for a particular
voter. The following are the standard notions from the literature on strategic voting (see, e.g., [35]).
Definition 2.2. Let P be a profile, i∈V , and X ,Y ⊆C. We define the following dominance notions, each
of which has a nonstrict (≥) and strict (>) version:
weak: (a) X ≥weak

Pi
Y iff ∀x ∈ X ∀y ∈ Y : xRiy; (b) X >weak

Pi
Y iff X ≥weak

Pi
Y and ∃x ∈ X ∃y ∈ Y : xPiy.
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optimistic: (a) X ≥Opt
Pi

Y iff max(X ,Pi) Ri max(Y,Pi); (b) X >Opt
Pi

Y iff max(X ,Pi) Pi max(Y,Pi).
pessimistic: (a) X ≥Pes

Pi
Y iff min(X ,Pi) Ri min(Y,Pi); (b) X >Pes

Pi
Y iff min(X ,Pi) Pi min(Y,Pi).

3 Sure manipulation

If a voter is uncertain about which voting method from a set S of voting methods will determine the
winners of an election, the most conservative approach to strategic voting is to submit an insincere
ranking if and only if the voter is sure that by doing so, the set of winners will be strictly better from the
point of view of her true ranking (and the relevant dominance notion) no matter which voting method
from S is used. This approach is appropriate when there is a cost to submitting an insincere ranking
that a voter is only willing to incur if it will surely improve the set of winners. For example, in the
context of a hiring committee in which committee members know each other’s true preferences over the
candidates, e.g., through deliberation, there may be a social cost in submitting an insincere ranking of the
candidates, which a committee member is willing to bear only if doing so is sure to result in a preferable
set of winners. These considerations motivate the following definition.

Definition 3.1. Let (P, i) be a pointed profile, ∆ a dominance notion, and S a set of voting methods. We
say that (P, i) witnesses sure ∆-manipulability for S if and only if there is a profile P′ differing from P only
in i’s ranking such that ∀ f ∈ S : f (P′)>∆

Pi
f (P). We then say that (P, i) witnesses sure ∆-manipulability

for S by transitioning to P′ and that i has a sure ∆-manipulation incentive under S to transition to P′. A
profile P witnesses sure ∆-manipulability for S if and only if there is an i ∈ V such that (P, i) witnesses
sure ∆-manipulability for S. Finally, we say that S is susceptible to sure ∆-manipulation for (n,m) if and
only if there is an (n,m)-profile P that witnesses sure ∆-manipulability for S.

As an initial example, consider the Borda method. Recall that Borda is not resolute, so the Borda

winning set for a particular profile may contain multiple candidates. To obtain a resolute method from
an irresolute method f such as Borda, we may fix a tiebreaking mechanism, understood as a strict linear
order L on C, and define fL to be the resolute voting method defined by fL(P) = max( f (P),L). An
especially natural example of uncertainty about the voting method arises when there is uncertainty about
the tiebreaking mechanism to be used for a fixed voting method. Moreover, such uncertainty can be a
barrier to sure manipulation. For example, for n = 3, {Borda} is susceptible to sure weak dominance
manipulation, but this is not so when there is complete uncertainty about the tiebreaking mechanism.

Proposition 3.2. For any m≥ 4, {BordaL | L a linear order on C} is not susceptible to sure weak domi-
nance manipulation for (3,m).

Proof. Suppose for contradiction that there is a pointed profile (P, i) that witnesses sure weak dominance
manipulation for S = {BordaL | L a linear order on C} by transitioning to P′. By the choice of S, it
follows that (i) every candidate in the Borda winning set for P′ is strictly preferred according to Pi to
every candidate in the Borda winning set in P. Let i’s ranking of the candidates in P be αβγ .

First, the Borda winning set in P cannot contain α . For if it does, then there is no incentive to manip-
ulate under Bordaα>β>γ or Bordaα>γ>β , contradicting sure weak dominance manipulation. Second, the
Borda winning set in P cannot contain γ . For if it does, then by (i), the Borda winning set in P′ cannot
contain γ; but there is no P′ differing from P only in i’s ranking such that γ is in the Borda winning set
in P but not in the Borda winning set in P′. Finally, we claim that the Borda winning set in P cannot be
{β}. Suppose it is. By (i), the Borda winning set in P′ cannot contain β or γ , so it must be {α}. But this
contradicts the fact that for 3 candidates, Borda is not single-winner manipulable [35, p. 57]. Having
ruled out all possible Borda winning sets in P, we obtain a contradiction.
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In this paper, we will focus on the case where S contains different voting methods, as in the following
example, rather than the same voting method with different tiebreaking rules.

Example 3.3. Consider the following (3,4)-profile P for C = {a,b,c} and V = {1,2,3,4}:

1 2 3 4
a b c c
b c a b
c a b a

The winning sets for the voting methods are:

• {c} for Borda, Copeland, Hare, WeakNanson, Plurality,
PluralityWRunoff;

• {b,c} for Baldwin, Coombs, MaxMin, and StrictNanson.

If candidate 1 changes her ranking to bac, then all the methods select the winning set {b,c}. Suppose
that ∆ is either weak or optimistic dominance. Since {b,c}>∆

P1
{c}, (P,1) witnesses sure ∆-dominance

manipulability for any nonempty subset of methods from {Borda, Copeland, Hare, WeakNanson,
Plurality, PluralityWRunoff}. Since {b,c} 6>∆

P1
{b,c}, this pointed profile (P,1) does not wit-

ness sure ∆-dominance manipulability for any set of voting methods that contains one or more of the
following methods: Baldwin, Coombs, MaxMin, StrictNanson. Of course, there may be other pointed
profiles witnessing sure ∆-manipulation for sets of methods containing one of these methods.

The above profile P does not witness sure pessimist manipulation for any set of voting methods. But
the following profile P′ witnesses sure pessimist manipulation:

1 2 3 4
a a b c
b c a b
c b c a

The winning sets for the voting methods are:

• {a} for Borda, Copeland, Hare, WeakNanson, Plurality, and
PluralityWRunoff;

• {a,b} for Baldwin, Coombs, MaxMin, and StrictNanson.

If candidate 1 changes her ranking to acb, then all the methods select the winning set {a}. Since
{a} >Pes

P′1
{a,b} and {a,b} 6>Pes

P′1
{a,b}, (P,1) witnesses sure pessimist manipulability for any nonempty

subset of methods from {Baldwin,Coombs,MaxMin,StrictNanson}, but no set containing any of the
following methods: Borda, Copeland, Hare, WeakNanson, Plurality, PluralityWRunoff.

3.1 Eliminating sure manipulation with a pair of voting methods

Our first question is whether uncertainty about the voting method may eliminate sure manipulation.

Definition 3.4. Let S be a set of voting methods. We say that S eliminates sure ∆-manipulation for (n,m)
iff S is not susceptible to sure ∆-manipulation for (n,m) but every nonempty S′ ( S is susceptible to sure
∆-manipulation for (n,m).

The numbers in Figure 1 represent the percentage of profiles that witness sure weak dominance
manipulation for (3,4) and (3,7). For example, 7.6% of (3,4)-profiles witness sure weak dominance
manipulation for {Plurality,Copeland}. The numbers along the diagonal give the percentage of
profiles witnessing weak dominance manipulation for a single voting method.8 The numbers highlighted
in red identify pairs of voting methods that eliminate sure weak dominance manipulation according to
Definition 3.4. For instance, 25% of the (3,4)-profiles witness weak dominance manipulation for Borda,
15% of the pointed (3,4)-profiles witness weak dominances manipulation for StrictNanson, but there
are no instances of sure weak dominance manipulation for {Borda,StrictNanson}.

8For 3 candidates, Hare and PluralityWRunoff always pick the same winners.
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Figure 1: Percentage of profiles witnessing sure weak dominance manipulation for (3,4) (left) and (3,7) (right).

To illustrate what happens with larger number of voters, we present in Figure 2 percentages for sure
weak dominance manipulation for Borda alone and Borda paired with several other voting methods.
The data for (4,4) was obtain by exhaustive search, while the data for (4,5)–(4,70) was obtained by
generating 10,000 profiles for each (4,m) using the Impartial Culture model.

Figure 2: Percentage of (4,m)-profiles witnessing sure
weak dominance manipulation for Borda alone and
Borda paired with several other methods.

By exhaustive search from (3,4)–(3,8),
we find that {Borda, Baldwin}, {Borda,
StrictNanson}, {WeakNanson, Baldwin},
and {WeakNanson, StrictNanson} are not
susceptible to sure weak dominance manip-
ulation, while each method individually is.
This raises the question of whether one can
prove that for all (3,m), those sets of meth-
ods eliminate sure weak dominance manipu-
lation. Indeed, we will prove this result.

Lemma 3.5. For any n ≥ 3 and m ≥
4,9 Baldwin, Borda, StrictNanson, and
WeakNanson are each susceptible to sure
weak dominance manipulation for (n,m).

Proof. Given a (3,m)-profile P, let P]P2 be
the (3,m+2)-profile that results from adding
to P two fresh voters with rankings abc and

cba, respectively. The rankings of candidates by Borda score in P and P]P2 are the same; the sets of
candidates with the lowest Borda scores in P and P]P2 are the same; and the sets of candidates with less
than average (resp. less than or equal to average) Borda scores in P and P]P2 are the same. Thus, the set
of Borda (resp. Baldwin, StrictNanson, WeakNanson) winners does not change from P and P]P2.
It follows that if P witnesses ∆-manipulation for Borda (resp. Baldwin, StrictNanson, WeakNanson)
by transitioning to P′, then P]P2 witnesses ∆-manipulation for Borda (resp. Baldwin, StrictNanson,
WeakNanson) by transitioning to P′]P2. Thus, to prove that one of these voting methods is susceptible
to ∆-dominance manipulation for (3,m) for any m ≥ 4, it suffices to show this for (3,4) and (3,5), as

9The lemma can also be proved by similar reasoning for n ≥ 4 and m ≥ 3. However, for n = 3 and m = 3, there are no
instances of weak dominance manipulation for these methods.
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susceptibility for all other pairs (3,m) then follows by the preceding observation about P]P2. As we
verified using our Python script, there are indeed (3,4) and (3,5) profiles witnessing weak dominance
manipulability for all four methods individually.

For any (n,m)-profile P, let P+ be the (n+1,m)-profile that results from adding to P a fresh candidate
at the bottom of every voter’s ranking. The set of Borda (resp. Baldwin, StrictNanson, WeakNanson)
winners does not change from P to P+. Thus, to prove that one of these methods is susceptible to
∆-dominance manipulation for (n,m) for any n≥ 3, it suffices to show this for (3,m), as above.

The following main theorems, proved in the Appendix, show that uncertainty about the voting
method can entirely eliminate sure weak dominance manipulation.

Theorem 3.6. For any m≥ 4, the sets {Borda,Baldwin} and {Borda,StrictNanson} eliminate sure
weak dominance manipulation for (3,m).

Theorem 3.7. For any m ≥ 4, the sets {WeakNanson,Baldwin} and {WeakNanson,StrictNanson}
eliminate sure weak dominance manipulation for (3,m).

By contrast, already for (3,5), {Baldwin,Borda,StrictNanson,WeakNanson} is susceptible to
sure optimistic dominance and sure pessimistic dominance. We give an example for optimistic domi-
nance, leaving pessimistic dominance as an exercise.

Example 3.8. Let P be the following (3,5) profile:

1 2 3 4 5
a a b c c
b b a b b
c c c a a

Baldwin, Borda, StrictNanson, and WeakNanson choose {b}. If voter
1 changes her ranking to a c b, then {a,b,c} is the winning set for all four
methods. Since {a,b,c}>Opt

P1
{b}, (P,1) witnesses sure optimist dominance

manipulability for {Baldwin,Borda,StrictNanson,WeakNanson}.

For another contrast to Theorems 3.6-3.7, when we increase to 4 candidates, {Baldwin, Borda,
StrictNanson, WeakNanson} is susceptible to sure weak dominance manipulation.

Example 3.9. Consider the following (4,3)-profile P:

1 2 3
a b c
b d a
c c b
d a d

The Borda winning set is {b}, while the Baldwin, StrictNanson, and
WeakNanson winning sets are all {a,b,c}. If voter 1 changes her rank-
ing to ad bc, then the Borda winning set is {a,b}, while the Baldwin,
StrictNanson, and WeakNanson winning sets are {a}. Since {a,b} >weak

P1
{b}

and {a} >weak
P1
{a,b,c}, (P,1) witnesses sure weak dominance manipulability for

{Baldwin,Borda,StrictNanson,WeakNanson}.

3.2 The failure of the Duggan-Schwartz theorem for sets of voting methods

A natural analogue of the Duggan-Schwartz theorem [9] for sure manipulation of sets of voting methods
would state that for any (n,m) with n ≥ 3 and set S of methods, each of which is non-imposed and
has no nominator, S is susceptible to sure optimistic or pessimistic dominance manipulation for (n,m).
However, this statement is false, as shown by the following example verified by our Python script.

Example 3.10. These sets of methods (which are non-imposed and have no nominator) eliminate sure
optimistic and pessimistic dominance manipulation for (3,6): {Baldwin, Condorcet}, {Condorcet,
Copeland}, {Condorcet, MaxMin}, {Condorcet, StrictNanson}, and {Condorcet, WeakNanson}.
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3.3 Cases where three methods are needed for elimination

So far we have only considered sets of two voting methods. But in some cases three voting methods are
needed to eliminate sure manipulation. We saw in Example 3.9 that {Borda,Baldwin} is susceptible to
sure weak dominance manipulation for (4,3). However, adding Coombs to {Borda,Baldwin} eliminates
sure weak dominance manipulation, as verified by our Python script (which also finds profiles witnessing
sure weak dominance manipulability for {Borda,Coombs} and {Coombs,Baldwin}).
Fact 3.11. {Borda,Coombs,Baldwin} eliminates sure weak dominance manipulation for (4,3).

3.4 (n,m) for which sure manipulation cannot be eliminated

So far we have focused on eliminating sure manipulation using uncertainty about the voting method.
However, as the following result shows, eliminating sure manipulation is not always possible.

Proposition 3.12. For every (n,m), there are n′ > n and m′ > m such that every nonempty subset of
Methods\{Condorcet} is susceptible to sure weak dominance manipulation for (n′,m′).

Proof. First, we claim that if there is one (n,m)-profile that witnesses sure weak dominance manipula-
bility for every nonempty subset of Methods\{Condorcet}, then for all k ∈N, there is an (n,m+24k)-
profile that does so. For any profile P, let P]P24 be the result of adding 24 new voters to P, one with each
of the possible 24 rankings of {a,b,c,d}. It is easy to see that for any f ∈Methods, f (P) = f (P]P24).
It follows that if P witnesses sure ∆-dominance manipulability for S by transitioning to P′, then so does
P]P24 by transitioning to P′ ]P24. In addition, using the construction from P to P+ in the proof of
Lemma 3.5, we can increase the number n of candidates, since for any f ∈ Methods, f (P) = f (P+).
Now consider the following (4,4)-profile P:

1 2 3 4
a b c c
b d a a
c c b b
d a d d

Every method in Methods \ {Condorcet} chooses {c} as the set of win-
ners. If voter 1 changes to bd ca, then the winning set for all methods
in Method\{Condorcet} becomes {b,c}. Since {b,c} >weak

P1
{c}, (P,1)

witnesses sure weak dominance manipulability for any nonempty subset of
Method\{Condorcet}.

3.5 Reduction without elimination

Even when eliminating sure manipulation is not possible, one may hope to reduce it. For example,
in Figures 1 and 2, there are a number of cases in which a pair of methods does not eliminate sure
weak dominance manipulation but does reduce the number of profiles witnessing sure weak dominance
manipulation relative to either method individually. This motivates the following notions.

Definition 3.13. For any sets S and S′ of voting methods, S is less susceptible to sure ∆-manipulation
than S′ for (n,m)-profiles (resp. pointed (n,m)-profiles) iff there are fewer (n,m)-profiles (resp. pointed
(n,m)-profiles) witnessing sure ∆-manipulation for S than there are for S′.

Definition 3.14. A set S of methods improves on all its subsets with respect to sure ∆-manipulation for
(n,m) iff S is less susceptible to sure ∆-manipulation for (n,m)-profiles than any nonempty S′ ( S.

Such improvement is especially pronounced with optimistic and pessimistic dominance, as in Figure 3.
Even if a set S does not improve on all of its subsets, that S is less susceptible to sure ∆-manipulation

than one of its subset may still be significant. An election designer who intends to use method f may
wish to leave voters uncertain between f and f ′ in order to reduce the chance that voters will surely



262 Strategic Voting Under Uncertainty About the Voting Method

Figure 3: Percentage of profiles witnessing sure optimistic dominance manipulation for (3,7) (left) and sure
pessimistic dominance manipulation for (3,6) (right).

manipulate, relative to what would happen if voters knew the method was f , even if there is no reduction
relative to what would happen if the planner intended to use f ′ and voters knew this. For example, in
Figure 1 for (3,7), someone intending to use Plurality could reduce the percentage of profiles in which
a voter will surely manipulate from 29% to 9% by leaving the voter uncertain between Plurality and
Hare, even though an election designer intending to use Hare would have no incentive to do so, since
the percentage of profiles witnessing sure manipulation for Hare by itself is already 9%.

A striking pattern in Figures 1, 2, and 3 is that pairing Borda with another method leads to significant
reductions in sure dominance manipulation. Using one or more methods to help reduce manipulation for
a preferred method is even more important in the case of safe manipulation discussed next.

4 Safe manipulation

We now turn to a less conservative approach to strategic voting under uncertainty about the voting
method: submit an insincere ranking whenever you know that doing so will lead to an outcome that
is at least as good and might lead to a better outcome.

Definition 4.1. Let (P, i) be a pointed profile, ∆ a dominance notion, and S a set of voting methods.
Then (P, i) witnesses safe ∆-manipulability for S iff there is a profile P′ differing from P only in i’s ballot
such that: ∀ f ∈ S : f (P′) ≥∆

Pi
f (P) and ∃ f ∈ S : f (P′) >∆

Pi
f (P). We then say that (P, i) witnesses safe

∆-manipulability for S by transitioning to P′. A profile P witnesses safe ∆-manipulability for S iff there
is an i ∈V such that (P, i) witnesses safe ∆-manipulability for S.

Remark 4.2. A variant of safe manipulability, which we will call harmless manipulability, says that
you should submit an insincere ranking whenever you know that doing so will not lead to a worse
outcome and might lead to a better outcome: ∀ f ∈ S : f (P′) 6<∆

Pi
f (P) and ∃ f ∈ S : f (P′)>∆

Pi
f (P). Since

f (P′) 6<weak
Pi

f (P) does not imply f (P′) ≥weak
Pi

f (P), harmless weak dominance manipulability does not
imply safe weak dominance manipulability for a given (P, i) transitioning to P′. But for pessimistic and
optimistic dominance, harmless and safe manipulability are equivalent.

For certain profiles and uncertainty sets S, submitting an insincere ranking may lead to a better
outcome with one method in S but a worse outcome with another method in S, in which case it is not safe
to manipulate using that insincere ranking.
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Example 4.3. Let P be the following (3,5)-profile:

1 2 3 4 5
c a b c a
b c a b c
a b c a b

Here Hare(P) = {a}, Borda(P) = {c}, and MaxMin(P) = {a,c}. Suppose
voter 1 changes her ranking to b a c, resulting in P′. Then Hare(P′) = {b},
Borda(P′) = {a}, and MaxMin(P′) = {a,b}. Since {b} >weak

P {a}, voter
1 has an incentive to manipulate with Hare. But voter 1 does not have an
incentive to manipulate with Borda, since {c}>weak

P1
{a}, or MaxMin, since

{a,b} 6≥weak
P1
{a,c}.

Thus, (P,1) does not witness safe weak dominance manipulation for Borda together with any nonempty
subset of {Hare,MaxMin}.

It seems too much to hope to eliminate safe manipulation by adding reasonable methods to S; for this
would require that for every profile in which a manipulation results in a better outcome for one method
in S, it results in a worse outcome for another method in S, which seems unlikely to hold for a set of
reasonable methods. However, one can eliminate safe manipulation by adding methods that would be
considered unreasonable by themselves.

Example 4.4. For any distinct x,y ∈C and i ∈V , let fx,y,i be the method such that fx,y,i(P) selects as the
winner whichever of x and y is ranked higher according to Pi (cf. [26]). It is easy to see that if S contains
fx,y,i for each distinct x,y ∈C, then i cannot safely manipulate with S.

Although eliminating safe manipulation with reasonable methods may be too much to hope for, one
can reduce safe manipulation. Thus, we are interested in the following analogue of Definition 3.13.

Definition 4.5. For any sets S and S′ of voting methods, S is less susceptible to safe ∆-manipulation
than S′ for (n,m)-profiles (resp. pointed (n,m)-profiles) iff there are fewer (n,m)-profiles (resp. pointed
(n,m)-profiles) witnessing sure safe ∆-manipulation for S than there are for S′.

Figure 4: Percentage of profiles witnessing safe weak dominance manipulation for (3,6) (left) and (3,7) (right).

Figure 4 shows the percentage of profiles witnessing safe weak dominance manipulation for (3,6)
and (3,7) for sets of two voting methods. All of the following can happen: (1) Unlike with sure
manipulation, with safe manipulation a voter who is uncertain between methods f and f ′ may have
an incentive to manipulate on more profiles than a voter who knows the method is f and more pro-
files than a voter who knows the method is f ′. E.g., this happens for (3,7) when f = Borda and
f ′ = Hare. (2) A voter who is uncertain between methods f and f ′ may have an incentive to manip-
ulate on fewer profiles than a voter who knows the method is f and fewer profiles than a voter who
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knows the method if f ′. E.g., this happens for (3,6) when f = Coombs and f ′ = Hare. In Figure 4,
all examples of this phenomenon are indicated with the blue boxes. For (3,7), there are no examples.
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Figure 5: Percentage of (4,m)-profiles witnessing safe
weak dominance manipulation for Coombs alone and
Coombs paired with several other methods.

(3) A voter who is uncertain between meth-
ods f and f ′ may have an incentive to ma-
nipulate on fewer profiles than a voter who
knows the method is f but more profiles than
a voter who knows the method is f ′. E.g.,
this happens with (3,6) when f = Borda

and f ′ = Hare. In case (3), an election de-
signer who intends to use method f may de-
cide to leave voters uncertain between f and
f ′ in order to decrease the chance that voters
will safely manipulate (cf. the end of Section
3.5).10 E.g., Figure 5 shows how an election
designer intending to use Coombs could pair
Coombs with several other methods to form
an uncertainty set of two methods in order to
decrease the percentage of profiles in which
a voter will safely manipulate.

5 Expected manipulation

Our last approach to strategic voting under uncertainty about the voting method is the most liberal:
assuming one’s uncertainty about the voting method is given by a lottery on the set of voting methods,
submit an insincere ranking if and only if doing so is more likely to lead to a better outcome than to lead
to a worse outcome. Recall that a lottery on a set Y is a function ν : Y → [0,1] such that ∑y∈Y ν(y) = 1.
For X ⊆ Y , let ν(X) = ∑x∈X ν(x).

Definition 5.1. Let (P, i) be a pointed profile, ∆ a dominance notion, S a set of voting methods, and ν a
lottery on S. Then (P, i) witnesses ν-expected ∆-manipulability for S if and only if there is a profile P′
differing from P only in i’s ballot such that ν({ f ∈ S | f (P′)>∆

Pi
f (P)})> ν({ f ∈ S | f (P′)<∆

Pi
f (P)}).

Then we say (P, i) witnesses ν-expected ∆-manipulability for S by transitioning to P′.

For simplicity, here we focus on ν being the uniform lottery on S, in which case we simply speak
of ‘expected ∆-manipulability’ instead of ‘ν-expected ∆-manipulability’. For ν uniform, this amounts to
simply counting the number of voting methods in S that lead to a better outcome vs. a worse outcome.

Example 5.2. The pointed profile (P,1) in Example 4.3 does not witness expected weak dominance
manipulability for {Borda,Hare} by transitioning to P′ since voter 1’s manipulation results in a better
outcome according to one method (Hare) but a worse outcome according to another method (Borda).
However, like Hare, Baldwin chooses {a} as the set of winners in P and {b} as the set in P′. Hence
(P,1) witnesses expected weak dominance manipulability for {Baldwin,Borda,Hare} by transitioning
to P′, as two methods lead to a better outcome and only one leads to a worse outcome.

10In this case, a sophisticated voter with access to the manipulation data for f , f ′, and { f , f ′} could infer that the election
designer intenders to use f . For example, if S = {Borda,Hare} for (3,6), then such a voter could infer that the designer intends
to use Borda, since a designer who intends to use Hare will not decrease manipulation with S = {Borda,Hare}. If the designer
anticipates that voters are sophisticated in this way, then she should move from a single method to a pair only in case (2).
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The following fact is immediate from the definitions.
Fact 5.3. If (P, i) witnesses safe ∆-dominance manipulability for S, then (P, i) witnesses expected ∆-
dominance manipulability for S.

The converse of Fact 5.3 does not hold, as shown by Example 5.2. But for |S| = 2 expected weak
dominance manipulability is equivalent to harmless weak dominance manipulability (recall Remark 4.2).

Using the obvious notion of less susceptible to expected ∆-dominance manipulation analogous to
Definitions 3.13 and 4.5, we have the following result, inspired by [26], showing how adding a method
to the set S may reduce expected manipulation.
Proposition 5.4. Suppose S is a set of voting methods such that for some f ∈ S, (n,m), pointed (n,m)-
profile (P, i), and a,b ∈ C, (1) (P, i) witnesses weak dominance manipulability for f , and (2) for any
P′ differing from P only in i’s ranking, if (P, i) witnesses weak dominance manipulability for f by
transitioning to P′, then P′ differs from P in i’s ranking of a vs. b, and for all g ∈ S \{ f}, g(P) = g(P′).
Then where fa,b,i is the method defined in Example 4.4, S∪{ fa,b,i} is less susceptible to expected weak
dominance manipulation than S for pointed (n,m)-profiles.

Proof. The key properties of fa,b,i are that (i) there are no profiles P and P′ differing only in i’s rank-
ing such that we have fa,b,i(P′) >weak

Pi
fa,b,i(P), and (ii) if P and P′ differ in i’s ranking of a vs. b, then

fa,b,i(P′)<weak
Pi

fa,b,i(P). It follows from (i) that any pointed profile witnessing expected weak dominance
manipulability for S∪{ fa,b,i} also witnesses expected weak dominance manipulability for S. Thus, to
prove the proposition, we need only find a pointed profile witnessing expected weak dominance manip-
ulability for S but not S∪{ fa,b,i}. By assumption, there is a pointed (n,m)-profile (P, i) and a,b ∈ C
satisfying items (1) and (2) of the proposition. Given (1), consider any P′ such that (P, i) witnesses
weak dominance manipulability for f by transitioning to P′. It then follows by (2) that (P, i) witnesses
expected weak dominance manipulability for S by transitioning to P′. However, we claim that (P, i) does
not witness expected weak dominance manipulability for S∪{ fa,b,i} by transitioning to P′. This follows
from the facts that f and fa,b,i are equally likely according to the uniform measure, {h ∈ S∪{ fa,b,i} |
h(P′)<weak

Pi
h(P)}= { fa,b,i} by (2) and (ii), and {h ∈ S∪{ fa,b,i} | h(P′)>weak

Pi
h(P)}= { f} by (2).

We conclude this section with an example in which the conditions of Proposition 5.4 apply.
Example 5.5. Consider the following (3,5)-profile P:

1 2 3 4 5
c c a a a
a a c c c
b b b b b

Let S = {Borda,Coombs}. (P, i) witnesses the weak manipulability of
Borda by transitioning to the profile P′ in which i’s new ranking is cba,
as the Borda winning set in P is {a}, the Borda winning set in P′ is {a,c},
and {a,c}>weak

P1
{a}.

Moreover, this is the only P′ differing from P only in i’s ranking such that (P, i) witnesses the weak
manipulability of Borda by transitioning to P′. Finally, the winning set for Coombs in both P and P′ is
{a}. Thus, the conditions of Proposition 5.4 are satisfied for f = Borda, so {Borda,Coombs, fa,b,i} is
less susceptible to expected weak dominance manipulation than {Borda,Coombs}.

6 Relation to probabilistic social choice

In this section, we briefly relate our work to strategic voting in the setting of probabilistic social choice.
Definition 6.1. A probabilistic social choice function (PSCF) is a function F assigning to each profile P
a lottery F(P) on C.
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To define manipulation of PSCFs, we need a notion of when a voter prefers one lottery to another.
Among many possible options (see, e.g., [4, Sec. 1.3.2]), the following is popular.

Definition 6.2. Let µ and µ ′ be lotteries on C and (P, i) a pointed profile. We say that µ stochastically
dominates µ ′ in (P, i) if and only if for every x ∈C, the probability that µ selects a candidate ranked at
least as highly as x by i is greater than or equal to the probability that µ ′ selects a candidate ranked at
least as highly as x by i:

∀x ∈C : ∑
y :yRix

µ(y)≥ ∑
y :yRix

µ
′(y).

We write µ %Pi µ ′ if µ stochastically dominates µ ′ in (P, i) and µ �Pi µ ′ if µ %Pi µ ′ but µ ′ 6%Pi µ .

Note that µ %Pi µ ′ if and only if for every utility function on C that is compatible with Pi, the expected
utility of µ is at least as great as the expected utility of µ ′ (see, e.g., [3, p. 302-3]).

Definition 6.3. Let F be a PSCF. A pointed profile (P, i) witnesses stochastic dominance manipulability
for F if and only if there is a profile P′ differing only in i’s ranking such that F(P′)�Pi F(P).11 We then
say that (P, i) witnesses stochastic dominance manipulability for F by transitioning to P′.

For results on stochastic dominance manipulability, see [4].
To relate the above notions to this paper, we observe how any set S of voting methods gives rise to

a PSCF, assuming that (i) each method in S is equally likely to be used and (ii) each candidate in the
set of winners selected by a method is equally likely to be chosen as the unique winner by a tiebreaking
mechanism. Then the probability that a given candidate a ∈C will be chosen as the winner is:

Pr(a wins) = ∑
f∈S

Pr(a wins | f is used)×Pr( f is used)

= ∑
f∈S

a∈ f (P)

Pr(a wins | f is used)×Pr( f is used)+ ∑
f∈S

a 6∈ f (P)

Pr(a wins | f is used)×Pr( f is used)

=
(

∑
f∈S

a∈ f (P)

1
| f (P)|

× 1
|S|

)
+
(

∑
f∈S

a 6∈ f (P)

0× 1
|S|

)
= ∑

f∈S
a∈ f (P)

1
| f (P)|

× 1
|S|

.

Thus, for a profile P and set S of voting methods, we define the lottery µP
S on C by

µ
P
S (a) = ∑

f∈S
a∈ f (P)

1
| f (P)|

× 1
|S|

.

Finally, for any set S of voting methods, we define the PSCF FS by FS(P) = µP
S .

Remark 6.4. For any set S of voting methods and lottery ν on S, one can define a PSCF FS,ν in the
obvious way by weighting the methods in S according to ν (and one can modify assumption (ii) with a
non-uniform measure for tiebreaking). For simplicity, here we focus on the uniform measure on S.

The following fact can be verified from the definitions.

11Gibbard’s [14] notion of srategyproofness for a PSCF F is equivalent to the condition (called strong SD-strategyproofness
in [4]) that for every pointed profile (P, i) and profile P′ differing only in i’s ranking, F(P) %Pi F(P′), i.e., there is no profile
(P, i) witnessing manipulation in the sense that there exists a profile P′ differing only in i’s ranking such that F(P) 6%Pi F(P′)
(which Gibbard states in the equivalent form: there is some utility function on C such that the expected utility of F(P′) is
greater than that of F(P)). Following Brandt [4], we prefer the notion of (P, i) witnessing stochastic dominance manipulation
in Definition 6.3, which is the notion used in Brandt’s definition of (weak) SD-strategyproofness.
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Fact 6.5. If (P, i) witnesses safe weak dominance manipulation for S by transitioning to P′, then (P, i)
witnesses stochastic dominance manipulation for FS by transitioning to P′.

However, stochastic manipulation does not imply safe weak manipulation.
Example 6.6. Consider the following (3,4)-profile P for C = {a,b,c} and V = {1,2,3,4}:

1 2 3 4
a a b b
b c a a
c b c c

The Coombs, Copeland, and Hare winning set is {a,b}. If voter 1 changes
to the ranking cab, transitioning to the profile P′, then the new winning set for
Coombs and Copeland is {a} and the new winning set for Hare is {b}. Note that
{a}>weak

P1
{a,b} and {a,b}>weak

P1
{b}, so voter 1’s new ranking leads to a better

weak dominance outcome according to Coombs and Copeland but a worse weak
dominance outcome according to Hare.

Thus, (P,1) does not witness safe weak dominance manipulability by transitioning to P′.
Let S = {Coombs,Copeland,Hare}. The lottery FS(P) is [a : 1/2, b : 1/2, c : 0]. The lottery FS(P′)

is [a : 2/3, b : 1/3, c : 0]. As voter 1’s ranking in P is abc, FS(P′) stochastically dominates FS(P), since
the probability according to FS(P′) of selecting a candidate at least as good as b is equal to the probability
according to FS(P) (both are 1), and the probability according to FS(P′) of selecting a candidate at least
as good as a (probability 2/3) is greater than the probability according to FS(P) (probability 1/2). So
(P,1) witnesses stochastic dominance manipulability for FS(P) by transitioning to P′.

It is easy to see abstractly that stochastic dominance manipulation also does not imply expected
weak dominance manipulation: e.g., if S = { f1, f2} and the transition from (P, i) to P is such that
f1(P)<weak

Pi
f1(P′) and f2(P) >weak

Pi
f2(P′), then the transition does not witness expected weak manip-

ulation, but the amount by which f1 increases the probability of getting a preferred candidate may be
greater than the amount by which f2 decreases the probability of getting a preferred candidate, so that
the lottery Ff1, f2(P′) stochastically dominates the lottery Ff1, f2(P). The same idea applies for more than
two methods. It remains to be seen whether an example of this kind exists with standard voting methods.

We can, however, use standard methods to show that expected weak dominance manipulation does
not imply stochastic weak dominance manipulation.
Example 6.7. Let P and P′ be the profiles in Example 4.3 and S = {Baldwin,Borda,Hare}. In P,
Baldwin and Hare select a as the winner, while Borda selects c as the winner. Thus, the lottery FS(P)
is [a : 2/3, b : 0, c : 1/3]. In P′, Baldwin and Hare select b as the winner, while Borda selects a as the
winner. Thus, the lottery FS(P′) is [a : 1/3, b : 2/3, c : 0]. As voter 1’s ranking in P is cba, FS(P′) does
not stochastically dominate FS(P), since the probability according to FS(P′) of selecting a candidate at
least as good as c is not greater than or equal to the probability according to FS(P) of selecting a candidate
at least as good as c. Thus, (P,1) does not witness stochastic dominance manipulability for FS(P) by
transitioning to P′. However, as two of the three methods in S lead to a better set of winners (in the sense
of weak dominance) in P′ than in P according to voter 1’s ranking in P, (P,1) does witness expected
weak dominance manipulability for {Baldwin,Borda,Hare} by transitioning to P′.

7 Conclusion

In this paper, we have shown that uncertainty about the voting method can be used as a barrier to ma-
nipulation. Considering such uncertainty led to three decision rules that voters may use to decide when
to manipulate: sure, safe, and expected manipulation. Related issues arise when studying probabilistic
voting methods, though Section 6 shows that our notions of sure, safe, and expected manipulation do not
collapse to a standard notion of stochastic manipulation of probabilistic voting methods.



268 Strategic Voting Under Uncertainty About the Voting Method

This initial study relied heavily on computer searches. Two natural next steps are (i) to prove addi-
tional possibility (or impossibility) theorems, like our Theorems 3.6-3.7, and (ii) to incorporate uncer-
tainty about voting methods into the asymptotic analysis of strategic voting as the number of candidates
or voters increases (see, e.g., [33, 23]). Finally, a full analysis should take into account both uncertainty
about the voting method and uncertainty about how others will vote.
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[23] Elchanan Mossel & Miklós Z. Rácz (2015): A quantitative Gibbard-Satterthwaite theorem without neutrality.
Combinatorica 35(3), pp. 317–387, doi:10.1007/s00493-014-2979-5.

[24] Emerson M. S. Niou (1987): A Note on Nanson’s Rule. Public Choice 54(2), pp. 191–193,
doi:10.1007/BF00123006.

[25] Shmuel Nitzan (1985): The vulnerability of point-voting schemes to preference variation and strategic ma-
nipulation. Public Choice 47(2), pp. 349–370, doi:10.1007/BF00127531.

[26] Matias Nunez & Marcus Pivato (2019): Truth-revealing voting rules for large populations. Games and
Economic Behaviour 113, pp. 285–305, doi:10.1016/j.geb.2018.09.009.

[27] Martin Osborne & Ariel Rubinstein (2003): Sampling equilibrium, with an application to strategic voting.
Games and Economic Behavior 45(2), pp. 434–441, doi:10.1016/S0899-8256(03)00147-7.

[28] Eric Pacuit (2019): Voting Methods. In Edward N. Zalta, editor: The Stanford Encyclopedia of Philosophy,
Metaphysics Research Lab, Stanford University.

[29] Peter Railton (1981): Probability, Explanation, and Information. Synthese 48(2), pp. 233–256,
doi:10.1007/BF01063889.

[30] Annemieke Reijngoud & Ulle Endriss (2012): Voter response to iterated poll information. In: Proceedings
of the 11th International Conference on Autonomous Agents and Multiagent Systems, pp. 635–644.

[31] Mark Satterthwaite (1973): The Existence of a Strategy Proof Voting Procedure. Ph.D. thesis, University of
Wisconsin.

[32] Mark Satterthwaite (1975): Strategy-proofness and Arrow’s Conditions: Existence and Correspondence The-
orems for Voting Procedures and Social Welfare Functions. Journal of Economic Theory 10(2), pp. 187–217,
doi:10.1016/0022-0531(75)90050-2.

[33] Arkadii Slinko (2002): On Asymptotic Strategy-Proofness of Classical Social Choice Rules. Theory and
Decision 52(4), pp. 389–398, doi:10.1023/A:1020240214900.

[34] Arkadii Slinko & Shaun White (2014): Is it ever safe to vote strategically? Social Choice and Welfare 43(2),
pp. 403–427, doi:10.1007/s00355-013-0785-4.

[35] Alan D. Taylor (2005): Social Choice and the Mathematics of Manipulation. Cambridge University Press,
Cambridge, doi:10.1017/CBO9780511614316.

[36] Hans van Ditmarsch, Jerome Lang & Abdallah Saffidine (2013): Strategic voting and the logic of knowledge.
In: Proceedings of the 14th Conference on Theoretical Aspects of Rationality and Knowledge (TARK), pp.
196–205.

A Proof of Theorem 3.6

In this appendix, we prove Theorem 3.6: for any m ≥ 4, the sets {Borda, Baldwin} and {Borda,
StrictNanson} eliminate sure weak dominance manipulation for (3,m).

http://dx.doi.org/10.2307/j.ctt6wrd9p.5
http://dx.doi.org/10.2307/1911220
http://dx.doi.org/10.1007/BF00435499
http://dx.doi.org/10.1007/978-3-662-00411-1_12
http://dx.doi.org/10.1007/s00493-014-2979-5
http://dx.doi.org/10.1007/BF00123006
http://dx.doi.org/10.1007/BF00127531
http://dx.doi.org/10.1016/j.geb.2018.09.009
http://dx.doi.org/10.1016/S0899-8256(03)00147-7
http://dx.doi.org/10.1007/BF01063889
http://dx.doi.org/10.1016/0022-0531(75)90050-2
http://dx.doi.org/10.1023/A:1020240214900
http://dx.doi.org/10.1007/s00355-013-0785-4
http://dx.doi.org/10.1017/CBO9780511614316


270 Strategic Voting Under Uncertainty About the Voting Method

Proof. Given Lemma 3.5, we need only show that the two sets of methods are not susceptible to sure
weak dominance manipulation for (3,m). Toward a contradiction, suppose (P, i) is a pointed (3,m)-
profile witnessing sure weak dominance manipulation for either of the two sets by transitioning to a
profile P′. Suppose i’s ballot in P is αβγ .

Claim 1: the Borda winning set in P′ does not contain all three candidates. This follows by analyzing
the possible sets of Borda winners in P. A three-way tie {α,β ,γ} does not weakly dominate any of the
following sets for i: {α}, {β}, {α,β}, {α,γ}, {α,β ,γ}. This leaves only the winning sets {β ,γ} and
{γ} to consider. But voter i cannot manipulate so as to change the set of Borda winners from {β ,γ}
to {α,β ,γ}; for the Borda scores of β and γ must still be tied in P′, so i’s ranking in P′ must be βγα ,
which decreases α’s Borda score. In addition, voter i cannot manipulate so as to change the set of Borda
winners from {γ} to {α,β ,γ}. For if i ranks γ higher in P′, then γ’s Borda score increases by at least
one, and no other candidate’s Borda score increases by more than one, so the set of winners is still {γ};
hence i’s ranking in P′ must be βαγ , but this fails to add α to the set of winners.

Label the candidates in order of ascending Borda score in P′ as ϕ , ψ , and χ . Thus, by Claim 1,

B′(ϕ)< B′(ψ)≤ B′(χ) or (1)

B′(ϕ) = B′(ψ)< B′(χ), (2)

where B′ indicates the Borda score in P′. Let B(ϕ),B(ψ),B(χ) be the Borda scores of ϕ , ψ , and χ in P.
Claim 2: i’s ranking changes from P to P′ either by switching her 1st and 2nd placed candidates or

by switching her 2nd and 3rd candidates; thus, one candidate’s Borda score remains the same, and no
candidate’s Borda score changes by more than one point. Suppose for a contradiction that i’s 3rd place
candidate in P is her 1st place candidate in P′ or her 1st place candidate in P is her 3rd place candidate
in P′. Then since i’s ranking in P is αβγ , we have that i’s ranking in P′ is either γβα , γαβ , or βγα .
But we claim i does not have an incentive to transition to any of these rankings from the original ranking
αβγ . The first two transitions are such that the only candidate to increase in Borda score is i’s last place
candidate, which never improves the winning set for i. The transition from αβγ to βγα does not improve
the winning set if the winning set in P contains α; and if the winning set in P is {β}, {γ}, or {β ,γ},
again the transition from αβγ to βγα does not change the winning set. Thus, we have a contradiction
with the assumption that (P, i) witnesses sure weak dominance manipulation for Borda.

Using Claim 2, we can rule out case (2) above. For (3,m), Borda is not single-winner manipulable
[35, p. 57, Exercise 10], which means that if {χ} is the set of Borda winners in P′, then the set of Borda
winners in P cannot be a singleton, so it must be one of {ϕ,ψ,χ}, {ψ,χ}, {ϕ,χ}, or {ϕ,ψ}. By Claim
2, there is no way i can change the Borda scores from B(ϕ) = B(ψ) = B(χ) to B′(ϕ) = B′(ψ)< B′(χ),
so we can rule out {ϕ,ψ,χ}. Also by Claim 2, in order for i to change the Borda scores from B(ϕ) <
B(ψ) = B(χ) to B′(ϕ) = B′(ψ)< B′(χ), her ranking must go from ψχϕ to χψϕ or from ϕψχ to ϕχψ ,
but then the new winning set {χ} is worse for i than the original {ψ,χ}. Thus, we can rule out {ψ,χ},
and by the same reasoning, {ϕ,χ}. Finally, by Claim 2, there is no way for i to change the Borda scores
from B(χ)< B(ϕ) = B(ψ) to B′(ϕ) = B′(ψ)< B′(χ), so we can rule out {ϕ,ψ}. Thus, (1) holds.

Claim 3: ϕ has the unique below average Borda score in P and P′. We argue by cases.
Case 1: B′(ψ) = B′(χ). Then it is immediate from (1) that ϕ has the unique below average Borda

score in P′. We now show that ϕ has the unique below average Borda score in P. Given B′(ψ) = B′(χ)
and B′(ϕ)+B′(ψ)+B′(χ) = 3m, we have

B′(ϕ)+2B′(ψ) = 3m. (3)

We claim that
B′(ψ)−B′(ϕ)> 2. (4)
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For B′(ψ)−B′(ϕ) 6= 0 since ϕ was chosen as the candidate with the lowest Borda score in P′, and if
B′(ψ)−B′(ϕ) = k for k ∈ {1,2}, so B′(ϕ) = B′(ψ)− k, then from (3) we have 3B′(ψ)− k = 3m, a
contradiction. Now by Claim 2, we have |B(ϕ)−B′(ϕ)| ≤ 1, |B(ψ)−B′(ψ)| ≤ 1, and |B(χ)−B′(χ)| ≤
1. It follows by (4) that B(ϕ)< B(ψ) and B(ϕ)< B(χ). Thus, ϕ has a below average Borda score in P.
Finally, we claim that ϕ is the only candidate with a below average Borda score in P. Since the average
Borda score is m, this means B(ψ) ≥ m and B(χ) ≥ m. Suppose for contradiction that B(ψ) < m or
B(χ)< m. Without loss of generality, suppose B(ψ)< m. By Claim 2 and the fact that B′(ψ) = B′(χ),
we have |B(ψ)−B(χ)| ≤ 2. But together B(ϕ) < B(ψ), B(ψ) < m, and |B(ψ)−B(χ)| ≤ 2 contradict
the fact that B(ϕ)+B(ψ)+B(χ) = 3m. Thus, ϕ has the unique below average Borda score in P.

Case 2: B′(ψ)< B′(χ). First, we claim it is not the case that B(ϕ) = B(ψ) = B(χ). It follows from
Claim 2 that there are only two ways to go from B(ϕ) = B(ψ) = B(χ) to B′(ϕ)< B′(ψ)< B′(χ): i’s
ranking goes from ϕχψ to χϕψ or from ψϕχ to ψχϕ . But in both cases the new Borda winning set
{χ} does not weakly dominate the old winning Borda set {ϕ,ψ,χ}, contradicting the assumption that
i had an incentive to manipulate. In addition, it is not the case that B(ϕ) = B(ψ) < B(χ) or B(ϕ) <
B(ψ) < B(χ), for then i would have no incentive to transition to B′(ϕ) < B′(ψ) < B′(χ), since the
Borda winning set would not change. Thus, we have that B(ϕ) < B(ψ) = B(χ), so ϕ has the unique
below average Borda score in P. Now by Claim 2, the Borda score of one of ϕ , ψ , and χ must remain
the same from P to P′. But we cannot have B(ϕ) = B′(ϕ), for then in order to go from B(ψ) = B(χ) to
B′(ψ) < B′(χ), by Claim 2 i’s ranking must either change from ψχϕ to χψϕ or from ϕψχ to ϕχψ;
but in both cases the new Borda winning set {χ} does not weakly dominate the old winning Borda set
{ψ,χ}, contradicting the assumption that i had an incentive to manipulate. Thus, either B(ψ) = B′(ψ)
or B(χ) = B′(χ). But if B(ψ) = B′(ψ) or B(χ) = B′(χ), then together B(ψ) = B(χ) and B′(ψ)< B′(χ)
imply |B′(ψ)−B′(χ)| = 1 by Claim 2, in which case B′(ϕ) < B′(ψ) < B′(χ) implies that ϕ has the
unique below average Borda score in P′.

Claim 4: the majority ordering between ψ and χ does not change from P to P′. This follows from
the claim that i’s ordering of ψ and χ does not change from P to P′. We know ϕ is not in the set of
Borda winners in P or in P′ by Claim 3, and the set of Borda winners in P′ is not {ϕ,ψ,χ} by Claim 1.

Case 1: the Borda winning set in P′ is {ψ,χ}, so B′(ψ) = B′(χ). Suppose for contradiction that i’s
ranking for ψ vs. χ in P is the reverse of i’s ranking in P′. Suppose, without loss of generality, that i
ranks ψ over χ in P but i ranks χ over ψ in P′. Then since in P′, we have B′(ψ) = B′(χ), it follows that
B(ψ)> B(χ), which with Claim 3 implies that ψ is the unique Borda winner in P. But then there is no
incentive for i to manipulate, as i would do worse with the winning set {ψ,χ} in P′. This contradicts our
assumption that (P, i) witnesses manipulation for Borda by transitioning to P′.

Case 2: the Borda winning set in P′ is {χ}, so B′(ψ)< B′(χ). Since ϕ is not in the Borda winning
set in P by Claim 3, the Borda winning set in P is {ψ,χ} or {ψ}, but the latter is ruled out since Borda
is not single-winner manipulable. Since by assumption the winning set in P′ weakly dominates that in P
for i, it follows that i ranks χ above ψ in P. But then the transition from the Borda winning set {ψ,χ}
to {χ} cannot be the result of i switching her ranking of χ and ψ so that ψ is ranked above χ in P′.

For any (3,m)-profile, the set of Baldwin (resp. StrictNanson) winners may be obtained by first
eliminating the candidates (if there are any) with the strictly lowest Borda scores (resp. with below aver-
age Borda scores) and then selecting as winners from the remaining candidates those who are maximal in
the majority ordering. Thus, by Claim 3 and Claim 4, the sets of Baldwin winners and StrictNanson

winners do not change from P to P′. This contradicts the assumption that (P, i) witnesses sure weak
dominance manipulation for {Borda,Baldwin} or {Borda,StrictNanson} by transitioning to P′.
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B Proof of Theorem 3.7

In this appendix, we prove Theorem 3.7: for any m ≥ 4, {WeakNanson, Baldwin} and {WeakNanson,
StrictNanson} eliminate sure weak dominance manipulation for (3,m).

Proof. Given Lemma 3.5, we need only show that the two sets of methods are not susceptible to sure
weak dominance manipulation for (3,m). Consider an arbitrary pointed profile (P, i). We show that
for any profile P′ differing from P only in i’s ranking, (P, i) does not witness sure weak dominance
manipulation for {WeakNanson,Baldwin} or {WeakNanson,StrictNanson} by transitioning to P′.
Let i’s ranking in P be αβγ . Let B(α), B(β ), and B(γ) be the Borda scores of α , β , and γ , respectively,
in P, and likewise for B′(α), B′(β ), and B′(γ) in P′. For any (3,m)-profile, the set of WeakNanson
(resp. StrictNanson, Baldwin) winners may be obtained by first eliminating the candidates (if there
are any) with less than or equal to average Borda scores (resp. with below average Borda scores, with
strictly lowest Borda scores) and then selecting as winners from the remaining candidates those who are
maximal in the majority ordering. Note that the average Borda score for any given (3,m)-profile is m.
We consider the following exhaustive list of cases, where ‘WN’ stands for WeakNanson:

1. B(β ),B(γ)≤ m < B(α); or B(β )≤ m < B(α),B(γ) and α >M
P γ; or B(γ)≤ m < B(α),B(β ) and

α >M
P β . Then {α} is the WN-winning set in P, so i has no incentive to transition from P to P′

2. B(α)≤m<B(β ),B(γ) and β >M
P γ , so {β} is the WN-winning set in P. Then B′(α)≤m<B′(γ),

so α is not in the WN-winning set in P′. But only sets that contain α weakly dominate {β} for i.
3. B(α)≤m < B(β ),B(γ) and γ >M

P β , so {γ} is the WN-winning set in P. In this case B′(α)≤m≤
B′(β ), m < B′(γ), and γ >M

P′ β for any P′ differing only in i’s ranking. So the winning set in P′ is again
{γ}, providing no incentive under WN to transition to P′.

4. B(α)≤ m < B(β ),B(γ) and γ =M
P β , so {β ,γ} is the WN-winning set in P. In this case B′(α)≤

m≤ B′(β ), m < B′(γ), and γ ≥M
P′ β for any P′ differ only in i’s ranking. So the WN-winning set in P′ is

{γ} or {β ,γ}, neither of which weakly dominates {β ,γ} for i.
5. B(β )≤m<B(α),B(γ) and γ ≥M

P α , so the WN-winning set in P is either {γ} or {α,γ}. It follows
that B(β )≤m−2 and hence B′(β )< m, and γ ≥M

P′ α for any P′ differ only in i’s ranking. Thus, if {γ} is
the WN-winning set in P, it is the WN-winning set in P′; and if {α,γ} is the WN-winning set in P, then
the WN-winning set in P′ contains γ , but no set containing γ weakly dominates {α,γ}.

6. B(γ)≤ m < B(α),B(β ), and β ≥M
P α , so the WN-winning set is either {β} or {α,β}. It follows

that B(γ) < m and indeed B(γ) ≤ m− 2. Hence B′(γ) ≤ m. Thus, γ is eliminated for WN in the first
round for P′. Since β ≥M

P α with i having the ranking αβγ in P, it follows that β ≥M
P′ α for any P′

differing from P only in i’s ranking. Thus, if {β} is the WN-wining set in P, it is still the WN-winning
set in P′; and if {α,β} is the WN-winning set in P, then the WN-winning set in P′ contains β , but no set
containing β weakly dominates {α,β}.

7. B(α),B(γ)≤m≤B(β ), so the WN-winning set in P is {β} or {α,β ,γ}. In this case B′(α)≤m, so
the WN-winning set in P′ is either {α,β ,γ} or a set not containing α , and in both cases the WN-winning
set in P′ does not weakly dominate the WN-winning set in P.

8. B(α),B(β ) ≤ m < B(γ), so {γ} is the WN-winning set in P. Hence B′(α) ≤ m < B′(γ). If
B′(β )≤ m, then {γ} is still the WN-winning set in P′. So suppose m < B′(β ), which implies B(β ) = m,
B(α) < m, and B′(α) < m. There are only two post-manipulation rankings consistent with m < B′(β ):
βαγ and βγα . Note that the majority ordering of β and γ has not changed from P to P′, and in both P
and P′, α is the unique candidate with below average Borda score. It follows that the StrictNanson

winning set in P and P′ is the same, and the Baldwin winning set in P and P′ is the same. Hence the
transition from P to P′ does not witness sure manipulation.
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